Как найти бесконечное множество решений

Уважаемые студенты!
Заказать задачи по физике, информатике, экономике, праву, химии, теормеху, сопромату и другим предметам можно здесь всего за 10 минут.

Метод Гаусса

  1. Метод Гаусса
    1. Пример 1
    2. Пример 2
  2. Несовместность системы (нет решений)
    1. Пример 3
  3. Общее и частное решение системы (бесконечное множество решений)
    1. Пример 4

Пусть задана система линейных алгебраических уравнений: $$begin{cases} a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1 \ a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2 \ a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3 end{cases}. $$

  1. Запишем систему уравнений в виде расширенной матрицы, состоящей из коэффициентов и столбца свободных членов. Вертикальная черта используется для удобства оформления. $$ begin{pmatrix} a_{11} & a_{12} & a_{13} & | & b_1 \ a_{21} & a_{22} & a_{23} & | & b_2 \ a_{31} & a_{32} & a_{33} & | & b_3 end{pmatrix} $$
  2. С помощью элементарных преобразований матрицы (вычитание одной строки из другой, умноженной на коэффициент, удаление одинаковых и нулевых строк, деление строки на число отличное от нуля) получаем нули под главной диагональю $$ begin{pmatrix} a_{11} & a_{12} & a_{13} & | & b_1 \ 0 & a_{22} & a_{23} & | & b_2 \ 0 & 0 & a_{33} & | & b_3 end{pmatrix} $$
  3. Используя элементарные преобразования, изложенные в пункте 2, приводим матрицу к виду содержащему нули везде, кроме главной диагонали $$ begin{pmatrix} a_{11} & 0 & 0 & | & b_1 \ 0 & a_{22} & 0 & | & b_2 \ 0 & 0 & a_{33} & | & b_3 end{pmatrix} $$
Пример 1
Решить систему уравнений методом Гаусса $$begin{cases} x_1 + 2 x_2 + x_3 = 5 \ -x_1 + 3 x_2 -2 x_3 = 3 \ – x_1 -7 x_2 + 4 x_3 = -5 end{cases}. $$
Решение

Запишем расширенную матрицу, состоящую из коэффициентов при неизвестных $x_1, x_2, x_3$ и отдельно столбец свободных членов $b_1, b_2, b_3$. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ -1 & 3 & -2 & | & 3 \ -1 & -7 & 4 & | & -5 end{pmatrix} $$

Приведем матрицу к нижнетреугольному виду (под главной диагональю должны быть нули) с помощью элементарных преобразований.

Прибавим ко второй строке первую. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ -1 & -7 & 4 & | & -5 end{pmatrix} $$

Далее прибавляем к третьей строке первую. $$ begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ 0 & -5 & 5 & | & 0 end{pmatrix}$$

Теперь осталось к третьей строке прибавить вторую строку, чтобы под главной диагональю были только нули. $$ begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ 0 & 0 & 4 & | & 8 end{pmatrix}$$

Замечаем, что в третьей строке стоят числа, которые можно сократить на четыре. Для этого выполняем деление всей третьей строки на 4. $$ begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Теперь выполняем обратный ход Гаусса снизу вверх. Прибавляем ко второй строке третью строку. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & 0 & | & 10 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Сразу замечаем, что вторую строку можно сократить на 5. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 1 & 0 & | & 2 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Продолжаем обратный ход, вычитаем третью строку из первой. $$begin{pmatrix} 1 & 2 & 0 & | & 3 \ 0 & 1 & 0 & | & 2 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Осталось из первой строки вычесть вторую строку, умноженную на 2, для того, чтобы в первой строке появился ноль. $$begin{pmatrix} 1 & 0 & 0 & | & -1 \ 0 & 1 & 0 & | & 2 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Теперь перепишем получившуюся матрицу в виде системы уравнений, чтобы в дальнейшем получить чему равны неизвестные $x_1, x_2, x_3$. $$begin{cases} x_1 = -1 \ x_2 = 2 \ x_3 = 2 end{cases}$$

Ответ
$$x_1 = -1, x_2 = 2, x_3 = 2$$
 

Пример 2
Решить систему линейных алгебраических уравнений методом Гаусса $$begin{cases} 2x_1 + 5 x_2 + 4x_3 + x_4 = 20 \ x_1 + 3 x_2 + 2x_3 +x_4 = 11 \ 2x_1 +10 x_2 + 9 x_3 + 7x_4 = 40 \ 3x_1 + 8x_2 + 9x_3 + 2x_4 = 37 end{cases}. $$
Решение

Записываем расширенную матрицу $$ begin{pmatrix} 2&5&4&1&|&20 \ 1&3&2&1&|&11 \ 2&10&9&7&|&40 \ 3&8&9&2&|&37 end{pmatrix}.$$

Умножаем вторую строку на 2 и вычитаем из неё первую строчку. Из третьей строки просто вычитаем первую. Умножаем четвертую строку на 2 и вычитаем из неё первую строку, умноженную на 3. Получаем матрицу $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&5&5&6&|&20 \ 0&1&6&1&|&14 end{pmatrix}.$$

Берем вторую строку, умноженную на 5 и вычитаем из третьей. Затем вторую строку вычитаем из четвертой. $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&0&5&1&|&10 \ 0&0&6&0&|&12 end{pmatrix}$$

Теперь умножаем третью строку на 6 и вычитаем её из четвертой строки, умноженной на 5. $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&0&5&1&|&10 \ 0&0&0&-6&|&0 end{pmatrix}$$

Получили нижнетреугольную матрицу, то есть ниже главной диагонали расположены нули. Теперь проделываем элементарные преобразования снизу вверх, так называемый обратный ход Гаусса. Но прежде замечаем, что появилась строка, в которой можно выполнить сокращение. А именно в четвертой строке можно разделить все числа на (-6). И получаем $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&0&5&1&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Вот теперь вычитаем четвертую строчку из третьей, второй и первой. $$begin{pmatrix} 2&5&4&0&|&20 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Из второй строки мы не будем вычить третью, потому что там итак стоит ноль, ради которого мы проводим элементарные преобразования, поэтому пропускаем этот шаг. 

Умножаем на 4 третью строку и вычитаем её из первой, умноженной на 5. $$begin{pmatrix} 10&25&0&0&|&60 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Замечаем, что в первой строке можно все числа сократить на 5. $$begin{pmatrix} 2&5&0&0&|&12 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Теперь остался последний шаг это умножить вторую строку на 5 и вычесть из первой. $$begin{pmatrix} 2&0&0&0&|&2 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Замечаем, что первую строку можно сократить на 2, а третью строку на 5. $$begin{pmatrix} 1&0&0&0&|&1 \ 0&1&0&0&|&2 \ 0&0&1&0&|&2 \ 0&0&0&1&|&0 end{pmatrix}$$

Переписываем матрицу в виде привычной системы уравнений и получаем ответ $$begin{pmatrix} 1&0&0&0&|&1 \ 0&1&0&0&|&2 \ 0&0&1&0&|&2 \ 0&0&0&1&|&0 end{pmatrix} sim begin{cases} x_1 = 1 \ x_2 = 2 \ x_3 = 2 \ x_4 = 0 end{cases}.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$x_1 = 1, x_2 = 2, x_3 = 2, x_4 = 0$$

Несовместность системы (нет решений)

Если в результате элементарных преобразований появилась нулевая строка вида $$begin{pmatrix} 0&0&0&|&b end{pmatrix} text{ где } b neq 0,$$то система уравнений не имеет решений. На этом алгоритм Гаусса заканчивает свою работу и можно записывать ответ, что система несовместна, то есть нет решений. 

Пример 3
Найти решение системы линейных уравнений методом Гаусса $$begin{cases} 7x_1 – 2x_2 – x_3 = 2 \ 6x_1 – 4x_2 – 5x_3 = 3 \ x_1 + 2x_2 + 4x_3 = 5 end{cases}.$$
Решение

Как обычно пишем расширенную матрицу по коэффициентам при неизвестных переменных и столбцу свободных членов $$begin{pmatrix} 7&-2&-1&|&2 \ 6&-4&-5&|&3 \ 1&2&4&|&5 end{pmatrix}.$$

Запускаем алгоритм Гаусса. Идём сверху вниз. Умножаем вторую строку на 7 и вычитаем из неё первую строчку умноженную на 6. Затем первую строку вичитаем из третьей, умноженной на 7. $$begin{pmatrix} 7&-2&-1&|&2 \ 0&-16&-29&|&9 \ 0&16&29&|&33 end{pmatrix}$$

Далее по алгоритму прибавляем вторую строку к третьей. $$begin{pmatrix} 7&-2&-1&|&2 \ 0&-16&-29&|&9 \ 0&0&0&|&42 end{pmatrix}$$

Видим, что в результате элементарных преобразований появилась строка в которой все нули, кроме свободного члена. Это означает, что система несовместа, то есть у системы уравнений нет решения.

Ответ
Нет решений, так как система несовместна.

Общее и частное решение системы (бесконечное множество решений) 

Часто после элементарных преобразований в расширенной матрице появляются нулевые строки вида $$begin{pmatrix} 0&0&0&|&0 end{pmatrix}.$$ Такую строку нужно вычеркивать из матрицы и система уравнений будет иметь бесконечное множество решений. Разберем это на практике.

Пример 4
Найти общее и два частных решения системы линейных алгебраических уравнений методом Гаусса $$begin{cases} x_1+x_2-x_3=4 \ 3x_1+2x_2-5x_3=7 \ 3x_1+x_2-7x_3=2 end{cases}.$$
Решение

Составляем расширенную матрицу $$begin{pmatrix} 1&1&-1&|&4 \ 3&2&-5&|&7 \ 3&1&-7&|&2 end{pmatrix}.$$

Из второй и третьей строки вычетаем первую, умноженную на 3. $$begin{pmatrix} 1&1&-1&|&4 \ 0&-1&-2&|&-5 \ 0&-2&-4&|&-10 end{pmatrix}$$

Из третьей строки вычитаем вторую, домноженную на 2. $$begin{pmatrix} 1&1&-1&|&4 \ 0&-1&-2&|&-5 \ 0&0&0&|&0 end{pmatrix}$$

Теперь согласно обратному ходу Гаусса вторую строку прибавляем к первой. $$begin{pmatrix} 1&0&-3&|&-1 \ 0&-1&-2&|&-5 \ 0&0&0&|&0 end{pmatrix}$$

По окочанию элементарных преобразований получилась строка, в которой все элементы равны нулю. Значит, система имеет бесконечное множество решений. Для его записи понадобится отличать базисные и свободные переменные. Обычно за базисные берут переменные, которые стоят на главной диагонали, а остальные свободные. В нашем случае базисными будут $x_1, x_2$, а свободной $x_3$.

Переписываем матрицу в виде системы $$begin{pmatrix} 1&0&-3&|&-1 \ 0&-1&-2&|&-5 \ 0&0&0&|&0 end{pmatrix} sim begin{cases} x_1-3x_3 = -1 \ -x_2-2x_3 = -5 end{cases}.$$

Так как $x_1, x_2$ являются базисными переменными, то их переносим в левую часть равенства, а всё остальное в правую часть. Получившееся называют общим решением решением системы уравнений $$begin{cases} x_1-3x_3 = -1 \ -x_2-2x_3 = -5 end{cases} sim begin{cases} x_1 = 3x_3-1 \ x_2 = 5-2x_3 end{cases}.$$

Чтобы получить частное решение системы уравнений нужно вместо свободного $x_3$ подставить любое число, например $x_3 = 0$. Тогда получаем, что $$begin{cases} x_1 = -1 \ x_2 = 5 end{cases}.$$ Возьмем ещё например $x_3 = 1$ и получаем $$begin{cases} x_1 = 2 \ x_2 = 3 end{cases}.$$

Можно брать различные числа вместо $x_3$ и получать бесконечное множество решений.

Ответ

Общее решение системы уравнений $$begin{cases} x_1 = 3x_3-1 \ x_2 = 5-2x_3 end{cases}.$$

Частные решения системы уравнений $$begin{cases} x_1 = -1 \ x_2 = 5 end{cases}, begin{cases} x_1 = 2 \ x_2 = 3 end{cases}.$$

1. Системы линейных уравнений с параметром

Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

Пример 1.

Найти все значения для параметра а, при которых система уравнений не имеет решений.

{х + (а2 – 3)у = а,
{х + у = 2.

Решение.

Рассмотрим несколько способов решения данного задания.

1 способ. Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а1 = b/b1 ≠ c/c1). Тогда имеем:

1/1 = (а2 – 3)/1 ≠ а/2 или систему

2 – 3 = 1,
{а ≠ 2.

Из первого уравнения а2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

Ответ: а = -2.

2 способ. Решаем методом подстановки.

{2 – у + (а2 – 3)у = а,Системы уравнений с параметром
{х = 2 – у,

или

{(а2 – 3)у – у = а – 2,
{х = 2 – у.

После вынесения в первом уравнении общего множителя у за скобки, получим:

{(а2 – 4)у = а – 2,
{х = 2 – у.

Система не имеет решений, если первое уравнение не будет иметь решений, то есть

2 – 4 = 0,
{а – 2 ≠ 0.

Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

Ответ: а = -2.

Пример 2.

Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

{8х + ау = 2,
{ах + 2у = 1.

Решение.

По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а1 = b/b1 = c/c1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

Ответ: а = 4.

2. Системы рациональных уравнений с параметром

Пример 3.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{3|х| + у = 2,
{|х| + 2у = a.

Решение.

Умножим первое уравнение системы на 2:

{6|х| + 2у = 4,
{|х| + 2у = a.

Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

Ответ: а = 4.

Пример 4.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{х + у = а,
{у – х2 = 1.

Решение.

Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1). Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:Системы уравнений с параметром

1,25 = 0,5 + а;

а = 0,75.

Ответ: а = 0,75.

Пример 5.

Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

{ах – у = а + 1,
{ах + (а + 2)у = 2.

Решение.

Из первого уравнения выразим у и подставим во второе:

{у = ах – а – 1,
{ах + (а + 2)(ах – а – 1) = 2.

Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

ах + а2х – а2 – а + 2ах – 2а – 2 = 2;

а2х + 3ах = 2 + а2 + 3а + 2.

Квадратный трехчлен а2 + 3а + 2 представим в виде произведения скобок

(а + 2)(а + 1), а слева вынесем х за скобки:

2 + 3а)х = 2 + (а + 2)(а + 1).

Очевидно, что а2 + 3а не должно быть равным нулю, поэтому,

а2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

Ответ: а ≠ 0; ≠ -3.

Пример 6.

Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

2 + у2 = 9,
{у – |х| = а.

Решение.

Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

х2 + у2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.Системы уравнений с параметром

Ответ: а = 3.

 Остались вопросы? Не знаете, как решать системы уравнений?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Как подобрать такое значение чтобы система уравнений имела бесконечно много решений?

evskroh



Ученик

(232),
на голосовании



4 года назад

Система уравнений:
3x + y = 5
ax +3y= c

Голосование за лучший ответ

Mister User

Оракул

(58260)


5 лет назад

Два уравнения – это две прямых. Чтобы система уравнений имела бесконечно много решений, прямые должны совпадать одна с другой. Тогда любая пара х и у подойдет к одной и ко второй. Чтоб прямые совпадали, у них должен быть одинаковый угловой коэффициент (множитель при х), и одинаковый свободный член.
у = kx + b
Вырази у через х и приравняй k и b.

y = -3x + 5
y = -ax/3 + с/3

-3x =-aх/3
а = 9

5 = с/3
с = 15

Пример
4.
Решить
систему линейных уравнений

.

Решение.
Составим определитель из коэффициентов
при неизвестных и вычислим его:


,
значит, СЛУ имеет единственное решение.
Найдем вспомогательные определители
и значения неизвестных.


Ответ:

.

Рассмотрим пример,
в котором СЛУ
имеет бесконечное множество решений
,
и они будут найдены с применением формул
Крамера.

Пример
5
.
Решить СЛУ.

Решение.

Вычислим
определитель системы:

Заметим,
что третье уравнение системы равно
сумме первых двух уравнений, т.е. зависит
от первых двух уравнений. Отбросив
третье уравнение, получим равносильную
систему двух уравнений с тремя
неизвестными:

Оставим
в левой части системы те неизвестные,
коэффициенты при которых образуют
определитель, не равный нулю, например,

.
Неизвестное


является
свободным,
а неизвестные

и


базисными
неизвестными
.
Запишем систему в виде


и применим
к ней правило Крамера:


;


общее
решение

неопределенной СЛУ, где

– любое действительное число.

Из
общего решения можно получить частные
решения
,
если придать свободной неизвестной
какое-то конкретное значение. Например,
пусть

,
тогда

;
частное решение

.

3. Матричный метод решения слу

3.1. Матричная запись системы линейных уравнений

Пусть

– матрица коэффициентов при неизвестных,

– матрица-столбец неизвестных,

– матрица-столбец свободных членов.
Система

уравнений с

неизвестными в матричном виде запишется
как

(матричное уравнение системы):


.

3.2. Решение системы уравнений с помощью обратной матрицы

Умножив
обе части уравнения

системы на обратную матрицу

слева и
используя свойство

,
получим выражение для матрицы неизвестных

.
Оно показывает, как найти решение
системы

линейных уравнений с

неизвестными с помощью обратной матрицы.

Пример
6.
Решить с
помощью обратной матрицы систему
уравнений

.

Решение.
Вычислим определитель:

.
Так как

,
то система уравнений имеет единственное
решение

.

2)
Составим обратную матрицу. Матрица

существует, т.к. определитель

.
Найдем алгебраические дополнения

.


,

,

,


,

,

,


,

,

.

Составим
матрицу из алгебраических дополнений

и транспонируем ее.

.

Разделим
каждый элемент этой матрицы на определитель

,
получим искомую обратную матрицу:

.

3)
Матрица неизвестных

равна произведению матрицы

на матрицу свободных членов

:



.

Вычислим
значения неизвестных:

,

,

.

Ответ.
Система имеет единственное решение

.

4. Сущность метода исключения неизвестных (метода Гаусса). Элементарные преобразования

Сущность
метода Гаусса

состоит в том, что система линейных
уравнений с помощью элементарных
преобразований приводится к равносильной
системе треугольного или трапецеидального
вида, из которой легко находится решение
системы или делается вывод о несовместности
системы. Метод Гаусса применяется к
любой СЛУ,
в которой число уравнений равно числу
неизвестных, или больше числа неизвестных,
или меньше числа неизвестных.

К элементарным преобразованиям над
уравнениями
системы относятся:

  1. Перестановка
    уравнений местами.

  2. Умножение уравнения
    на число, не равное нулю.

  3. Прибавление одного
    уравнения к другому уравнению, умноженному
    на какое-либо число.

  4. Отбрасывание
    одинаковых уравнений (кроме одного), а
    также уравнения вида

    .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 ноября 2021 года; проверки требуют 3 правки.

Бесконечная система линейных алгебраических уравнений — обобщение понятия системы линейных алгебраических уравнений на случай бесконечного множества неизвестных, определённое методами функционального анализа. Оно имеет смысл не над любым полем, а, например, над вещественными и комплексными числами. Также возможно прямолинейное обобщение методами собственно линейной алгебры, отличное от описанного в статье.

Бесконечная система линейных алгебраических уравнений часто появляется в процессе решения разнообразных задач в физике и технике методом неопределённых коэффициентов, например в задачах теплопроводности, определения перигелия движения Луны в астрономии, в задаче определения статического прогиба прямоугольного тела с закреплёнными концами.[1]

Определение[править | править код]

Бесконечной системой линейных алгебраических уравнений называется бесконечное множество алгебраических уравнений первой степени относительно бесконечного множества неизвестных: {displaystyle sum _{k=1}^{infty }a_{ik}x_{k}=b_{i}}, {displaystyle i=1,2,...}. Решением бесконечной системы линейных алгебраических уравнений называется всякая последовательность чисел {displaystyle left{x_{k}right}}, такая, что все ряды {displaystyle sum _{k=1}^{infty }a_{ik}x_{k}}, {displaystyle i=1,2,...} являются сходящимися к b_{{i}}. Решение {displaystyle left{x_{k}right}} бесконечной системы линейных алгебраических уравнений называется ограниченным, если числа x_{k} образуют ограниченную последовательность.

Удобно рассматривать бесконечные системы линейных алгебраических уравнений в виде: {displaystyle x_{i}-sum _{k=1}^{infty }c_{ik}x_{k}=b_{i}}, {displaystyle i=1,2,...}, {displaystyle c_{ik}=-a_{ik}+delta _{ik}}. Бесконечная система линейных алгебраических уравнений называется вполне регулярной, если существует такая положительная постоянная q<1, что {displaystyle sum _{k=1}^{infty }left|c_{ik}right|leqslant q}.

Вполне регулярная бесконечная система линейных алгебраических уравнений имеет единственное ограниченное решение {displaystyle left{x_{i}right}} при любой ограниченной совокупности свободных членов b_{{i}}. При этом, если {displaystyle b_{i}leqslant B} для всех {displaystyle i=1,2,...}, то {displaystyle left|x_{i}right|leqslant {frac {B}{1-q}}}.[2]

Бесконечный определитель[править | править код]

В матрице коэффициентов бесконечной линейной системы уравнений можно оставить лишь первые n строк и n столбцов и составить из них квадратную матрицу размером ntimes n:

{displaystyle A(n)={begin{vmatrix}a_{11}&a_{12}&cdots &a_{1n}\a_{21}&a_{22}&cdots &a_{2n}\cdots &cdots &cdots &cdots \a_{n1}&a_{n2}&cdots &a_{nn}end{vmatrix}}}

Обозначим определитель этой матрицы как {displaystyle Delta (n)=det(A(n))}.

Если существует предел: {displaystyle Delta =lim _{nto infty }Delta (n)}, то он называется бесконечным определителем, соответствующим матрице a_{{ij}}[3].

Достаточное условие существования[править | править код]

Представим матрицу {displaystyle a_{ij}} в новом виде, выделив из её всех диагональных членов слагаемое, равное единице:

{displaystyle a_{ij}={begin{vmatrix}a_{11}&a_{12}&cdots \a_{21}&a_{22}&cdots \cdots &cdots &cdots end{vmatrix}}={begin{vmatrix}c_{11}+1&c_{12}&cdots \c_{21}&c_{22}+1&cdots \cdots &cdots &cdots end{vmatrix}}}

Для того, чтобы бесконечный определитель матрицы a_{{ij}} существовал и обладал свойствами, аналогичными свойствам обычного определителя, достаточно, чтобы бесконечный двойной ряд {displaystyle sum _{i,k=1}^{infty }|c_{ik}|}
сходился.[3]

Решение бесконечной системы линейных алгебраических уравнений[править | править код]

Если у матрицы a_{{ij}} бесконечной системы линейных алгебраических уравнений существует и не равен нулю бесконечный определитель и все её свободные члены ограничены по модулю (то есть существует положительное число M_{1}, такое, что {displaystyle |b_{k}|<M_{1},forall k}), то эта система имеет единственное ограниченное решение (то есть существует положительное число M_{2}, такое, что {displaystyle |x_{k}|<M_{2},forall k}), определяемое по формулам Крамера:

{displaystyle x_{k}={frac {Delta _{k}}{Delta }}},

где {displaystyle Delta _{k}} — определитель, который получается из определителя Delta заменой элементов k-го столбца свободными членами.[4]

См. также[править | править код]

  • Система линейных алгебраических уравнений

Примечания[править | править код]

  1. Смирнов, 1933, с. 57-61.
  2. Вулих, 1958, с. 215—218.
  3. 1 2 Смирнов, 1933, с. 64.
  4. Смирнов, 1933, с. 65.

Литература[править | править код]

  • Вулих Б.З. Введение в функциональный анализ. — М.: Физматлит, 1958. — 352 с. — 7500 экз.
  • Смирнов В. И. Курс высшей математики для техников и физиков. Том 3. — М.: Гостехтеориздат, 1933. — 736 с. — 22 000 экз.

Добавить комментарий