Как составить уравнение биссектрисы треугольника по координатам его вершин?
1 способ
Используя уравнение биссектрисы угла:
Пример.
Даны вершины треугольника A(-5;4), B(7;-1) и C(3;10).
1) Составить уравнение биссектрисы треугольника ABC, выходящей из вершины A.
2) Найти длину этой биссектрисы.
Решение:
1) Угол A образован прямыми AB и AC. Составим уравнения этих прямых.
Уравнение прямой, проходящей через две точки, можно найти, например, по формуле
Уравнение прямой AB:
Уравнение прямой AC:
Подставляем уравнения прямых AB и AC в формулы уравнения биссектрис угла:
и
то есть
и
Из этих уравнений является уравнением биссектрисы внутреннего угла BAC треугольника, другое — биссектрисой внешнего угла при вершине A. Как отличить уравнение биссектрисы внутреннего угла?
Точки B и C лежат по одну сторону от биссектрисы внешнего угла, поэтому при подстановке координат B и C в уравнение мы получим числа одинакового знака. От биссектрисы внутреннего угла B и C лежат по разные стороны, поэтому подстановка их координат в уравнение биссектрисы внутреннего угла даёт нам числа разных знаков.
Подставляем в уравнение x-8y+37=0 координаты B и C.
B(7;-1): 7-8·(-1)+37>0
C(3;10): 3-8·10+37<0.
Таким образом, уравнение x-8y+37=0 является уравнением биссектрисы AF треугольника ABC.
2) Чтобы найти длину биссектрисы, найдём точку пересечения прямых AF и BF.
Уравнение прямой BC:
Координаты точки пересечения прямых AF и BC находим из системы уравнений
Решение системы —
Длину биссектрисы AF находим по формуле расстояния между точками A и F:
2 способ
Используя свойство биссектрисы треугольника:
По формулам деления отрезка в данном отношении
разделим отрезок BC в отношении 13 к 10, то есть
Составим уравнение биссектрисы AF треугольника ABC как уравнение прямой, проходящей через точки
Прямая на плоскости
Задачи по геометрии могут относиться к одному из двух принципиально отличающихся случаев. Это следующие:
- На плоскости, где достаточно двух координат для описания любых геометрических объектов.
- В трехмерном пространстве, где любая точка имеет три координаты.
Когда рассматривают треугольники и их элементы, то в ряде ситуаций речь идет именно о двумерном пространстве. В нем всякая прямая линия может быть выражена в виде нескольких математических форм или уравнений. Чаще всего используются следующие типы:
- Общий. Он также называется универсальным. Прямая представляет собой следующую математическую запись: A*x + B*y + C = 0. Здесь A, B, C — числовые коэффициенты, x и y — переменные, являющиеся координатами. Сразу нужно отметить, что эта форма представления прямой используется для составления уравнения биссектрисы угла. Для удобства геометрического изображения общую форму записи часто представляют в виде y = f (x). Нужно понимать, что указанной форме в пространстве соответствует не прямая, а плоскость.
- Канонический или уравнение в отрезках. Имеет оно такой вид: y/p + x/q = 1. Здесь p, q — это координаты, в которых прямая пересекает оси y и x, соответственно, поэтому удобно ее изображать в координатной системе.
- Векторный. Это один из важных типов представления прямой как на плоскости, так и в пространстве. По сути, он является исходным представлением, из которого можно получить все остальные. Математически он записывается так: (x, y) = (x0, y0) + α*(v1, v2). Где (x0, y0) — координаты произвольной точки, которая лежит на прямой, (v1, v2) — направляющий вектор, он параллелен заданной прямой, α — произвольное число, параметр.
- Параметрический. Этот тип представляет собой систему уравнений, которую удобно использовать во время преобразования одного вида прямой в другой. Представляет он собой следующую математическую запись: x = x0 + α*v1; y = y0 + α*v2. Несложно понять, что, выражая параметр α, можно получить уравнения общего вида и в отрезках. Объединяя же систему уравнений в одно выражение, получается векторная форма записи прямой.
Делящая пополам угол линия
Каждый школьник, который знаком с азами геометрии, знает, что прямая, делящая на две равные части произвольный угол, называется биссектрисой. Этот элемент присутствует для любой фигуры, которая в своем составе содержит какой-либо угол.
Другое определение биссектрисы гласит, что она представляет собой геометрическое расположение точек, которые равноудалены от соответствующих сторон углового объекта. Например, если имеется угол dac, то любая из точек биссектрисы находится на одинаковом расстоянии как от отрезка da, так и от отрезка ac.
Способы построения
В классах общеобразовательных школ рассматривают два основных способа построения биссектрисы. Это следующие:
- С помощью транспортира. Для этого следует измерить заданный угол в градусах, разделить его пополам. Полученное значение отметить в виде точки. Затем соединить вершину угла и поставленную точку внутри него. Получится искомый элемент.
- С использованием циркуля и линейки. Эти инструменты еще проще применять для построения биссектрисы, чем транспортир. Сначала необходимо установить в вершину угла ножку циркуля и отметить дугами пересечение окружности со сторонами. Затем, в точки пересечения поставить ножку циркуля и провести две окружности. Соединив две точки их пересечения одной прямой, можно получить биссектрису.
Имеется еще один метод, который позволяет просто начертить изучаемый линейный элемент. Для его использования нужна линейка со шкалой. С помощью нее следует от вершины угла отмерить два одинаковых отрезка любой длины. Затем соединить концы этих отрезкой, получится равнобедренный треугольник.
В нем любая биссектриса также является высотой и медианой. Поэтому, разделив его ровно пополам линейкой, и соединив полученную точку с вершиной, можно получить требуемую линию.
Основные свойства
Чтобы найти по координатам вершин длину биссектрисы треугольника, следует знать некоторые свойства этого геометрического объекта. Главным из них является существование двух линий, которые делят пополам исходный угол. Нужно понимать, что угол бывает не только внутренний, но и внешний. По сути, оба типа образуются при пересечении двух прямых. Нетрудно доказать, что биссектрисы каждого из них пересекаются всегда под углом 90 °.
Еще одним важным свойством является тот факт, что пересекаются в одной точке биссектрисы треугольника. Она представляет собой центр вписанной в фигуру окружности. Чтобы это доказать, следует вспомнить, что каждая точка биссектрисы равноудалена от соответствующих сторон угла.
Пусть имеется треугольник ABC. У него две биссектрисы пересекаются в точке O. Пусть это будут линии для углов A и B. Расстояние от O до AC должно быть равно таковому от O до AB. С другой стороны, расстояния от O до AB и до BC также одинаковые. Поэтому дистанции от O до BC и до AB также равны, а значит, точка O лежит на биссектрисе угла C и центром вписанной окружности является.
В треугольнике рассматриваемый геометрический элемент используется часто для решения задач благодаря применению так называемой теоремы биссектрис. Чтобы ее сформулировать максимально простым языком, следует представить, что имеется треугольник произвольного типа ABC. В нем проведена биссектриса AD, где точка D лежит на прямой BC. Тогда справедливо следующее выражение:
DB/DC = AB/AC.
Это равенство не является очевидным, однако, оно было известно еще древнегреческим мыслителям. Эту теорему в несколько иной форме можно встретить в знаменитом труде по геометрии Евклида, который называется «Элементы». Доказательство равенства несложно провести с использованием небольших дополнительных построений и применением признаков подобия треугольников.
Наконец, отрезок биссектрисы, который заключен между вершиной и противоположной стороной треугольника, имеет определенную длину. Вычислить ее можно с использованием следующего равенства:
L (A) = 2/(b+c)*(b*c*p*(p-a))^0,5.
Это равенство прописано для угла A треугольника ABC, в котором противоположная A сторона имеет длину a. Стороны AB и AC имеют длины c и b, соответственно. Буквой p обозначен полупериметр фигуры.
Важно понимать, если нарисовать прямоугольный параллелепипед (или иную фигуру) в пространстве, и построить биссектрису для его граней, она будет представлять собой не прямую, а плоскость.
Уравнение биссектрисы треугольника
Когда известно, как математически записывать выражения для прямых, и что такое биссектриса, и какими свойствами она обладает, можно переходить к непосредственному нахождению ее уравнения.
В общем случае задача решается в результате применения следующей последовательности действий (существуют онлайн-ресурсы, позволяющие решить данную проблему):
- Сначала требуется определить уравнения двух сторон угла по их координатам. Это легко сделать в векторной форме, а затем, преобразовать ее в выражение общего типа.
- Далее, необходимо найти уравнение биссектрис первого координатного угла, прировняв расстояния от ее точек до соответствующей стороны. Рабочая формула имеет вид: |A1*x + B1*y + C|/(A1 2 + B1 2 )^0,5 = |A2*x + B2*y + C|/(A2 2 + B2 2 )^0,5. Следует обратить внимание на наличие двух различных решений этого равенства, поскольку в числителе стоит модульное выражение. Два полученных уравнения говорят о наличии взаимно перпендикулярных биссектрис для углов треугольника внутреннего и внешнего.
- Для внутреннего угла искомое уравнение можно найти, если определить точку пересечения соответствующей прямой с противоположной исходному углу стороной треугольника. Та точка, сумма расстояний от которой до концов отрезка будет равна длине стороны, принадлежит искомой биссектрисе.
Пример решения задачи
Пусть, треугольник задан координатами A (1, -1), B (0, -2), C (3,0). Следует уравнение биссектрисы найти для угла B и ее длину вычислить.
Сначала нужно написать уравнения прямых для сторон AB и CB, получается:
- AB: (x, y) = (1, -1) + α*(-1, -1) ==> y — x + 2 = 0;
- CB: (x, y) = (3, 0) + α*(-3, -2) ==> 3*y — 2*x + 6 = 0.
Составить уравнения биссектрис можно так:
| y — x + 2 |/(2)^0,5 = | 3*y — 2*x + 6 |/(13)^0,5.
Решение этого уравнения приводит к следующим двум выражениям для взаимно перпендикулярных биссектрис:
- y*(6−3*3 0,5) + x*(3*3 0,5 −4)+12−6*3 0,5 = 0;
- y*(3*3 0,5+6) -x*(4+3*30,5)+12+6*3 0,5 = 0.
Чтобы определить, какая из двух прямых является искомой для треугольника заданного, следует точку пересечения каждой из них со стороной AC найти. Уравнение для AC имеет вид:
x = 2*y + 3.
Подставляя его в каждое из выражений для биссектрис, можно получить две точки пересечения:
- D1 = (-0,2515;-1,6258);
- D2 = (1,556;-0,722).
При этом длина основания AC составляет 2,236 единицы через единичный вектор. Расстояние от точек D1 и D2 до A, C равно:
- D1A = 1,4; D1C = 3,635;
- D2A = 0,621; D2C = 1,614.
Видно, что точка пересечения второй прямой D2 лежит между A и C, поэтому соответствующее ей уравнение биссектрисы является ответом на задачу. Ее длину можно вычислить по формуле для модуля вектора BD2:
BD2 = 2,014 единицы.
Таким образом, для определения в треугольнике биссектрисы уравнения по координатам следует уметь находить векторную форму выражений для прямой по координатам двух точек. Также нужно знать свойства делящей пополам угол линии.
Уравнение биссектрисы в треугольнике – формула, свойства и решение задач
Прямая на плоскости
Задачи по геометрии могут относиться к одному из двух принципиально отличающихся случаев. Это следующие:
- На плоскости, где достаточно двух координат для описания любых геометрических объектов.
- В трехмерном пространстве, где любая точка имеет три координаты.
Когда рассматривают треугольники и их элементы, то в ряде ситуаций речь идет именно о двумерном пространстве. В нем всякая прямая линия может быть выражена в виде нескольких математических форм или уравнений. Чаще всего используются следующие типы:
- Общий. Он также называется универсальным. Прямая представляет собой следующую математическую запись: A*x + B*y + C = 0. Здесь A, B, C — числовые коэффициенты, x и y — переменные, являющиеся координатами. Сразу нужно отметить, что эта форма представления прямой используется для составления уравнения биссектрисы угла. Для удобства геометрического изображения общую форму записи часто представляют в виде y = f (x). Нужно понимать, что указанной форме в пространстве соответствует не прямая, а плоскость.
- Канонический или уравнение в отрезках. Имеет оно такой вид: y/p + x/q = 1. Здесь p, q — это координаты, в которых прямая пересекает оси y и x, соответственно, поэтому удобно ее изображать в координатной системе.
- Векторный. Это один из важных типов представления прямой как на плоскости, так и в пространстве. По сути, он является исходным представлением, из которого можно получить все остальные. Математически он записывается так: (x, y) = (x0, y0) + α*(v1, v2). Где (x0, y0) — координаты произвольной точки, которая лежит на прямой, (v1, v2) — направляющий вектор, он параллелен заданной прямой, α — произвольное число, параметр.
- Параметрический. Этот тип представляет собой систему уравнений, которую удобно использовать во время преобразования одного вида прямой в другой. Представляет он собой следующую математическую запись: x = x0 + α*v1; y = y0 + α*v2. Несложно понять, что, выражая параметр α, можно получить уравнения общего вида и в отрезках. Объединяя же систему уравнений в одно выражение, получается векторная форма записи прямой.
Делящая пополам угол линия
Каждый школьник, который знаком с азами геометрии, знает, что прямая, делящая на две равные части произвольный угол, называется биссектрисой. Этот элемент присутствует для любой фигуры, которая в своем составе содержит какой-либо угол.
Другое определение биссектрисы гласит, что она представляет собой геометрическое расположение точек, которые равноудалены от соответствующих сторон углового объекта. Например, если имеется угол dac, то любая из точек биссектрисы находится на одинаковом расстоянии как от отрезка da, так и от отрезка ac.
Способы построения
В классах общеобразовательных школ рассматривают два основных способа построения биссектрисы. Это следующие:
- С помощью транспортира. Для этого следует измерить заданный угол в градусах, разделить его пополам. Полученное значение отметить в виде точки. Затем соединить вершину угла и поставленную точку внутри него. Получится искомый элемент.
- С использованием циркуля и линейки. Эти инструменты еще проще применять для построения биссектрисы, чем транспортир. Сначала необходимо установить в вершину угла ножку циркуля и отметить дугами пересечение окружности со сторонами. Затем, в точки пересечения поставить ножку циркуля и провести две окружности. Соединив две точки их пересечения одной прямой, можно получить биссектрису.
Имеется еще один метод, который позволяет просто начертить изучаемый линейный элемент. Для его использования нужна линейка со шкалой. С помощью нее следует от вершины угла отмерить два одинаковых отрезка любой длины. Затем соединить концы этих отрезкой, получится равнобедренный треугольник.
В нем любая биссектриса также является высотой и медианой. Поэтому, разделив его ровно пополам линейкой, и соединив полученную точку с вершиной, можно получить требуемую линию.
Основные свойства
Чтобы найти по координатам вершин длину биссектрисы треугольника, следует знать некоторые свойства этого геометрического объекта. Главным из них является существование двух линий, которые делят пополам исходный угол. Нужно понимать, что угол бывает не только внутренний, но и внешний. По сути, оба типа образуются при пересечении двух прямых. Нетрудно доказать, что биссектрисы каждого из них пересекаются всегда под углом 90 °.
Еще одним важным свойством является тот факт, что пересекаются в одной точке биссектрисы треугольника. Она представляет собой центр вписанной в фигуру окружности. Чтобы это доказать, следует вспомнить, что каждая точка биссектрисы равноудалена от соответствующих сторон угла.
Пусть имеется треугольник ABC. У него две биссектрисы пересекаются в точке O. Пусть это будут линии для углов A и B. Расстояние от O до AC должно быть равно таковому от O до AB. С другой стороны, расстояния от O до AB и до BC также одинаковые. Поэтому дистанции от O до BC и до AB также равны, а значит, точка O лежит на биссектрисе угла C и центром вписанной окружности является.
В треугольнике рассматриваемый геометрический элемент используется часто для решения задач благодаря применению так называемой теоремы биссектрис. Чтобы ее сформулировать максимально простым языком, следует представить, что имеется треугольник произвольного типа ABC. В нем проведена биссектриса AD, где точка D лежит на прямой BC. Тогда справедливо следующее выражение:
Это равенство не является очевидным, однако, оно было известно еще древнегреческим мыслителям. Эту теорему в несколько иной форме можно встретить в знаменитом труде по геометрии Евклида, который называется «Элементы». Доказательство равенства несложно провести с использованием небольших дополнительных построений и применением признаков подобия треугольников.
Наконец, отрезок биссектрисы, который заключен между вершиной и противоположной стороной треугольника, имеет определенную длину. Вычислить ее можно с использованием следующего равенства:
Это равенство прописано для угла A треугольника ABC, в котором противоположная A сторона имеет длину a. Стороны AB и AC имеют длины c и b, соответственно. Буквой p обозначен полупериметр фигуры.
Важно понимать, если нарисовать прямоугольный параллелепипед (или иную фигуру) в пространстве, и построить биссектрису для его граней, она будет представлять собой не прямую, а плоскость.
Уравнение биссектрисы треугольника
Когда известно, как математически записывать выражения для прямых, и что такое биссектриса, и какими свойствами она обладает, можно переходить к непосредственному нахождению ее уравнения.
В общем случае задача решается в результате применения следующей последовательности действий (существуют онлайн-ресурсы, позволяющие решить данную проблему):
- Сначала требуется определить уравнения двух сторон угла по их координатам. Это легко сделать в векторной форме, а затем, преобразовать ее в выражение общего типа.
- Далее, необходимо найти уравнение биссектрис первого координатного угла, прировняв расстояния от ее точек до соответствующей стороны. Рабочая формула имеет вид: |A1*x + B1*y + C|/(A1 2 + B1 2 )^0,5 = |A2*x + B2*y + C|/(A2 2 + B2 2 )^0,5. Следует обратить внимание на наличие двух различных решений этого равенства, поскольку в числителе стоит модульное выражение. Два полученных уравнения говорят о наличии взаимно перпендикулярных биссектрис для углов треугольника внутреннего и внешнего.
- Для внутреннего угла искомое уравнение можно найти, если определить точку пересечения соответствующей прямой с противоположной исходному углу стороной треугольника. Та точка, сумма расстояний от которой до концов отрезка будет равна длине стороны, принадлежит искомой биссектрисе.
Пример решения задачи
Пусть, треугольник задан координатами A (1, -1), B (0, -2), C (3,0). Следует уравнение биссектрисы найти для угла B и ее длину вычислить.
Сначала нужно написать уравнения прямых для сторон AB и CB, получается:
- AB: (x, y) = (1, -1) + α*(-1, -1) ==> y — x + 2 = 0;
- CB: (x, y) = (3, 0) + α*(-3, -2) ==> 3*y — 2*x + 6 = 0.
Составить уравнения биссектрис можно так:
| y — x + 2 |/(2)^0,5 = | 3*y — 2*x + 6 |/(13)^0,5.
Решение этого уравнения приводит к следующим двум выражениям для взаимно перпендикулярных биссектрис:
- y*(6−3*3 0,5 ) + x*(3*3 0,5 −4)+12−6*3 0,5 = 0;
- y*(3*3 0,5 +6) -x*(4+3*3 0,5 )+12+6*3 0,5 = 0.
Чтобы определить, какая из двух прямых является искомой для треугольника заданного, следует точку пересечения каждой из них со стороной AC найти. Уравнение для AC имеет вид:
Подставляя его в каждое из выражений для биссектрис, можно получить две точки пересечения:
При этом длина основания AC составляет 2,236 единицы через единичный вектор. Расстояние от точек D1 и D2 до A, C равно:
- D1A = 1,4; D1C = 3,635;
- D2A = 0,621; D2C = 1,614.
Видно, что точка пересечения второй прямой D2 лежит между A и C, поэтому соответствующее ей уравнение биссектрисы является ответом на задачу. Ее длину можно вычислить по формуле для модуля вектора BD2:
BD2 = 2,014 единицы.
Таким образом, для определения в треугольнике биссектрисы уравнения по координатам следует уметь находить векторную форму выражений для прямой по координатам двух точек. Также нужно знать свойства делящей пополам угол линии.
Примеры решений по аналитической геометрии на плоскости
В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.
Решения задач о треугольнике онлайн
Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.
Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.
Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.
Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.
Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.
Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.
Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, – 4)$, $В(3, 0)$ и $С(0, 6)$.
Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.
Образцы выполнения некоторых заданий
Рассмотрим решения некоторых практических упражнений.
Задание 2(е)
На плоскости даны точки А(11; -5), В(6;7), С(-10; -5). Найти уравнение биссектрисы угла А.
Решение задания 2(е)
Найдем направляющий вектор биссектрисы как сумму ортов векторов и
,
или (умножая на )
.
; ;
; .
.
Таким образом, в качестве направляющего вектора биссектрисы угла А можно взять вектор и уравнение биссектрисы будет иметь вид
.
Задание 3
Дана точка (0;2) пересечения медиан треугольника и уравнения двух его сторон 5х – 4у + 15 = 0 и 4х + у – 9 = 0. Найти координаты вершин треугольника и уравнение третьей стороны.
Решение Координаты одной вершины найдем как координаты точки пересечения данных сторон, для чего решим систему уравнений
Получаем или
Точка Оц пересечения медиан треугольника называется его центром. Отметим одно свойство центра треугольника, которое используем для нахождения координат остальных вершин:
; ,
где хц, уц – координаты центра треугольника;
хi, yi – координаты i-ой вершины треугольника,
Для доказательства этих формул рассмотрим треугольник А1А2А3, где Аi(xi;yi), i = 1-3 (см.рис.2.1).
Рис.2.1. Вспомогательный чертеж к заданию 3
Пусть В середина стороны А1А2. Тогда А3В – медиана треугольника А1А2А3. По известному из элементарной геометрии свойству медиан треугольника .
Тогда координаты точки В найдем по формулам
и ,
а координаты центра Оц из векторного соотношения , которое в координатной форме записывается так
, .
Отсюда, выражая хц и уц через xi, yi, получим требуемые формулы.
Вернемся к решению задания 3. Используя доказанные формулы, полагая в них х1 = 1 и у1 = 5, хц = 0 и уц = 2, получим два уравнения, которым должны удовлетворять координаты остальных двух вершин
; ,
Еще два уравнения получим, если потребуем, чтобы искомые точки, вершины треугольника, принадлежали заданным сторонам, т.е. их координаты удовлетворяли уравнениям этих сторон
Итак, для определения четырех неизвестных х2, у2, х3, у3, мы имеем четыре независимых (!) условия (уравнения)
Решив эту систему, получим х2 = -3, у2 = 0, х2= 2, у3 = 1.
Наконец, уравнение третьей стороны запишем как уравнение прямой, проходящей через две заданные точки (-3;0) и (2;1)
или .
Итак, уравнение третьей стороны x – 5у + 3 = 0, а вершины треугольника имеют координаты (1;5), (-3;0), (2;1).
Задание 7
Составить уравнение линии, для каждой точки М которой, отношение расстояний до точки F( ) и до прямой
равно .
Привести уравнение линии к каноническому виду, определить тип линии и построить линию на чертеже. Показать на чертеже фокусы, директрисы, асимптоты (если они имеются у построенной линии).
Замечание. Отметим, что в заданиях этого модуля ; ; .
Пусть n = 101. Тогда:
, т.к. ;
, т.к. ;
, т.к. .
Итак, для n = 101 первая часть задания 7 принимает вид:
Составить уравнение линии, для каждой точки М которой, отношение расстояния до точки F(-4;1) и до прямой x = 1
равно .
Решение задания 7 (для n = 101).
Пусть М(х;у) произвольная точка искомой линии, r – расстояние от М до F и d – расстояние от точки М до прямой x = 1. Тогда
и .
По условию , т.е. d = 2r.
– уравнение искомой линии.
Упростим уравнение линии и приведем его к каноническому виду. Для этого возведем обе части уравнения в квадрат и выполним следующие преобразования уравнения
х 2 – 2х +1 = 4х 2 + 32х + 64 + 4(у – 1) 2 ,
3х 2 + 34х + 4(у – 1) 2 + 63 = 0,
,
.
Последнее уравнение – это каноническое уравнение эллипса с полуосями и ( ), центр которого находится в точке с координатами . Координаты вершин эллипса
и , т.е. (-9;1), , ,
. Построим эллипс на чертеже (см.рис.2.2).
Рис.2.2. Эллипс с уравнением
Фокусы эллипса имеют координаты , где .
.
Итак, координаты фокусов F1(-4;1), F2( ;1).
Директрисы эллипса имеют уравнения , где е – эксцентриситет эллипса
.
Уравнения директрис , т.е.
D2: .
Отметим фокусы и директрисы эллипса на рис.2.2.
Обратите внимание на совпадение фокуса F1 с точкой, данной в условии задания 7, на совпадение директрисы D1 с прямой х = 1 из условия этого задания, и совпадение эксцентриситета е с параметром е в условии. По этому поводу см. теоретическое упражнение 18.
В пространстве даны точки А(-2; -4;1), В(3;1; -1), С(5;1;1),
S(1;-4;0). Найти координаты центра и радиус вписанной в пирамиду SABC сферы (условие сформулировано для n = 101).
Решение задания 4(м)
Пусть точка О(x0;y0;z0) – центр сферы, вписанной в пирамиду SABC. Найдем точку О как точку, равноудаленную от граней пирамиды. Для этого найдем уравнения всех граней и расстояния от точки О до этих граней (уравнения некоторых граней находятся в предшествующих пункту М пунктах задания 4).
Грань АВС. Уравнение грани
или 5х – 7у – 5z – 13 = 0.
Точки О и S лежат по одну сторону от грани АВС, поэтому отклонения этих точек от грани АВС имеют одинаковые знаки. Отклонение (S) точки S от грани АВС равно
> 0.
.
Аналогично все делается для граней ABS, BCS, CAS.
Грань ABS имеет уравнение 5х + у + 15z – 1 = 0 и
.
Грань BCS имеет уравнение 5х – 3у – 5z – 17 = 0 и
.
Наконец, грань CAS имеет уравнение 5х – 7у + 15z + 33 = 0 и
.
Так как О – центр сферы, вписанной в пирамиду SABC, то
d(O; ABC) = d(O; ABS) = d(O; BCS) = d(O; CAS) = r,
где r – радиус вписанной сферы.
Тогда координаты точки О должны удовлетворять системе
В отличие от других заданий этого модуля, коэффициенты и решение этой системы найдем приближенно, с помощью микрокалькулятора или ЭВМ. Получим систему
и уравнение вписанной сферы
.
1. Общее уравнение прямой на плоскости. Нормальный вектор прямой. Угол между прямыми. Условия параллельности и перпендикулярности.
2. Уравнение прямой с угловым коэффициентом. Угол между прямыми. Условия параллельности и перпендикулярности.
3. Каноническое и параметрическое уравнения прямой на плоскости. Направляющий вектор прямой. Угол между прямыми. Условия параллельности и перпендикулярности.
4. Уравнение прямой, проходящей через две заданные точки.
5. Уравнения прямых, проходящих через данную точку параллельно и перпендикулярно данной прямой (3 случая задания данной прямой: общим уравнением, каноническим уравнением, уравнением с угловым коэффициентом).
6. Общее уравнение плоскости в пространстве, нормальный вектор плоскости. Угол между плоскостями. Условие параллельности и перпендикулярности.
7. Уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой.
8. Общее, каноническое и параметрическое уравнения прямой в пространстве. Угол между прямыми. Условия параллельности и перпендикулярности.
9. Угол между прямой и плоскостью в пространстве. Условие параллельности и перпендикулярности прямой и плоскости.
10. Уравнение плоскости, проходящей через данную точку, перпендикулярно данной прямой. Уравнение прямой, проходящей через данную точку, перпендикулярно данной плоскости.
11. Расстояние от точки до: прямой на плоскости; прямой в пространстве; плоскости в пространстве.
12. Уравнение линии на плоскости. Общее уравнение кривой второго порядка.
13. Каноническое и параметрическое уравнения окружности.
14. Эллипс (фокусы и директрисы, фокальные радиусы точки, эксцентриситет). Каноническое и параметрическое уравнения эллипса.
15. Гипербола (фокусы, директрисы и асимптоты, фокальные радиусы точки, эксцентриситет). Каноническое и параметрическое уравнения гиперболы.
16. Парабола (фокус и директриса, фокальный радиус точки, эксцентриситет). Каноническое уравнение параболы.
17. Приведение общего уравнения кривой второго порядка к каноническому виду.
18. Полярные координаты на плоскости. Уравнение линии в полярных координатах.
19. Уравнение поверхности в пространстве. Общее уравнение поверхностей второго порядка.
20. Основные типы поверхностей второго порядка и их канонические уравнения.
1. Бугров Н.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. – М.: Наука, 1980. 176 с.
2. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч.1: Учебное пособие для студентов втузов. – 3-е изд., перераб. и доп. – М.: Высшая школа, 1980. 320 с.
3. Ильин В.А., Позняк Э.Г. Аналитическая геометрия. – М.: Наука, 1981. 232 с.
4. Клетеник Д.В. Сборник задач по аналитической геометрии. – М.: Наука, 1980. 240 с.
5. Сборник задач по математике для втузов. Линейная алгебра и основы математического анализа/Под ред. А.В. Ефимова, Б.П. Демидович. – М.: Наука, 1981, 464 с.
6. Высшая математика. Методические указания и контрольные задания/Под ред. Ю.С. Арутюнова. – М.: Высшая школа, 1985.
7. Гусак А.А. Пособие к решению задач по высшей математике. – Изд. 3-е. – Минск: Изд-во БГУ, 1973. 532 с.
8. Кузнецов А.А. Сборник заданий по высшей математике (типовые расчеты): Учеб. пособие для втузов. – М.: Высшая школа, 1983. 175 с.
9. Погорелов А.В.Аналитическая геометрия.– М.:Наука, 1968. 176с
[spoiler title=”источники:”]
http://www.matburo.ru/ex_ag.php?p1=agtr
http://poisk-ru.ru/s5347t9.html
[/spoiler]
2.1. Даны уравнения
двух прямых. Составить
уравнение биссектрисы тупого угла,
образованного этими прямыми.
Общие
сведения и расчётные формулы:по представленному заданию.
Пусть
имеем две прямые:
:
x+y+=0
и
:
x+y+=0.
Уравнением
определяется вектор нормали
,
уравнением
вектор нормали
.
Так как векторы
и
–
свободные, то изобразим их так, чтобы
их начала принадлежали соответствующим
плоскостям, а сами они располагались
внутри одного из углов, образованных
пересекающимися прямыми. Важно помнить
также, что уравнение прямой можно
умножать на произвольное, не равное
нулю число. Это значит, что, по необходимости,
мы можем разместить векторы
и
как внутри тупого, так и внутри острого
угла. Пусть векторы
и
разместились внутри тупого угла, как
показано на рисунке. Умножим уравнение
на число (-1). Вектор нормали этой прямой
станет равным
,
и пара векторов
и
расположится внутри острого угла.
Видим,
когда векторы нормалей плоскостей
располагаются внутри тупого угла угол
между ними острый. И наоборот, если
векторы расположились внутри острого
угла, то угол между ними тупой. Какой из
случаев реализуется в конкретном
примере, легко определить при помощи
скалярного произведения:
а)
∙
> 0 – векторы расположены в области
тупого угла;
б)
∙
< 0 – векторы расположены в области
острого угла.
Так как от случая
а) легко перейти к случаю б), то для
определённости будем считать, что всегда
нужно строить биссектрису тупого угла.
Отметим
факт: рассматриваемую задачу относят
кклассическим
задачам аналитической геометрии. Важно
также то, что существует несколько
способов решения этой задачи, причём
существенно различающихся как по
теоретическим основам, так и технологии
применяемых вычислений!
Способ–1.
Пусть
∙
> 0: векторы
и
располагаются в области тупого угла.
Воспользуемся
свойством биссектрисы: каждая принадлежащая
ей точка одинаково удалена от сторон
угла, который биссектриса делит пополам.
Для
эффективного (и удобного) использования
понятия расстояние
от точки до прямой,
каждое из уравнений заданных прямых
необходимо нормализовать. Нормированное
уравнение прямой удобно как для
вычисления отклонения точки от плоскости,
так и для вычисления расстояния от
точки до плоскости. В нашем случае задача
упрощается, так как отклонения
и
произвольной точки биссектрисы от
прямых
и
имеют одинаковые знаки и можно записать:
=.
Это значит уравнение биссектрисы, как
геометрическое место точек, равноудалённых
от сторон угла, которому эта биссектриса
принадлежит, можно записать в виде:
=. (B1)
Если бы теперь
нужно было построить биссектрису острого
угла, то её уравнение должно быть записано
в виде:
=
–. (B2)
Замечание:
Если
бы векторы
и
располагались в области острого угла,
то биссектриса острого угла определялась
бы выражением (B1),
а биссектриса тупого – выражением
(B2).
Способ–2.
В этом случае примем схему решения
задачи: а) находим точку M0(x0,y0)
пересечения прямых
и
;
б) находим направление биссектрис
;
в) проводим прямую через заданную точку
в заданном направлении.
Для
определения направления биссектрис
lВ
построим единичные векторы:
и
,
затем суммы:
=+
– этот вектор определяет направление
биссектрисы угла, содержащего векторы
,;
=––
определяет направление биссектрисы
угла, смежного первому.
Используя
угловой коэффициент вектора
,
строим биссектрису угла, содержащего
векторы
,;
если использовать угловой коэффициент
вектора
,
построим биссектрису смежного угла.
Замечание: на
самом деле, достаточно найти только
один вектор:
для первой биссектрисы он играет роль
направляющего вектора, а для второй –
роль вектора нормали.
Способ–3.
Воспользуемся уравнением пучка прямых:
:
и вектором
.
Параметр
прямой
выбирается из условия:
.
Интересно рассмотреть
один и тот же пример, решив его сразу
всеми тремя способами: это позволит
сравнить их трудоёмкости!
Пример
(и образец оформления):
Общая часть.
Составить уравнение
биссектрисы тупого угла, образованного
пересекающимися прямыми:и.
Задачу
решим, применяя все рассмотренные
способы.
Способ–1.
Используем равенство отклонений=каждой точки биссектрисы от сторон
тупого угла, которому она принадлежит.
Решение:
1). Запишем векторы:
,.
Вычислим:∙=3·12+(-4)·5>0.
Это значит, что векторыирасполагаются в области тупого угла.
2). Общая запись
уравнения биссектрисы имеет вид:
=,
а в нашем случае:=,
откуда получаем уравнение искомой
биссектрисы:.
Ответ:.
Способ–2.
В этом случае применим схему решения
задачи: а) находим точкупересечения прямыхи;
б) находим направление биссектрис;
в) проводим прямую через заданную точку
в заданном направлении.
Решение:
1). Координаты
находим из системы уравнений:
→=.
2). Так как
и,
тои.
Тогда:=–=–(3,11).
Векторможно принять в качестве нормали искомой
биссектрисы. Удобнее принять коллинеарный
ему вектор:.
3). Общее уравнение
биссектрисы запишем в виде:
.
В нашем примере: 3+11=0,
или.
Ответ:.
Способ–3.
Воспользуемся уравнением пучка прямых:,
или в виде:и направляющим вектором=(11,–3)..
Решение:
1). Вычислим угловой
коэффициент прямой пучка:
.
2). Вычислим угловой
коэффициент направляющего вектора: –.
3). Воспользуемся
равенством:
=–,
откуда получаем:.
4). Подставляем
значение
в уравнение:.
Окончательно записываем уравнение
искомой биссектрисы:.
Ответ:.
Выводы: 1).
В рассматриваемой задачеСпособ–1демонстрирует великолепные возможности
использования нормальных уравнений
прямой!
2). Применение
Способа–3демонстрирует эффективность использования
конструкциипучок.
3). Применение
Способа–2также полезно, так как требует минимум
специальных знаний. Это может сработать
при выполнении контрольной работы!
Замечание:
при оформлении задания использование
рисунка (в карандаше, с использованием
чертёжных инструментов)обязательно!
Варианты
индивидуальных заданий:
Вар. |
Задание: |
Вар. |
Задание: |
1. |
|
16. |
|
2. |
|
17. |
|
3. |
|
18. |
|
4. |
|
19. |
|
5. |
|
20. |
|
6. |
|
21. |
|
7. |
|
22. |
|
8. |
|
23. |
|
9. |
|
24. |
|
10. |
|
25. |
|
11. |
|
26. |
|
12. |
|
27. |
|
13. |
|
28. |
|
14. |
|
29. |
|
15. |
|
30. |
|
2.2. Даны координаты
вершин
итреугольникаи точкапересечения его высот. Найти координаты
вершинытреугольника.
Общие
сведения и расчётные формулы:по представленному заданию.
Пусть
прямая
:
x+y+=0
определяет сторону
треугольника, а прямая
:x+y+=0
сторону
.
Тогда вектор
можем принять в качестве нормали прямой
,
а вектор
в качестве нормали прямой
.
Остаётся воспользоваться уравнением
прямой, для которой задан вектор нормали
и точка, принадлежащая прямой! Как только
будут построены уравнения прямых,
нетрудно найти их точку пересечения .
Пример
(и образец оформления):
Общая часть.
Пусть вершиныитреугольника:=(-10,2),=(6,4)
и точка пересечения его высот:=(5,2).
Найти координаты вершины.
Решение:
1)
Вычислим: =–=(5,2)–(6,4)=(-1,-2)=;=–=(5,2)–(-10,2)=(15,0)=.
2). Заменим полученные
векторы нормалей коллинеарныvми
им, но более простые в записи:
=(1.2),
=(1,0).
3). Воспользуемся
общим уравнение прямой для случая, когда
задан вектор нормали прямой и точка,
принадлежащая прямой:
.
Тогда получим:
:
→;
:
→.
4). Вычислим
координаты точки
:откуда,.
Ответ:=.
Замечание:
при оформлении задания использование
рисунка (в карандаше, с использованием
чертёжных инструментов)обязательно!
Варианты
индивидуальных заданий:
Вар. |
Задание: |
Вар. |
Задание: |
||||
1. |
|
|
|
16. |
|
|
|
2. |
|
|
|
17. |
|
|
|
3. |
|
|
|
18. |
|
|
|
4. |
|
|
|
19. |
|
|
|
5. |
|
|
|
20. |
|
|
|
6. |
|
|
|
21. |
|
|
|
7. |
|
|
|
22. |
|
|
|
8. |
|
|
|
23. |
|
|
|
9. |
|
|
|
24. |
|
|
|
10. |
|
|
|
25. |
|
|
|
11. |
|
|
|
26. |
|
|
|
12. |
|
|
|
27. |
|
|
|
13. |
|
|
|
28. |
|
|
|
14. |
|
|
|
29. |
|
|
|
15. |
|
|
|
30. |
|
|
|
2.3. Даны координаты
вершин треугольника
.
Составить уравнения:
стороны ,высоты, биссектрисы
и медианы, проведённых из вершины A.
Общие
сведения и расчётные формулы:по представленному заданию.
Для решения задачи
необходимо вспомнить формулы, определяющие
уравнение прямой, для случаев:
1*.
Заданы две точки, принадлежащие прямой.
Тогда уравнение прямой, проходящей
через две заданные точки записывают в
форме
:
,
где
=.
2*.
Заданы: точка A,
принадлежащая прямой, и направление
прямой. Для построения уравнения прямой,
содержащей высоту, опущенную на
,
учтём:
.
Это значит:
.
Так как
после построения уравнения
будет известно, то уравнение прямой
может быть записано в виде :
,
где
=.
3*.
Тремя точками
задан угол с вершиной в точке .
Прямая
проходит через точку
и делит угол:
пополам. Эту задачу можно решить двумя
вариантами:
а).
Используем равенство углов: =.
Обозначив угловой коэффициент прямой
через
,
запишем:
=,
причём угловые коэффициенты сторон
заданного угла вычисляют по формулам:
,
.
Для искомой прямой уравнение принимает
вид:
:
.
б).
Определим направление стороны
угла
единичным вектором:
,
стороны –
единичным
вектором:
.
Тогда направляющий вектор прямой,
совпадающей с биссектрисой может быть
записан в виде:
.
После этого остаётся воспользоваться
каноническим уравнением прямой:
=.
4*.
Заданы : точка
,
принадлежащая прямой, и концы отрезка
точками
и
.
Прямая
совпадает с медианой, проведённой из
точки
к середине отрезка
–
точке
.
Далее задача совпадает с задачей 1*:
записываем уравнение прямой, проходящей
через две заданные точки записывают в
форме
:
,
где
=.
Пример
(и образец оформления):
Общая часть.
Пусть задан треугольникего вершинами:,,.
Составить уравнения:
стороны ,высоты, медианы и
биссектрисы, проведённые из вершины A.
Решение
задачи 1*.
1). Уравнение прямой
,
содержащей точкии:,
где=.
2). Вычислим
===4.
3). Запишем уравнение
прямой
:,
или в виде:.
Ответ:.
Решение
задачи 2*.
1). Уравнение прямой
,
содержащей высоту,
опущенную на :,
где=.
2). Учитывая результат
задачи 1*, вычислим
==.
3). Запишем уравнение
прямой
:,
или в виде:.
Ответ:.
Решение
задачи 3*.
1). Уравнение
биссектрисы
определим двумя способами.
Способ-1.
Общая запись уравнения::y–=(x–),
гдевычисляем
из выражения:=,
причём,.
1). Вычислим
,.
Тогда=0.
2). Уравнение
принимает вид:.
Ответ:.
Способ-2.
Общая запись канонического уравнения:=,
где=,
причём,==;===.
1). Вычислим:
==(4,-3)
–(1,1)=(3,-4);=5
→=(3,–4);
==(7,
9) –(1, 1)=(6,8);=10
→=(3,4).
2). Тогда:
=(3,–4)+(3,4)=(3,0)
→ принимаем:=(1,0).
3). Получили уравнение
в виде:=,
или:.
Ответ:.
Решение
задачи 4*.
1). Уравнение прямой
,
содержащей медиану,
проведённую из точкик середине отрезка–
точке,
имеет вид:,
где=.
2). Вычислим
координаты точки M
из условия: =,
илиM===.
3). Тогда:
==и уравнениепринимает вид:,
или:.
Ответ:.
Замечание:
при оформлении задания использование
рисунка (в карандаше, с использованием
чертёжных инструментов)обязательно!
Варианты
индивидуальных заданий:
Вар. |
Задание: |
Вар. |
Задание: |
||||
1. |
|
|
|
16. |
|
|
|
2. |
|
|
|
17. |
|
|
|
3. |
|
|
|
18. |
|
|
|
4. |
|
|
|
19. |
|
|
|
5. |
|
|
|
20. |
|
|
|
6. |
|
|
|
21. |
|
|
|
7. |
|
|
|
22. |
|
|
|
8. |
|
|
|
23. |
|
|
|
9. |
|
|
|
24. |
|
|
|
10. |
|
|
|
25. |
|
|
|
11. |
|
|
|
26. |
|
|
|
12. |
|
|
|
27. |
|
|
|
13. |
|
|
|
28. |
|
|
|
14. |
|
|
|
29. |
|
|
|
15. |
|
|
|
30. |
|
|
|
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Как найти уравнение биссектрисы
Пусть даны две пересекающиеся прямые, заданные своими уравнениями. Требуется найти уравнение прямой, которая, проходя через точку пересечения этих двух прямых, делила бы точно пополам угол между ними, то есть являлась бы биссектрисой.
Инструкция
Предположим, что прямые заданы своими каноническими уравнениями. Тогда A1x + B1y + C1 = 0 и A2x + B2y + C2 = 0. При этом A1/B1 ≠ A2/B2, иначе прямые параллельны и задача не имеет смысла.
Поскольку очевидно, что две пересекающиеся прямые образуют между собой четыре попарно равных угла, то должны существовать ровно две прямые, удовлетворяющие условию задачи.
Эти прямые будут перпендикулярны друг другу. Доказательство этого утверждения достаточно просто. Сумма четырех углов, образованных пересекающимися прямыми, будет всегда равна 360°. Поскольку углы попарно равны, то эту сумму можно представить в виде:
2a + 2b = 360° или, что очевидно, a + b = 180°.
Поскольку первая из искомых биссектрис делит пополам угол a, а вторая — угол b, то угол между самими биссектрисами всегда равен a/2 + b/2 = (a + b)/2 = 90°.
Биссектриса, по определению, делит угол между прямыми пополам, а значит, для любой точки, лежащей на ней, расстояния до обеих прямых будут одинаковыми.
Если прямая задана каноническим уравнением, то расстояние от нее до некоторой точки (x0, y0), не лежащей на этой прямой:
d = |(Ax0 + By0 + C)/(√(A^2 + B^2))|.
Следовательно, для любой точки, лежащей на искомой биссектрисе:
|(A1*x + B1*y + C1)/√(A1^2 + B1^2)| = |(A2*x + B2*y + C2)/√(A2^2 + B2^2)|.
Из-за того, что в обеих частях равенства стоят знаки модуля, оно описывает сразу обе искомые прямые. Чтобы превратить его в уравнение только одной из биссектрис, нужно раскрыть модуль либо со знаком +, либо со знаком -.
Таким образом, уравнение первой биссектрисы:
(A1*x + B1*y + C1)/√(A1^2 + B1^2) = (A2*x + B2*y + C2)/√(A2^2 + B2^2).
Уравнение второй биссектрисы:
(A1*x + B1*y + C1)/√(A1^2 + B1^2) = -(A2*x + B2*y + C2)/√(A2^2 + B2^2).
Например, пусть заданы прямые, определенные каноническими уравнениями:
2x + y -1 = 0,
x + 4y = 0.
Уравнение их первой биссектрисы получается из равенства:
(2x + y -1)/√(2^2 + 1^2) = (x + 4y + 0)/√(1^2 + 4^2), то есть
(2x + y – 1)/√5 = (x + 4y)/√15.
Раскрывая скобки и переводя уравнение в канонический вид:
(2*√3 – 1)*x + (√3 – 4)*y – √3 = 0.
Видео по теме
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.