Как найти бензол реакция

Арены – ароматические углеводороды, содержащие одно или несколько бензольных колец.
Бензольное кольцо составляют 6 атомов углерода, между которыми чередуются двойные и одинарные связи.

Важно заметить, что двойные связи в молекуле бензола не фиксированы, а постоянно перемещаются по кругу.

Арены также называют ароматическими углеводородами. Первый член гомологического ряда – бензол – C6H6.
Общая формула их гомологического ряда – CnH2n-6.

Формула бензола

Долгое время структурная формула бензола оставалась тайной. Предложенная Кекуле формула с тремя двойными связями не могла
объяснить то, что бензол не вступает в реакции присоединения. Как уже было сказано выше, по современным представлениям
двойные связи в молекуле бензола постоянно перемещаются, поэтому более верно рисовать их в виде кольца.

За счет чередования двойных связей в молекуле бензола формируется сопряжение. Все атомы углерода находятся в состоянии sp2
гибридизации. Валентный угол – 120°.

Номенклатура и изомерия аренов

Названия аренов формируются путем добавления названий заместителей к главной цепи – бензольному кольцу: бензол, метилбензол (толуол),
этилбензол, пропилбензол и т.д. Заместители, как обычно, перечисляются в алфавитном порядке. Если в бензольном кольце несколько заместителей,
то выбирают кратчайший путь между ними.

Номенклатура аренов

Для аренов характерна структурная изомерия, связанная с положением заместителей. Например, два заместителя в бензольном
кольце могут располагаться в разных положениях.

Название положения заместителей в бензольном кольце формируется на основе их расположения относительно друг друга. Оно обозначается
приставками орто-, мета- и пара. Ниже вы найдете мнемонические подсказки для их успешного запоминания 😉

Орто-, пара- и мета- положения в бензольном кольце

Получение аренов

Арены получают несколькими способами:

  • Реакция Зелинского (тримеризация ацетилена)
  • Данная реакция протекает при пропускании ацетилена над активированным углем при t = 400°C. В результате образуется ароматический
    углеводород – бензол.

    Реакция Зелинского

    В случае, если к ацетилену добавить пропин, то становится возможным получение толуола. Увеличивая долю пропина, в конечном итоге
    можно добиться образования 1,3,5-триметилбензола.

    Тримеризация пропина

  • Дегидроциклизация алканов
  • В ходе таких реакций, протекающих при повышенной температуре и в присутствии катализатора – Cr2O3, линейная
    структура алкана замыкается в цикл, отщепляется водород.

    Дегидроциклизация гексана

    При дегидроциклизации гептана получается толуол.

    Дегидроциклизация гептана

  • Дегидрирование циклоалканов
  • В результате дегидрирования уже “готовых” циклов – циклоалканов, отщепляются 3 моль водорода, и образуется соответствующий арен,
    с теми же заместителями, которые были у циклоалкана.

    Дегидрирование циклоалканов

  • Синтез Дюма
  • Синтез Дюма заключается в сплавлении солей карбоновых кислот с щелочами. В результате такой реакции возможно образование различных органических веществ, в том числе аренов.

    Синтез Дюма, получение аренов

Химические свойства аренов

Арены – ароматические углеводороды, которые содержат бензольное кольцо с сопряженными двойными связями. Эта особенность
делает реакции присоединения тяжело протекающими (и тем не менее возможными!)

Запомните, что, в отличие от других непредельных соединений, бензол и его гомологи не обесцвечивают бромную воду и
раствор перманганата калия.

  • Гидрирование
  • При повышенной температуре и наличии катализатора, водород способен разорвать двойные связи в бензольном кольце
    и превратить арен в циклоалкан.

    Гидрирование бензола

  • Галогенирование
  • Реакция бензола с хлором на свету приводит к образованию гексахлорциклогексана, если же использовать только катализатор,
    то образуется хлорбензол.

    Хлорирование бензола

    Реакции с толуолом протекают иначе: при УФ-свете хлор направляется в радикал метил и замещает атом водорода в нем, при действии катализатора хлор замещает один атом водорода в бензольном кольце (в орто- или пара-положении).

    Хлорирование толуола

    Почему хлор направляется именно в орто- и пара-положения относительно метильной группы? Здесь самое время
    коснуться темы ориентантов I (орто-, пара-ориентантов) и II порядков (мета-ориентанты).

    К ориентантам первого порядка относятся группы: NH2, OH, OR, CR3, CHR2,
    CH2R, галогены. К ориентантам второго: NO2, CN, SO3H, CCl3,
    CHO, COOH, COOR.

    Ориентанты I и II порядка

    Например, ориентант I порядка, гидроксогруппа OH, обеспечивает протекание хлорирования в орто- и пара-положениях.
    А карбоксильная группа COOH, ориентант II порядка, обуславливает хлорирование в мета-положениях.

    Ориентанты I и II порядка

  • Нитрование
  • Арены вступают в реакции нитрования, протекающие при повышенной температуре и в присутствии серной кислоты,
    обладающей водоотнимающими свойствами.

    Нитрование бензола, толуола и нитробензола

  • Алкилирование
  • Алкилирование аренов осуществляется путем введения алкильного радикала в молекулу бензола. Алкильным радикалом чаще
    всего выступает алкен или галогеналкан. В подобных реакциях используют катализатор AlCl3.

    В случае если для алкилирования используется алкен, то с молекулой бензола соединяется наименее гидрированный атом
    углерода алкена, прилежащий к двойной связи. Один атом водорода переходит из бензольного кольца к радикалу.

    Алкилирование аренов

  • Окисление
  • Арены, как и все органические вещества, сгорают с образованием углекислого газа и воды.

    2C6H6 + 15O2 → 12CO2 + 6H2O

    При неполном окислении гомологи бензола способны окисляться до бензойной кислоты (при подкислении раствора серной
    кислотой). Сам бензол не вступает в реакцию окисления с KMnO4, не обесцвечивает его раствор.

    Окисление аренов

  • Полимеризация
  • В реакцию полимеризации способен вступать стирол (винилбензол), в радикале которого содержится двойная связь.

    Полимеризация стирола

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Бензол
Изображение химической структуры Изображение молекулярной модели

Вращающаяся молекула бензола.gif
Изображение молекулярной модели

Общие
Систематическое
наименование
бензол
Сокращения PhH
Традиционные названия фен (Лоран, 1837),
фениловый водород, бензен
Хим. формула C6H6
Физические свойства
Состояние жидкость
Молярная масса 78,11 г/моль
Плотность 0,8786 г/см³
Динамическая вязкость 0,0652 Па·с
Энергия ионизации 9,24 ± 0,01 эВ
Термические свойства
Температура
 • плавления 5,5 °C
 • кипения 80,1 °C
 • вспышки −11 °C
 • самовоспламенения 562 °C
Пределы взрываемости 1,2 ± 0,1 об.%
Энтальпия
 • образования 82 930 Дж/моль[1] и 49 080 Дж/моль[1]
Давление пара 75 ± 1 мм рт.ст.
Химические свойства
Растворимость
 • в воде 0,073 г/100 мл
Оптические свойства
Показатель преломления 1,501
Классификация
Рег. номер CAS 71-43-2
PubChem 241
Рег. номер EINECS 200-753-7
SMILES

C1=CC=CC=C1

InChI

InChI=1S/C6H6/c1-2-4-6-5-3-1/h1-6H

UHOVQNZJYSORNB-UHFFFAOYSA-N

RTECS CY1400000
ChEBI 16716
Номер ООН 1114
ChemSpider 236
Безопасность
Предельная концентрация 5 мг/м3[2]
ЛД50 28—100 мг/кг
Токсичность Высокотоксичен, особенно при пероральном приёме, сильный канцероген, мутаген, ирритант (раздражает кожу, опасен для органов зрения).
Краткие характер. опасности (H)

H225, H304, H315, H319, H340, H350, H372, H412

Меры предостор. (P)

P201, P210, P280, P308+P313, P370+P378, P403+P235

Сигнальное слово ОПАСНО!
Пиктограммы СГС Пиктограмма «Череп и скрещённые кости» системы СГСПиктограмма «Опасность для здоровья» системы СГСПиктограмма «Газовый баллон» системы СГСПиктограмма «Пламя» системы СГСПиктограмма «Коррозия» системы СГСПиктограмма «Окружающая среда» системы СГС
NFPA 704

NFPA 704 four-colored diamond

3

2

0

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Бензо́л (C6H6, PhH; редко употребляемые синонимы: бензе́н, фениловый водород) (циклогекса-1,3,5-триен, [6]-аннулен) — органическое химическое соединение, бесцветная жидкость со специфическим сладковатым запахом. Простейший ароматический углеводород. Широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Хотя бензол входит в состав сырой нефти, в промышленных масштабах он синтезируется из других её компонентов. Токсичен, канцерогенен[2]. Является контаминантом.

История[править | править код]

Впервые бензолсодержащие смеси, образующиеся в результате перегонки каменноугольной смолы, описал немецкий химик Иоганн Глаубер в книге Furni novi philosophici, опубликованной в 1651 году[3]. Бензол как индивидуальное вещество был описан Майклом Фарадеем, выделившим это вещество в 1825 году из конденсата светильного газа, получаемого коксованием угля. Вскоре, в 1833 году, получил бензол — при сухой перегонке кальциевой соли бензойной кислоты — и немецкий физико-химик Эйльгард Мичерлих. Именно после этого получения вещество стали называть бензолом.

К 1860-м годам было известно, что соотношение количества атомов углерода и атомов водорода в молекуле бензола аналогично таковому у ацетилена, и эмпирическая формула их — CnHn. Изучением бензола серьёзно занялся немецкий химик Фридрих Август Кекуле, которому в 1865 году и удалось предложить правильную — циклическую формулу этого соединения. Известна история о том, что Ф. Кекуле представлял в своём воображении бензол в виде змеи из шести атомов углерода[4]. Идея же о цикличности соединения пришла ему во сне, когда воображаемая змея укусила себя за хвост. Фридриху Кекуле удалось в то время наиболее полно описать свойства бензола.

Физические свойства[править | править код]

Бесцветная жидкость со своеобразным резким запахом. Температура плавления = 5,5 °C, температура кипения = 80,1 °C, плотность = 0,879 г/см³, молярная масса = 78,11 г/моль.
Подобно ненасыщенным углеводородам бензол горит сильно коптящим пламенем. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфиром, бензином и другими органическими растворителями, с водой образует азеотропную смесь с температурой кипения 69,25 °C (91 % бензола). Растворимость в воде 1,79 г/л (при 25 °C).

Химические свойства[править | править код]

Для бензола характерны реакции замещения — бензол реагирует с алкенами, хлоралканами, галогенами, азотной и серной кислотами. Реакции разрыва бензольного кольца проходят в жёстких условиях (температура, давление).

  • Взаимодействие с алкенами (алкилирование), в результате реакции образуются гомологи бензола, например, этилбензол и кумол:
{displaystyle {mathsf {C_{6}H_{6}+H_{2}C=CH_{2}{xrightarrow[{}]{AlCl_{3}*HCl}}C_{6}H_{5}CH_{2}CH_{3}}}}
{displaystyle {mathsf {C_{6}H_{6}+CH_{2}=CH-CH_{3}{xrightarrow[{}]{AlCl_{3}*HCl}}C_{6}H_{5}CH(CH_{3})_{2}}}}
  • Взаимодействие с хлором и бромом в присутствии катализатора с образованием хлорбензола (реакция электрофильного замещения):
{mathsf  {C_{6}H_{6}+Cl_{2}{xrightarrow[ {}]{FeCl_{3}}}C_{6}H_{5}Cl+HCl}}
  • В отсутствие катализатора при нагревании или освещении идёт радикальная реакция присоединения с образованием смеси изомеров гексахлорциклогексана
{mathsf  {C_{6}H_{6}+3Cl_{2}{xrightarrow[ {}]{T,hnu }}C_{6}H_{6}Cl_{6}}}
  • При взаимодействии бензола с бромом в растворе олеума образуется гексабромбензол:
{displaystyle {mathsf {C_{6}H_{6}+6Br_{2}{xrightarrow[{}]{H_{2}SO_{4}*SO_{3}}}C_{6}Br_{6}+6HBr}}}
  • Взаимодействие с галогенопроизводными алканов (алкилирование бензола, реакция Фриделя — Крафтса) с образованием алкилбензолов:
Friedel-craft-alk.png
  • Реакция ацилирования по Фриделю—Крафтсу, бензола ангидридами, галогенангидридами карбоновых кислот приводит к образованию ароматических и жирноароматических кетонов:
{displaystyle {mathsf {C_{6}H_{6}+(CH_{3}CO)_{2}O{xrightarrow[{}]{AlCl_{3}}}C_{6}H_{5}COCH_{3}+CH_{3}COOH}}}
Benzen acylowany.svg
{displaystyle {mathsf {C_{6}H_{6}+C_{6}H_{5}COCl{xrightarrow[{}]{AlCl_{3}}}C_{6}H_{5}COC_{6}H_{5}+HCl}}}

В первой и второй реакциях образуется ацетофенон (метилфенилкетон), замена хлорида алюминия на хлорид сурьмы V позволяет снизить температуру протекании реакции до 25° С.
В третьей реакции образуется бензофенон (дифенилкетон).

  • Реакция формилирования — взаимодействие бензола со смесью СО и НСl, протекает при высоком давлении и под действием катализатора, продуктом реакции является бензальдегид:
{displaystyle {mathsf {C_{6}H_{6}+CO+HCl{xrightarrow[{}]{AlCl_{3}}}C_{6}H_{5}COH+HCl}}}
  • Реакции сульфирования и нитрования (электрофильное замещение):
{mathsf  {C_{6}H_{6}+HNO_{3}{xrightarrow[ {}]{H_{2}SO_{4}}}C_{6}H_{5}NO_{2}+H_{2}O}}
{mathsf  {C_{6}H_{6}+H_{2}SO_{4}rightarrow C_{6}H_{5}SO_{3}H+H_{2}O}}
  • Восстановление бензола водородом (каталитическое гидрирование):
{displaystyle {mathsf {C_{6}H_{6}+3H_{2}{xrightarrow[{}]{Ni/Pd,Pt;t}}C_{6}H_{12}}}}

Реакции окисления[править | править код]

Бензол, вследствие своего строения, очень устойчив к окислению, на него не действует, например, раствор перманганата калия. Однако окисление до малеинового ангидрида можно провести при помощи катализатора оксида ванадия V:

Benzene oxydation no sub.svg
  • Реакция озонолиза. Также бензол подвергается озонолизу, но процесс протекает медленнее, чем с непредельными углеводородами:
Benzene ozonolysis.svg

Результатом реакции является образование диальдегида — глиоксаля (1,2-этандиаля).

  • Реакция горения. Горение бензола является предельным случаем окисления. Бензол легко воспламеняется и горит на воздухе сильно коптящим пламенем (содержит до 92 % углерода в молекуле):
{displaystyle {mathsf {2C_{6}H_{6}+15O_{2}rightarrow 12CO_{2}uparrow +6H_{2}O}}}

Структура[править | править код]

Бензол по составу относится к ненасыщенным углеводородам (гомологический ряд CnH2n−6), но в отличие от углеводородов ряда этилена, C2H4, проявляет свойства, присущие ненасыщенным углеводородам (для них характерны реакции присоединения), только при жёстких условиях, а вот к реакциям замещения бензол более склонен. Такое «поведение» бензола объясняется его особым строением: нахождением атомов в одной плоскости и наличием в структуре сопряжённого 6π-электронного облака. Современное представление об электронной природе связей в бензоле основывается на гипотезе Лайнуса Полинга, который предложил изображать молекулу бензола в виде шестиугольника с вписанной окружностью, подчёркивая тем самым отсутствие фиксированных двойных связей и наличие единого электронного облака, охватывающего все шесть атомов углерода цикла.

В специальной и популярной литературе распространён термин бензольное кольцо, относящийся, как правило, к углеродной структуре бензола без учёта иных атомов и групп, связанных с атомами углерода. Бензольное кольцо входит в состав множества различных соединений.

Производство[править | править код]

На сегодняшний день существует несколько принципиально различных способов производства бензола.

  1. Коксование каменного угля. Этот процесс исторически был первым и служил основным источником бензола до Второй мировой войны. В настоящее время доля бензола, получаемого этим способом, составляет менее 10 %. Следует добавить, что бензол, получаемый из каменноугольной смолы, содержит значительное количество тиофена, что делает такой бензол сырьем, непригодным для ряда технологичных процессов.
  2. Каталитический риформинг (аромаизинг) бензиновых фракций нефти. Этот процесс является основным источником бензола в США. В Западной Европе, России и Японии этим способом получают 40—60 % от общего количества вещества. В данном процессе кроме бензола образуются толуол и ксилолы. Ввиду того, что толуол образуется в количествах, превышающих спрос на него, его также частично перерабатывают в:
    • бензол — методом гидродеалкилирования;
    • смесь бензола и ксилолов — методом диспропорционирования.
  3. Пиролиз бензиновых и более тяжёлых нефтяных фракций. До 50 % бензола производится этим методом. Наряду с бензолом образуются толуол и ксилолы. В некоторых случаях всю эту фракцию направляют на стадию деалкилирования, где и толуол, и ксилолы превращаются в бензол.
  4. Получение бензола методом Реппе

    Тримеризация ацетилена — при пропускании ацетилена при 400 °C над активированным углем с хорошим выходом образуется бензол и другие ароматические углеводороды: 3С2Н2 → С6H6. Получение бензола из ацетилена связывают с именем Марселена Бертло[5], работы которого были начаты в 1851 году. Однако продуктом реакции по методу Бертло, протекавшей при высокой температуре, являлась, кроме бензола, сложная смесь компонентов. Лишь в 1948 году В. Реппе удалось найти подходящий катализатор — никель — для снижения температуры реакции[6]. Полностью механизм реакции был описан только в 2020 году сотрудниками Института органической химии им. Н. Д. Зелинского РАН[7].

Применение[править | править код]

Значительную часть получаемого бензола используют для синтеза других продуктов:

  • около 50 % бензола превращают в этилбензол (алкилирование бензола этиленом);
  • около 25 % бензола превращают в кумол (алкилирование бензола пропиленом);
  • приблизительно 10—15 % бензола гидрируют в циклогексан;
  • около 10 % бензола расходуют на производство нитробензола;
  • 2—3 % бензола превращают в линейные алкилбензолы;
  • приблизительно 1 % бензола используется для синтеза хлорбензола.

В существенно меньших количествах бензол используют для синтеза некоторых других соединений. Изредка и в крайних случаях, ввиду высокой токсичности, бензол используют в качестве растворителя.

Кроме того, бензол входит в состав бензина. В 1920-х — 1930-х годах, бензол добавлялиrude в прямогонный бензин для повышения его октанового числа, но к 1940-м годам такие смеси не выдержали конкуренции с высокооктановыми бензинами. Ввиду высокой токсичности содержание бензола в топливе ограничено современными стандартами введением до 1 %.

Биологическое действие и токсикология[править | править код]

Hazard T.svg

Бензол (C6H6) — опасный яд и является одним из самых распространённых ксенобиотиков антропогенного происхождения.

Бензол в больших концентрациях сильно ядовит. Согласно ГОСТ 12.1.005-88 и ГОСТ 12.1.007-76 он относится ко II классу опасности (вещества высокоопасного класса). Минимальная летальная доза при пероральном приёме составляет 15 мл, средняя 50—70 мл. При непродолжительном вдыхании паров бензола не возникает немедленного отравления, поэтому до недавнего времени порядок работ с бензолом особо не регламентировался.
В больших дозах бензол вызывает тошноту и головокружение, а в некоторых тяжёлых случаях отравление может повлечь смертельный исход. Первым признаком отравления бензолом нередко бывает эйфория. Пары бензола могут проникать через неповрежденную кожу. Жидкий бензол довольно сильно раздражает кожу. Если организм человека подвергается длительному воздействию бензола в малых количествах, последствия также могут быть очень серьёзными.

Бензол является сильным канцерогеном. Исследования показывают связь бензола с такими заболеваниями, как апластическая анемия, острые лейкозы (миелоидный, лимфобластный), хронический миелоидный лейкоз, миелодиспластический синдром и заболевания костного мозга[8][9].

Механизм трансформации и мутагенное воздействие бензола[править | править код]

Существует несколько вариантов механизма трансформации бензола в организме человека. В первом варианте происходит гидроксилирование молекулы бензола микросомальной системой окисления при участии цитохрома P450 (CYP). Согласно механизму, бензол окисляется сначала до высокореакционного эпоксида, который далее преобразуется в фенол. Помимо этого происходит генерация свободных радикалов (активные формы кислорода), вследствие высокой активации цитохрома Р450 по реакции:

Цит Р450 + NADPH + H + O2→ Цит Р450 + NADP+ + HOOH.
HOOH → 2ОH·
C6H6 + 2ОH· → C6H5OH + Н2О.

Таким образом бензол проявляет радиомиметический эффект (эффект сходный с воздействием ионизирующего излучения).

Биотрансформация бензола, механизм I. Цифрами обозначены: 1 бензол, 2 бензолоксид, 3 эпоксибензол, 4 фенол, 5 пирокатехин, 6 гидрохинон.

Молекулярный механизм мутагенеза бензола[править | править код]

Бензол является промутагеном, мутагенные свойства он приобретает только после биотрансформации, в результате которой образуются соединения с высокой реакционной способностью. Одним из таких является эпоксид бензола. Вследствие высокого углового напряжения эпоксидного цикла происходит разрыв связей -С-О-С- и молекула становится электрофилом, она легко вступает в реакцию с нуклеофильными центрами азотистых оснований молекул нуклеиновых кислот, в особенности ДНК.

Механизм взаимодействия эпоксидного цикла с нуклеофильными центрами — аминогруппами азотистых оснований (реакция арилирования) — протекает как реакция нуклеофильного замещения SN2. В результате образуются довольно прочные ковалентно-связанные ДНК-аддукты, наиболее часто такие дериваты наблюдаются у гуанина (так, как молекула гуанина имеет максимальное количество нуклеофильных центров), например, N7-фенилгуанин. Образовавшиеся ДНК-аддукты могут приводить к изменению нативной структуры ДНК, тем самым нарушается правильное протекание процессов транскрипции и репликации, что является источником генетических мутаций. Накопление эпоксида в гепатоцитах (клетках печени) ведёт к необратимым последствиям: увеличению арилирования ДНК, а вместе с тем и к увеличению экспрессии (сверхэкспрессии) мутантных белков, являющихся продуктами генетической мутации; торможению апоптоза; трансформации клеток и даже гибели. Помимо яркой выраженной генотоксичности и мутагенности, бензол обладает сильной миелотоксичностью и канцерогенной активностью, особенно этот эффект проявляется в клетках миелоидной ткани (клетки данной ткани очень чувствительны к подобному роду воздействиям ксенобиотиков).

Бензол и токсикомания[править | править код]

Бензол оказывает на человека одурманивающее воздействие и может приводить к наркотической зависимости.

Острое отравление[править | править код]

При очень высоких концентрациях — почти мгновенная потеря сознания и смерть в течение нескольких минут. Окраска лица синюшная, слизистые оболочки часто вишнёво-красные. При меньших концентрациях — возбуждение, подобное алкогольному, затем сонливость, общая слабость, головокружение, тошнота, рвота, головная боль, потеря сознания. Наблюдаются также мышечные подёргивания, которые могут переходить в тонические судороги. Зрачки часто расширены, не реагируют на свет. Дыхание сначала учащено, затем замедлено. Температура тела резко снижается. Пульс учащенный, малого наполнения. Кровяное давление понижено. Известны случаи сильной сердечной аритмии.

После тяжёлых отравлений, которые не приводят непосредственно к смерти, иногда наблюдаются длительные расстройства здоровья: плевриты, катары верхних дыхательных путей, заболевания роговицы и сетчатки, поражения печени, сердечные расстройства и т. д. Описан случай вазомоторного невроза с отёком лица и конечностей, расстройствами чувствительности и судорогами через короткое время после острого отравления парами бензола. Иногда смерть наступает спустя некоторое время после отравления.

Хроническое отравление[править | править код]

В тяжёлых случаях наблюдаются: головные боли, чрезвычайная утомляемость, одышка, головокружение, слабость, нервность, сонливость или бессонница, расстройство пищеварения, тошнота, иногда рвота, отсутствие аппетита, учащение мочеиспускания, менструаций, нередко развиваются упорные кровотечения из слизистой оболочки рта, особенно дёсен, и носа, длящиеся часами и даже сутками. Иногда упорные кровотечения наблюдаются после удаления зуба. Многочисленные мелкие геморрагии (кровоизлияния) в коже. Кровь в испражнениях, маточные кровотечения, кровоизлияния в сетчатку. Обычно именно кровотечения, а часто и сопутствующая им лихорадка (температура до 40° и выше) приводят отравленных в больницу. В подобных случаях прогноз всегда серьёзен. Причиной смерти иногда являются вторичные инфекции: известны случаи гангренозного воспаления надкостницы и некроза челюсти, тяжёлых язвенных воспалений дёсен, общего сепсиса с септическим эндометритом.

Иногда при тяжёлых отравлениях развиваются симптомы нервных заболеваний: повышение сухожильных рефлексов, двусторонний клонус, положительный симптом Бабинского, расстройство глубокой чувствительности, псевдотабетические расстройства с парестезиями, атаксией, параплегией и двигательными нарушениями (признаки поражения задних столбов спинного мозга и пирамидных путей)[10].

Наиболее типичны изменения крови. Число эритроцитов обычно резко снижено, вплоть до 1—2 млн и ниже. Содержание гемоглобина также сильно падает, иногда до 10 %. Цветной показатель в части случаев низок, иногда близок к нормальному, а порой высок (особенно при сильной анемии). Отмечают анизоцитоз и пойкилоцитоз, базофильную пунктацию и появление ядерных эритроцитов, увеличение числа ретикулоцитов и объёма эритроцитов. Типичнее резкое уменьшение числа лейкоцитов. Иногда первоначально лейкоцитоз, быстро сменяющийся лейкопенией, ускорение СОЭ. Изменения со стороны крови развиваются не одновременно. Чаще всего раньше поражается лейкопоэтическая система, позже присоединяется тромбоцитопения. Поражение эритробластической функции часто наступает ещё позже. В дальнейшем может развиться характерная картина тяжёлого отравления — апластическая анемия.

Явления отравления могут сохраняться и даже прогрессировать через месяцы и годы после прекращения работы с бензолом.

Первая помощь при отравлении и лечение[править | править код]

При остром отравлении бензолом (парами бензола) пострадавшего необходимо в первую очередь вынести на свежий воздух, в случае остановки дыхания проводят искусственное дыхание до нормализованного, в качестве стимуляторов дыхания применяют кислород и лобелин. Применение адреналина в качестве аналептика категорически запрещено! При возникновении рвоты внутривенно 40 % раствор глюкозы, в случае нарушения кровообращения — инъекцию раствора кофеина. Если отравление произошло перорально и бензол попал в желудок, необходимо промыть его с помощью растительного масла (хорошо абсорбирует бензол), процедуру следует проводить с осторожностью, так как возможна аспирация. При лёгких отравлениях больному показан покой. При возбуждённых состояниях необходимы седативные средства. При возникновении анемии проводят переливания крови, витамин B12, фолиевая кислота, при лейкопении — витамин B6, пентоксил. В случае снижения иммунитета (иммунодефицитное состояние) — иммуностимуляторы.

Действие бензола на биомембраны[править | править код]

Биологические мембраны представляют собой надмолекулярные структуры — двойной липидный слой, в который интегрированы (встроены) или прикреплены на поверхности молекулы белков, полисахаридов. Липиды, входящие в состав биомембран по своей природе амфифильные (дифильные) соединения, то есть способные к растворению, как в полярных веществах, так и в неполярных, вследствие наличия у них полярных групп т. н. «голова» (карбоксильных -СООН, гидроксильных -ОН, аминогрупп -NH2 и других) и неполярных т. н. «хвосты» (углеводородные радикалы — алкилы, арилы, полициклические структуры типа холестана и другие).

Бензол является эффективным солюбилизатором биологических мембран, он быстро растворяет неполярные группы (т. н. углеводородные «хвосты») липидов, главным образом холестерина, входящего в состав мембран. Процесс солюбилизации лимитируется концентрацией бензола, чем его больше, тем быстрее протекает этот процесс. В процессе солюбилизации выделяется энергия, буквально, разрывающая двойной липидный слой (липидный бислой), что приводит к полной деструкции (разрушению структуры) мембраны и, последующему апоптозу клетки (в процессе деструкции биомембран происходит активация мембранных рецепторов (таких, как: CD95, TNFR1, DR3, DR4, и других), которые активируют апоптоз клетки).

Действие на кожу[править | править код]

Hazard Xi.svg

Жидкий бензол обладает свойствами ирританта. При частом соприкосновении рук с бензолом наблюдаются сухость кожи, трещины, зуд, краснота (чаще между пальцами), отёчность, просовидные пузырьковые высыпи. Иногда из-за кожных поражений рабочие вынуждены бросать работу.

Действие на органы зрения[править | править код]

Жидкий бензол в небольших количествах (до 5 мл) при попадании на глаза, способен привести к деструкции роговицы и дальнейшему поражению оптической системы, включая хрусталик, стекловидное тело и сетчатку. При попадании большого количества бензола (более 5 мл) в глаза происходит полная потеря зрения вследствие глубокого поражения сетчатки и дегенерации зрительного нерва.

Безопасность[править | править код]

Работа с применением бензола сопряжена с риском отравления и серьёзного ухудшения здоровья. Бензол — легколетучая жидкость (летучесть 320 мг/л при 20 °С)[11] с высокой степенью воспламенения, поэтому при работе с ним необходимо соблюдать технику безопасности работ с легковоспламеняющимися жидкостями. Большую опасность представляют пары бензола, так как они могут образовывать взрывоопасные смеси с воздухом. В настоящее время применение бензола в качестве органического растворителя сильно ограничено, ввиду токсичности и канцерогенного воздействия его паров и негативном воздействии на кожу. Работа с бензолом в лабораториях также предусматривает его ограничение (строго регламентирована). Бензол рекомендуется использовать в экспериментах лишь в небольших объёмах (не более 50 мл), работа должна проводиться исключительно в перчатках из фторкаучука (латекс растворяется и набухает при воздействии на него бензолом).

Категорически запрещается:

  • хранить вблизи источников тепла, открытого огня, сильных окислителей, пищевых продуктов, и так далее,
  • оставлять в открытом виде тару, содержащую бензол, курить,
  • использовать тару из-под бензола для пищевого применения, мытья рук, посуды,
  • производить работу в закрытом, плохо вентилируемом помещении с температурой воздуха больше 30°С,
  • использовать большой объём вещества в качестве растворителя,
  • работать без средств защиты кожи рук, глаз и органов дыхания.

ПДК в воздухе составляет 5 мг/м3 (среднесменная за 8 часов)[2].

Охрана труда[править | править код]

В России ПДК бензола в воздухе рабочей зоны установлена[2] равной 5 мг/м3 (среднесменная за 8 часов) и 15 мг/м3 (максимально-разовая). Однако по данным ряда исследований, порог восприятия запаха этого вещества может быть гораздо выше ПДКрз. Например, среднее значение порога в исследовании[12] было в ~ 100 раз выше среднесменной ПДКрз, и в ~ 30 раз выше максимально-разовой ПДКрз. А у части людей порог был значительно выше среднего значения. Поэтому можно ожидать, что использование широко распространённых фильтрующих СИЗОД в сочетании с «заменой фильтров по появлении запаха под маской» (как это почти всегда рекомендуется в РФ поставщиками СИЗОД) приведёт к чрезмерному воздействию паров бензола на, по крайней мере, часть работников — из-за запоздалой замены противогазных фильтров. Для защиты от бензола следует использовать значительно более эффективные изменение технологии и средства коллективной защиты.

Экология[править | править код]

Бензол – экологически небезопасное вещество, токсикант антропогенного происхождения. Основными источниками бензола, поступающего в окружающую среду со сточными водами или выбросами в атмосферу, являются нефтехимические и коксохимические промышленные предприятия, производство топлива и транспорт.

Из водоёмов бензол легко улетучивается, способен к трансформации из почв в растения, что несёт серьёзную угрозу экосистемам.

Бензол обладает свойством кумуляции, вследствие своей липофильности он способен депонироваться в клетках жировой ткани животных, тем самым отравляя их.

Символы[править | править код]

Символ Юникод Название
U+232C benzene ring
U+23E3 benzene ring with circle

Примечания[править | править код]

  1. 1 2 Smith J. M., H.C. Van Ness, M.M. Abbott Introduction to Chemical Engineering Thermodynamics (англ.) // Journal of Chemical Education — ACS, 1950. — Vol. 27, Iss. 10. — P. 789. — ISSN 0021-9584; 1938-1328 — doi:10.1021/ED027P584.3
  2. 1 2 3 4 (Роспотребнадзор). № 275 // ГН 2.2.5.3532-18 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» / утверждены А.Ю. Поповой. — Москва, 2018. — С. 23. — 170 с. — (Санитарные правила). Архивная копия от 12 июня 2020 на Wayback Machine
  3. Furni novi philosophici, sive Descriptio artis distillatoriæ novæ per Joannem Rudolphum Glauberum. Amsterodam, 1651 // OpenLibrary.org. Дата обращения: 8 декабря 2011. Архивировано 13 марта 2016 года.
  4. Серия «100 великих», Дмитрий Самин, 100 великих научных открытий, Основы мироздания, Бензол. Дата обращения: 5 ноября 2011. Архивировано 22 марта 2012 года.
  5. Helmut Fiege, P.J. Garratt, Christ. J. Grundmann, Gundermann, Wolfgang Loeser, Peter Müller, Heidi Müller-Dolezal, Peter L. Pauson, Renate Stoltz, Hanna Söll, M. Zander Houben-Weyl Methods of Organic Chemistry Vol. V/2b, 4th Edition: Arenes and Arynes, Издание четвёртое, Georg Thieme Verlag, 2014, ISBN 3-13-179974-9, 9783131799746
  6. Reppe, W.; Schweckendiek, W. Cyclisierende Polymerisation von Acetylen. III Benzol, Benzolderivate und hydroaromatische Verbindungen (нем.) // Justus Liebig’s Annalen der Chemie  (нем.) (рус. : magazin. — 1948. — Bd. 560. — S. 104. — doi:10.1002/jlac.19485600104.
  7. Самойлова, Н. Российские химики полностью расшифровали механизм реакции получения бензола из ацетилена : [арх. 9 апреля 2020] / Наталия Самойлова // Элементы. — 2020. — 9 апреля.
  8. Kasper, Dennis L.et al. (2004) Harrison’s Principles of Internal Medicine, 16th ed., McGraw-Hill Professional, p. 618, ISBN 0-07-140235-7.
  9. Smith, Martyn T. Advances in understanding benzene health effects and susceptibility (англ.) // Ann Rev Pub Health : journal. — 2010. — Vol. 31. — P. 133—148. — doi:10.1146/annurev.publhealth.012809.103646.
  10. Розенцвит Г. Э. Клиника профессиональных нейротоксикозов. Л,, 1964, 18 с.
  11. Кушелев В. П., Орлов Г. Г., Сорокин Ю. Г. Охрана труда в нефтеперерабатывающей и нефтехимической промышленности. — М.: Химия, 1983. — С. 42. — 472 с.
  12. F. Nowell Jones. An Olfactometer Permitting Stimulus Specification in Molar Terms (англ.) // University of Illinois Press https://www.jstor.org/stable/1418083 The American Journal of Psychology. — Champaign, Illinois (USA), 1954. — March (vol. 67 (iss. 1). — P. 147—151. — ISSN 0002-9556. — doi:10.2307/1418083. Архивировано 24 октября 2019 года.

Литература[править | править код]

  • Бензол // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  • Бензол // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Энциклопедический словарь юного химика / Сост. В. А. Крицман, В. В. Станцо. — Педагогика. — М., 1982. — 368 с.
  • О. С. Габриелян, И. Г. Остроумов. Настольная книга учителя химии 10 класс. — М.: Дрофа, 2010.
  • Омельяненко Л. М. и Сенкевич Н. А. Клиника и профилактика отравлений бензолом. — М., 1957.

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e31186fcb947b3b • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Как определить бензол в пробирке уравнение реакции

  • Качественной называется реакция, при которой визуально проявляется характерное свойство вещества (изменение цвета реакционной смеси, выпадение осадка из раствора и его цвет, выделение пузырьков газа и т.п.). Реагенты, вызывающие такие реакции, являются качественными реагентами.
  • Информацию о качественных реакциях различных веществ вы можете получить, используя “Поиск” на главной странице сайта (введите слово “качественные реакции” и нажмите “Найти”).

    Приведём пример решения задачи на распознавание веществ.
    Задача. В трех пробирках находятся бензол, толуол и стирол (винилбензол). Установите, в какой из пробирок находится каждое из названных веществ.
    Решение
    Возьмём пробы из каждой пробирки и подействуем на каждую 1) бромной водой и 2) раствором перманганата калия в присутствии серной кислоты при нагревании.
    1. Стирол С6Н5–СH=CH2 за счет двойной связи проявляет свойства ненасыщенного углеводорода и может обесцвечивать раствор брома при комнатной температуре – качественная реакция на кратную связь (часть II, раздел 4.4.1.2):

    Ни толуол, ни бензол в эту реакцию не вступают.

    2. Толуол С6Н5–CH3, в отличие от бензола, окисляется в мягких условиях и обесцвечивает подкисленный раствор KMnO4 при нагревании (часть II, раздел 7.3.4):
    3. Бензол С6Н6 не реагирует ни с бромной водой, ни с перманганатом калия.

    Бензол и его гомологи

    Арены – ароматические углеводороды, содержащие одно или несколько бензольных колец. Бензольное кольцо составляют 6 атомов углерода, между которыми чередуются двойные и одинарные связи.

    Важно заметить, что двойные связи в молекуле бензола не фиксированы, а постоянно перемещаются по кругу.

    Арены также называют ароматическими углеводородами. Первый член гомологического ряда – бензол – C6H6. Общая формула их гомологического ряда – CnH2n-6.

    Долгое время структурная формула бензола оставалась тайной. Предложенная Кекуле формула с тремя двойными связями не могла объяснить то, что бензол не вступает в реакции присоединения. Как уже было сказано выше, по современным представлениям двойные связи в молекуле бензола постоянно перемещаются, поэтому более верно рисовать их в виде кольца.

    За счет чередования двойных связей в молекуле бензола формируется сопряжение. Все атомы углерода находятся в состоянии sp 2 гибридизации. Валентный угол – 120°.

    Номенклатура и изомерия аренов

    Названия аренов формируются путем добавления названий заместителей к главной цепи – бензольному кольцу: бензол, метилбензол (толуол), этилбензол, пропилбензол и т.д. Заместители, как обычно, перечисляются в алфавитном порядке. Если в бензольном кольце несколько заместителей, то выбирают кратчайший путь между ними.

    Для аренов характерна структурная изомерия, связанная с положением заместителей. Например, два заместителя в бензольном кольце могут располагаться в разных положениях.

    Название положения заместителей в бензольном кольце формируется на основе их расположения относительно друг друга. Оно обозначается приставками орто-, мета- и пара. Ниже вы найдете мнемонические подсказки для их успешного запоминания 😉

    Получение аренов

    Арены получают несколькими способами:

      Реакция Зелинского (тримеризация ацетилена)

    Данная реакция протекает при пропускании ацетилена над активированным углем при t = 400°C. В результате образуется ароматический углеводород – бензол.

    В случае, если к ацетилену добавить пропин, то становится возможным получение толуола. Увеличивая долю пропина, в конечном итоге можно добиться образования 1,3,5-триметилбензола.

    В ходе таких реакций, протекающих при повышенной температуре и в присутствии катализатора – Cr2O3, линейная структура алкана замыкается в цикл, отщепляется водород.

    При дегидроциклизации гептана получается толуол.

    В результате дегидрирования уже “готовых” циклов – циклоалканов, отщепляются 3 моль водорода, и образуется соответствующий арен, с теми же заместителями, которые были у циклоалкана.

    Синтез Дюма заключается в сплавлении солей карбоновых кислот с щелочами. В результате такой реакции возможно образование различных органических веществ, в том числе аренов.

    Химические свойства аренов

    Арены – ароматические углеводороды, которые содержат бензольное кольцо с сопряженными двойными связями. Эта особенность делает реакции присоединения тяжело протекающими (и тем не менее возможными!)

    Запомните, что, в отличие от других непредельных соединений, бензол и его гомологи не обесцвечивают бромную воду и раствор перманганата калия.

    При повышенной температуре и наличии катализатора, водород способен разорвать двойные связи в бензольном кольце и превратить арен в циклоалкан.

    Реакция бензола с хлором на свету приводит к образованию гексахлорциклогексана, если же использовать только катализатор, то образуется хлорбензол.

    Реакции с толуолом протекают иначе: при УФ-свете хлор направляется в радикал метил и замещает атом водорода в нем, при действии катализатора хлор замещает один атом водорода в бензольном кольце (в орто- или пара-положении).

    Почему хлор направляется именно в орто- и пара-положения относительно метильной группы? Здесь самое время коснуться темы ориентантов I (орто-, пара-ориентантов) и II порядков (мета-ориентанты).

    К ориентантам первого порядка относятся группы: NH2, OH, OR, CR3, CHR2, CH2R, галогены. К ориентантам второго: NO2, CN, SO3H, CCl3, CHO, COOH, COOR.

    Например, ориентант I порядка, гидроксогруппа OH, обеспечивает протекание хлорирования в орто- и пара-положениях. А карбоксильная группа COOH, ориентант II порядка, обуславливает хлорирование в мета-положениях.

    Арены вступают в реакции нитрования, протекающие при повышенной температуре и в присутствии серной кислоты, обладающей водоотнимающими свойствами.

    Алкилирование аренов осуществляется путем введения алкильного радикала в молекулу бензола. Алкильным радикалом чаще всего выступает алкен или галогеналкан. В подобных реакциях используют катализатор AlCl3.

    В случае если для алкилирования используется алкен, то с молекулой бензола соединяется наименее гидрированный атом углерода алкена, прилежащий к двойной связи. Один атом водорода переходит из бензольного кольца к радикалу.

    Арены, как и все органические вещества, сгорают с образованием углекислого газа и воды.

    При неполном окислении гомологи бензола способны окисляться до бензойной кислоты (при подкислении раствора серной кислотой). Сам бензол не вступает в реакцию окисления с KMnO4, не обесцвечивает его раствор.

    В реакцию полимеризации способен вступать стирол (винилбензол), в радикале которого содержится двойная связь.

    © Беллевич Юрий Сергеевич 2018-2022

    Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

    [spoiler title=”источники:”]

    http://orgchem.ru/chem3/z41.htm

    http://studarium.ru/article/186

    [/spoiler]

    Определение и формула

    Заголовок

    Простой углеводород. Относится к ароматическим углеводородам, классу органических веществ.

    Вещество представляет собой прозрачную жидкость, не имеет цвета, обладает сладковатым характерным запахом. Бензол относят к ненасыщенным углеводородам. Знаменитая формула бензольного кольца была предложена нобелевским лауреатом в области химии – Лайнусом Полингом. Именно он предложил изображать бензол в виде шестигранника с окружностью внутри. Это изображение дает понимание об отсутствии двойных связей и наличии единого электронного облака, в которое охвачены все 6 атомов углерода.

    Формула

    C6H6

    Получение бензола

    Естественные источники получения

    Естественный источник для получения бензола – это каменный уголь. Процесс коксования каменного угля был открыт Майклом Фарадеем в далеком 1825 году. Он изучал светильный газ, который использовали в фонарях уличного освещения, смог выделить и описать бензол. Сейчас этим способом из каменноугольной смолы бензол практически не получают. Существует множество других более продуктивных способов его получения.

    Искусственные источники получения

    • Искусственный каталитический риформинг бензина. Для получения используются бензиновые нефтяные фракции. В этом процессе образуется большое количество толуола. Спрос на рынке для толуола не очень большой, поэтому из него также далее получают бензол. Из тяжелых фракций нефти пиролизом через процесс деалкилирования смеси толуола, ксилола получают бензол.
    • Получение методом Реппе. До 1948 года по методу Бертло получали бензол, пропуская ацетилен над активированным углем при температуре 400°C. Выход бензола был большой, но получалась многокомпонентная смесь веществ, с трудом поддающаяся очистке. В 1948 году Реппе заменил активированный уголь никелем. В результате на выходе получался бензол. Процесс называется тримеризацией ацетелена – три молекулы ацетилена превращаются в одну бензола:

    2Н2 → С6H6.

    Свойства бензола

    Физические свойства

    Свойство Описание
    плотность 0,879 г/см3
    молярная масса 78,11 г/моль
    цвет жидкости прозрачный, бесцветный
    температура кипения 80,1°C
    температура плавления 5,5°C
    растворимость в воде не растворяется

    При горении выделяется большое количество копоти, так как углеводород ненасыщенный (ему не хватает 8 атомов водорода, чтобы отвечать стандартной формуле предельных углеводородов). При низких температурах бензол становится белой кристаллической массой.

    Химические свойства

    Бензол вступает в реакции замещения в присутствии катализаторов – обычно это соли Al(3+) или Fe(3+):

    • Галогенирование – качественная реакция на бензол с Br2:

    C6H6 + Br2 = C6H5Br + HBr.

    • Нитрование – взаимодействие с азотной кислотой. В органической химии этот процесс сопровождается отщеплением OH-группы:

    C6H6 + HO-NO2 → C6H5NO2 + H2O.

    • Каталитическое алкилирование приводит к получению гомологов бензола – алкилбензолов:

    С6H6 + С2H5Cl → C6H5C2H5 + HCl.

    Гомологи бензола, содержащие радикал, реагирует не так как сам бензол. Реакции идут по-другому и часто на свету:

    • галогенирование С6H5-CH3 + Br2 (на свету) = С6H5-CH2Br + HBr;
    • нитрование – С6H5-CH3 + 3HNO3 → C6H2CH3(NO2)3.

    Реакции окисления бензола идут очень сложно и не характерны для этого вещества. Окисление характерно для гомологов. Вот, например, реакция получения бензойной кислоты:

    С6H5CH3 + [O] → C6H5COOH.

    Процесс горения вещества происходит по стандартной схеме для всех органических веществ:

    CnH2n-6 + (3n-3)2 O2 → nCO2 + (n-3)H2O.

    Реакции гидрирования. Реакция проходит сложно, требуются катализаторы, давление, температура. В реакциях бензола с водородом получается циклогексан:

    С6H6 + 3H2 → C6H12.

    А в реакциях с алкилбензолом – метилциклогексан, где один атом водорода замещается на радикальную группу -CH3:

    С6H5CH3 + 3H2 → C6H11-CH3.

    Применение бензола

    Бензол в чистом виде практически не используется. Его вырабатывают для производства других важных соединений, таких как, например, этилбензол, из которого получают стирол и полистирол.

    Львиную долю бензола пускают на производства фенола, который необходим в производстве капрона, красителей, пестицидов, лекарств. Знаменитое лекарство аспирин невозможно получать без участия фенола.

    Циклогексан из бензола необходим для производства пластмасс и искусственных волокон, нитробензол идет на выработку анилина, который используют для производства каучуков, красителей и гербицидов.

    Тест по теме «Бензол»

    Соединение, функциональная группа Реагент Что наблюдается, уравнение реакции

    Алкены >C=C<

    Водный раствор KMnO4

    Наблюдают исчезновение фиолетовой окраски KMnO4 и образование хлопьевидного осадка диоксида марганца бурого цвета

    3 >C=C< + 2KMnO4 + 4H2O → 3 >C(OH)-C(OH)< + 2MnO2↓ + 2KOH

    Раствор Br2 в органическом растворителе или воде (бромная вода)

    Исчезает желто-коричневая окраска раствора брома из-за протекания реакции:

    >C=C< + Br2 →  >C(Br)-C(Br)<

    Алкины -С≡С- Раствор Br2 в органическом растворителе или воде (бромная вода)

    Исчезает желто-коричневая окраска раствора брома из-за протекания реакции:

    R-С≡С-R’ + 2Br2   →   R-CBr2-CBr2-R’

    Водные растворы аммиачных комплексов Ag(I), например, аммиачный раствор оксида серебра

    [Ag(NH3)2]OH

    Алкины с тройной связью на конце молекулы дают желтый осадок:

    R-С≡СН + [Ag(NH3)2]OH → R-С≡СAg↓ + 2NH3 + H2O

    Алкины, у который при тройной связи нет атомов водорода в такую реакцию не вступают

    Водный раствор аммиачных комплексов одновалентной меди Cu(I), например, аммиачный раствор оксида меди (I)

    [Cu(NH3)2]OH

    Алкины с тройной связью на конце молекулы дают красный осадок :

    R-С≡СН + [Cu(NH3)2]OH →  R-С≡СCu↓ + 2NH3 + H2O

    Алкины, у которых при тройной связи нет атомов водорода в такую реакцию не вступают, что позволяет отличить их друг от друга

    Бензол Нитрующая смесь – смесь конц. азотной и серной кислот

    Образование желтой жидкости с запахом горького миндаля на дне реакционной смеси 

    nitrovanie benzola 2

    Гомологи бензола Нейтральный водный раствор  KMnO4

    При кипячении с каким-либо гомологом бензола водный раствор перманганата калия обесцвечивается и выпадает бурый осадок оксида марганца (IV). На примере с толуолом и этилбензолом реакции выглядят следующим образом:

    C6H5CH3 +2KMnO4 = C6H5COOK + 2MnO2+ KOH + H2O (при кипячении)

    C6H5CH2CH3 + 4KMnO4 = C6H5COOK + K2CO3 + 2H2O + 4MnO2 + KOH (при нагревании)

    Подкисленный водный раствор перманганата калия KMnO4(водн.), H+

    Постепенное обесцвечивание подкисленного раствора KMnO4. Выпадения бурого осадка MnO2 не наблюдается, поскольку марганец восстанавливается до практически бесцветной соли двухвалентного марганца. Чаще всего в качестве подкислителя изпользуют серную кислоту. На примере с толуолом реакция выглядит следующим образом:

    5C6H5CH3 + 6KMnO4 + 9H2SO4 → 5C6H5COOH + 6MnSO4 + 3K2SO4 +14H2O

    Фенол Бромная вода

    Исчезновение желто-коричневой окраски бромной воды с одновременным выпадением белого осадка трибромфенола:

    phenol pl'us brom ravno tribromphenol pl'us 3HBr 3

    Разбавленный водный раствор соли железа (III),  например,

    FeCl3

    Светло-желтая окраска разбавленного раствора соли трехвалентного железа сменяется на фиолетовую
    Анилин Бромная вода

    Исчезновение желто-коричневой окраски бромной воды с одновременным выпадением белого осадка триброманилина:

    anilin pl'us brom ravno tribromanilin pl'us 3HBr

    Одноатомные первичные и вторичные спирты

    CH3OH, C2H5OH, (CH3)2CH-OH и т.д.

    Оксид меди (II)

    CuO

    Черный CuO при нагревании со спиртом изменяет свою окраску на красную в связи с восстановлением до Cu0. Первичный спирт при этом превращается в альдегид:

    R-CH2-OH + CuO =to=> R-CHO + Cu + H2O,

    вторичный — в кетон:

    R-C(OH)-R’+ CuO =to=> R-C(O)-R’ + Cu + H2O,

    В случае метанола появляется легко узнаваемый запах формальдегида (естественно, чтобы он был узнаваемым, нужно до этого быть знакомым с его запахом:-) )

    В случае реакции с CuO этилового спирта чувствуется специфический запах ацетальдегида, схожий с ароматом прелых яблок сорта «антоновка»

    okislenie jetanila v acetal'degid

    Многоатомные спирты Свежеосажденный Cu(OH)2 (II)

    Растворение голубого осадка Cu(OH)2 с образование ярко-синего раствора комплексного соединения меди. На примере с глицерином уравнение реакции выглядит следующим образом:

    glicerin-pljus-gidroksid-medi-pljus-glicerin-ravno-glicerat-medi-pljus-2-vody-2

    Альдегиды,

    CHO

    Аммиачный раствор оксида серебра

    [Ag(NH3)2]OH

    Так называемая реакция серебряного зеркала. В результате восстановления Ag+1 в металлическое серебро Ag0 на стенках сосуда образуется зеркало. При небрежном смешении реагентов или в недостаточно чистом сосуде вместо серебряного зеркала может образоваться черный осадок, состоящий из мелкодисперсных частиц металлического серебра. В обоих случаях наблюдаемые явления описываются уравнением в общем виде:

    R-CHO + 2[Ag(NH3)2]OH = R-СООNH4 + 2Ag↓ + 3NH3↑ + H2O

    Свежеосажденный

    Cu(OH)2

    Образование оранжево-красного осадка Cu2O при нагревании в результате реакции:

    R-CHO + 2Cu(OH)2 = R-COOH + Cu2O↓ + 2H2O

    Карбоновые кислоты,

    -COOH

    Лакмус Окрашивание лакмуса в красный цвет
    Карбонаты, например, K2CO3

    Выделение углекислого газа в результате разложения образующейся нестойкой угольной кислоты H2CO3:

    2R-COOH + CO32-  →  CO2 + H2O + R-COO

    Спирт + конц. H2SO4

    Появление запаха сложного эфира, образующегося в результате реакции:

    R-COOH + R’-OH → R-COO-R’ + H2O

    Запахи эфиров весьма разнообразны, но общим является ярко выраженная пахучесть, нередко, могут напоминать ароматы различных фруктов.

    Муравиная кислота

    -СНО

    и

    -СООН

    Лакмус

    Окрашивание лакмуса в красный цвет, по причине кислой среды, создаваемой муравьиной кислотой:

    HCOOH ↔ HCOO + H+

    Аммиачный раствор оксида серебра

    [Ag(NH3)2]OH

    Молекуле муравьиной кислоты, не смотря на ее малый размер удается сочетать в себе помимо карбоксильной группы также и карбонильную, которая позволяет вступать муравьиной кислоте в реакцию серебряного зеркала подобно альдегидам:

    HCOOH + 2[Ag(NH3)2]OH  2Ag↓ + 4NH3↑ + CO2↑ + 2H2O

    Растворимые соли жирных карб. кислот, например, стеарат натрия

    CH3(CH2)16COONa (мыло)

    Любая сильная неорганическая кислота или кислота средней силы H2SO4 (разб.) HCl HI HBr HNO3 (разб.) H3PO4

    Выпадение хлопьевидного белого осадка малорастворимой жирной кислоты:

    CH3(CH2)16COONa + H+ → Na+ + CH3(CH2)16COOH

    Раствор соли Ca или Mg

    Выпадение белого осадка нерастворимой кальциевой или магниевой соли жирной кислоты. Ионное уравнение в общем виде:

    2R-COO + Ca2+ → (R-COO)2Ca↓,

    где R-длинный углеводородный радикал.

    На примере, стеарата натрия и хлорида кальция молекулярное уравнение реакции выглядит так:

    2CH3(CH2)16COONa + CaCl2 → (CH3(CH2)16COONa)2Ca↓

    Фенолфталеин

    Окрашивание фенолфталеина в малиновый цвет как в щелочах, ввиду того, что соли жирных кислот гидролизуются по аниону:

    CH3(CH2)16COO + H2O → CH3(CH2)16COOH + OH

    Олеиновая кислота,

    -COOH;

    >C=C<

    Водный раствор KMnO4(водн.)

    Наблюдают исчезновение фиолетовой окраски KMnO4 и образование хлопьевидного осадка оксида марганца бурого цвета MnO2

    3>C=C< + 2KMnO4 + 4H2O → 3>C(OH)-C(OH)< + 2MnO2↓ + 2KOH

    Раствор Br2 в орг. растворителе или воде (бромная вода)

    Исчезает желто-коричневая окраска раствора брома из-за протекания реакции (указан структурный фрагмент молекулы олеиновой кислоты):

    >C=C< + Br2 → C(Br)=C(Br)<

    Раствор щелочи, например, NaOH

    Олеиновая кислота, будучи практически нерастворимой в воде жирной кислотой, растворяется в водных растворах щелочей:

    C17H33COOH + NaOH → C17H33COONa + H2O

    Глюкоза,

    -CHO

    -C(OH)-C(OH)-

    Аммиачный раствор оксида серебра

    [Ag(NH3)2]OH

    Глюкоза относится к так называемым альдегидоспиртам, т.к. ее молекулы содержат альдегидную группу и 5 гидроксильных групп. Поэтому она вступает в реакцию «серебряного зеркала» 
     

    Свежеосажденный

    Cu(OH)2

    Если раствор глюкозы прибавить к свежеосажденному гидроксиду меди без нагревания наблюдается растворение осада гидроксида меди и образование синего раствора. В этом случае глюкоза реагирует как многоатомный спирт — с образованием растворимых комплексов меди. Если же полученный синий раствор нагреть, выпадает оранжево-красный осадок одновалентного оксида меди Cu2O. При этом глюкоза реагирует как альдегид — альдегидная группа молекулы глюкозы окисляется до карбоксильной — образуется глюконовая кислота.
    Крахмал

    Йод,

    I2

    Появление синей окраски

     Белок 

     концентрированная азотная кислота

    НNО3(конц.)

    Ксантопротеиновая реакция

    Появление ярко-желтого окрашивания по причине  нитрования бензольных колец молекул белка

     

    Свежеосажденный

    Cu(OH)2

     Появляется сине-фиолетовое окрашивание раствора в следствие образование комплексов меди (II) с белком

    Добавить комментарий