Выпускники, которые рассчитывают успешно сдать ЕГЭ, в обязательном порядке должны повторить тему «Свойства биссектрисы параллелограмма». Как показывает статистика, при прохождении аттестационного испытания задачи по данному разделу планиметрии вызывают сложности у большого количества учащихся. При этом задания, в которых необходимо применить свойства биссектрисы угла параллелограмма, встречаются в ЕГЭ ежегодно. Таким образом, справляться с ними должны все учащиеся.
Образовательный портал «Школково» предлагает выстроить процесс подготовки к прохождению аттестационного испытания по-новому. Занимаясь вместе с нашим ресурсом, выпускники смогут определить наиболее сложные для себя темы и ликвидировать пробелы в знаниях.
Чтобы задания ЕГЭ не вызывали трудностей, рекомендуем вначале повторить основные понятия и свойства биссектрисы параллелограмма. Найти этот материал учащиеся смогут в разделе «Теоретическая справка».
Для того чтобы окончательно понять принцип решения задач по данному разделу планиметрии, мы рекомендуем выполнить соответствующие упражнения. Большая подборка заданий различного уровня сложности представлена в разделе «Каталог». Для каждого упражнения на сайте приведен алгоритм решения и дан правильный ответ. Последовательно выполняя их, учащиеся смогут понять, как правильно применять свойства биссектрисы внутреннего угла параллелограмма.
Получать новые знания и оттачивать собственные навыки по данной теме или, например, в решении задач на тему «Прямоугольник» в ЕГЭ учащиеся могут в онлайн-режиме, находясь в Москве или любом другом российском городе. При необходимости задание можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.
Равнобедренный треугольник в параллелограмме
Биссектриса параллелограмма может быть проведена из вершины острого или тупого угла фигуры. Доказательство теоремы о равнобедренности образуемых прямой треугольников в этих случаях имеет аналогичный порядок. Чтобы доказать утверждение, нужно знать признак равнобедренности треугольника:
- Согласно условию, проведенная из острого угла А биссектриса AF делит одну из сторон ABCD на 2 отрезка.
- Свойство биссектрисы позволяет утверждать, что углы FAD и BAF равны между собой.
- Определение внутренних накрест лежащих углов, которые образует секущая AF с прямыми ВС и AD, приводит к выводу о равенстве FAD и BFA.
- Поскольку углы BFA и BAF равны, этот признак свидетельствует о равнобедренности треугольника ABF.
- Стороны АВ и BF являются равными и соответствуют отрезку m, который образован при делении ВС биссектрисой.
С помощью аналогичных рассуждений можно доказать, что биссектриса тупого угла параллелограмма делит противоположную сторону на отрезки и отсекает от него равнобедренный треугольник.
Точка пересечения прямых
Согласно свойству, проведенные из смежных углов параллелограмма биссектрисы пересекаются в точке на противоположной стороне, если она в 2 раза больше меньшей. Доказать это утверждение можно следующим способом:
- В равнобедренном треугольнике АВО сторона АО является биссектрисой четырехугольника АВСD.
- Признак равнобедренности предполагает равенство АВ и ВО.
- Согласно свойству, равенство СО и СD свидетельствует о равнобедренности треугольника СDО.
- Стороны АВ и СD равны как противолежащие, из чего следует равенство ВО и СО.
- Поскольку АВ и ВО равны, то ВО = СО, поэтому АВ равна половине ВС, значит большая сторона фигуры в 2 раза превышает величину меньшей.
Доказательство свойства позволяет предположить, что биссектрисы смежных углов пересекаются внутри либо вне параллелограмма. При этом одна сторона больше или меньше половины другой. Если ее величина больше половины соседней, значит прямые пересекутся внутри фигуры.
Биссектрисы, проведенные через смежные углы, пересекаются с продолжением противоположных сторон параллелограмма в вершинах ромба. В зависимости от величины другой стороны, ромб совпадает с ним либо обладает большим или меньшим периметром. Если частить с построением этой фигуры, то длины сторон параллелограмма будут бесконечными.
Свойства односторонних углов
Параллелограмм АВСД имеет смежные углы при параллельных прямых АВ и СД, обозначенные а1 и а2. Для доказательства теоремы о перпендикулярности биссектрис нужно знать свойства смежных углов, сумма которых равна 180 градусам.
Поскольку биссектрисы можно провести внутри острого или тупого угла параллелограмма, то величину смежного с ним внешнего угла можно сложить, получив 180 градусов. Если обозначить их через АО и ДЕ, то углы ОАВ и ЕДС будут равны половинам а1 и а2 соответственно. Так как а1 + а2 = 180, то (а1 + а2) / 2 = 90, значит АО и ДЕ образуют прямой угол АКД.
Применять свойство биссектрис можно при нахождении периметра фигуры. Должны быть известны данные о соотношениях или длинах отрезков, образованных при пересечении противолежащей стороны биссектрисой. Например, она делит на отрезки ВК и КС сторону параллелограмма ABCD, величины которых известны.
Формула определения периметра будет иметь вид: P=2 (n+n+m). Где ВС=BК+КC=n+m, а АВ=ВК=n по свойству биссектрисы. С учетом признака равнобедренности треугольника можно построить эту прямую, дополнив рисунок фигуры без транспортира с помощью циркуля.
Противолежащие углы и биссектрисы
Согласно свойству параллельных прямых, биссектрисы a и b проходят параллельно друг другу. Они образуют внутри фигуры со сторонами mnkp другой параллелограмм, следовательно, он обладает параллельными противоположными сторонами. Прямые, на которых они лежат, соответствуют сторонам исходной фигуры, поэтому ее биссектрисы a и b являются равными.
Углы, которые образованы отрезками a и m, а также b и k, согласно свойствам биссектрис и параллелограммов, равны. Противолежащие равные по величине углы, образованные отрезками mp и nk, можно разделить пополам. Прямая b, пересекающая отрезки n и p, образует с ними накрест лежащие углы, признак которых состоит в их равенстве. Они равны разделенным пополам противоположным и являются соответственными при параллельных прямых n и p.
Вершины образуемого прямоугольника
Биссектрисы параллелограмма пересекаются в точках, представляющих собой вершины прямоугольника, что можно доказать следующим образом:
- Согласно исходным данным, параллелограмм ABCД имеет внешние углы, через вершины которых В и С проведены прямые, разделяющие их пополам.
- Если К, М, Р и О представляют собой точки пересечения биссектрис, исходящей из вершин фигуры, то они образуют четырехугольник.
- По свойству смежных внутренних углов, образуемых параллельными прямыми и секущей, все стороны четырехугольника КМРО перпендикулярны между собой.
- Если через середину ВС фигуры провести медиану треугольника ВКС в параллелограмме, то эта точка Х разделит ВС на равные отрезки ВХ и СХ.
- Отсюда следует равенство углов ХКС, КСХ и КСТ, где Т — это точка, принадлежащая прямой СД.
- Вывод из доказательства: прямые СД и КХ параллельны.
Аналогичным способом можно доказать параллельность других сторон прямой СД. Следовательно, диагональ КР образованного биссектрисами параллелограмма прямоугольника КМРО содержит точки Х и Т. Доказательство предполагает следующее равенство: КР = КХ + ХТ + ТР = ХС + СД + ТД = ВС + СД, поэтому величина диагонали равна сумме двух смежных сторон параллелограмма.
Ромб и его диагонали
Параллелограмм, имеющий биссектрису, которая совпадает с его диагональю, представляет собой ромб. Чтобы доказать это, нужно провести диагональ AC, соединяющую противоположные вершины ABCD. Способ доказательства теоремы основан на равенстве противолежащих углов параллелограмма.
Согласно свойству биссектрисы, отрезок АС делит пополам углы BCD и BAD. Они имеют одинаковую величину, поскольку противоположные углы равны. Диагональ АС — основание треугольников ACB и ACD. Согласно признаку равнобедренности АВ и АС, а также AD и CD, равны между собой. По свойству равенства противоположных сторон параллелограмма AB = CD и AD = BC.
Фигура ABCD, представляющая собой по условию параллелограмм, имеет равные по величине AB, AD, BC и CD в соответствии с доказательством. Отсюда следует, что параллелограмм ABCD по определению ромб. В нем биссектриса АС — это его диагональ.
Примеры решения задач
Биссектрисы смежных углов параллелограмма пересеклись в точке на его противолежащей стороне. Зная его меньшую сторону, можно найти большую, а также наоборот. Допустим, что длина меньшей стороны фигуры составляет 5 сантиметров.
Обозначив вершины фигуры A, B, C, D, а точку на AD буквой Р, достаточно иметь в виду, что AD=AР+РD=AB+CD. Это доказывает признак равенства накрест лежащих углов СВР и АРВ, а также ВСР и СРD при параллельных прямых. Формула для нахождения большей стороны будет иметь вид: AD=2AB=10, поскольку AB = CD. При необходимости найти меньшую можно по формуле: AD=AB/2.
По условию задачи биссектриса, исходящая из острого угла параллелограмма, разделяет его противоположную сторону на отрезки 73 мм и 54 мм, если считать от вершины тупого угла. Требуется вычислить периметр параллелограмма ABCD. Точка Е делит сторону ВС на отрезки заданной длины, поскольку АЕ — биссектриса угла ВАD. Эта прямая представляет собой секущую для параллельных AD и BC.
Отсекая равнобедренный треугольник АВЕ, биссектриса ВЕ является его основанием, поэтому сторона параллелограмма АВ равна отрезку ВЕ, длина которого по условию 73 мм. В сумме ВЕ и ЕС равны ВС, что составляет 127 мм. Отсюда периметр ABCD соответствует удвоенной сумме его сторон: Р = 2 (73+127) = 400 мм. Чтобы найти большую сторону параллелограмма ABCD при известном периметре 128 мм, можно использовать аналогичное доказательство равнобедренности треугольника.
По условию соотношение отрезков, образуемых точкой пересечения биссектрисы DЕ с противоположной стороной ВС, равно 4:3, если считать от острого угла при вершине А. Из равенства противоположных сторон ABCD и признака равнобедренного треугольника следует AD=BC=АЕ=4х, а ЕВ=3х, поэтому CD=АЕ+ЕВ=4х+3х=7х. Зная периметр ABCD, можно составить уравнение Р=2 (7х+4х)=128. Отсюда 22х=128, а х=32, поэтому большая сторона параллелограмма CD=32*7=224 мм.
Биссектриса параллелограмма делит один из углов при параллельных прямых и секущей (которые задействованы в строении параллелограмма), а так как эти углы в сумме дают 180°, то в пересечении с биссектрисой смежного угла получается перпендикуляр (90°). Это является основным свойством биссектрис параллелограммов и других фигур, имеющих в составе две параллельные стороны, например трапеции.
Найти биссектрису в параллелограмме через сторону и угол можно из полученного при ее построении треугольника. Для этого необходимо провести вторую биссектрису, которая по совместительству будет высотой в этом треугольнике. Учитывая, что треугольник равнобедренный, исходя из равенства углов при основании, его основание-биссектриса будет удвоенным катетом получившегося прямоугольного треугольника, в котором гипотенуза – это сторона параллелограмма, а угол – половина угла параллелограмма.
В прошлый раз мы рассмотрели свойства параллелограмма, в котором точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит его противоположной стороне. Перейдем к примерам использования этих свойств.
Задача 1.
Биссектрисы углов параллелограмма пересекаются в точке, принадлежащей противоположной стороне. Найти периметр параллелограмма, если его большая сторона равна 40 см.
Дано: ABCD — параллелограмм,
AF — биссектриса ∠BAD,
DF — биссектриса ∠ADC, F∈BC, BC=20 см.
Найти:
Решение:
Если биссектрисы двух углов параллелограмма, прилежащих к одной стороне, пересекаются в точке, принадлежащей противоположной стороне, то одна сторона параллелограмма в два раза больше другой. Значит,
Периметр параллелограмма ABCD равен
Ответ: 120 см.
Задача 2.
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, F, принадлежащей стороне BC. ∠D=120º, DF=8. Найти периметр ABCD и AF.
Дано: ABCD — параллелограмм,
AF — биссектриса ∠BAD,
DF — биссектриса ∠ADC, F∈BC,
∠D=120º, DF=8.
Найти:
Решение:
Рассмотрим треугольник AFD.
Так как биссектрисы углов параллелограмма, прилежащих к одной стороне, взаимно перпендикулярны, то ∠AFD=90º.
Так как FD- биссектриса угла ADC, то
Так как биссектриса параллелограмма отсекает от него равнобедренный треугольник, треугольник CDF — равнобедренный с основанием DF. А так как ∠CDF=60º, то треугольник CDF — равносторонний, и CD=DF=8.
Так как биссектрисы углов A и D параллелограмма пересекаются в точке, принадлежащей противоположной стороне, то одна сторона параллелограмма в два раза больше другой: BC=2AB.
Ответ: 48; 8√3.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=5, CK= 14.
AK – биссектриса ∠A;
𝐵𝐾=5;
𝐶𝐾=14.
Найти: Р_𝐴𝐵𝐶𝐷 = ?
Решение:
- Что такое периметр? Периметр – сумма длин всех сторон:
Р_ABCD=AB+BC+CD+DA;
Так как у параллелограмма противоположные стороны равны (свойство параллелограмма), то преобразуем формулу периметра:
Р_ABCD = 2∙(AB+BC);
Поэтому нам нужно выяснить чему равны стороны AB и BC; - Так как AK – биссектриса угла параллелограмма, то AB=BK=5 (биссектриса параллелограмма отсекает равнобедренный треугольник);
- BC=BK+KC=5+14=21;
- Р_ABCD=2∙(5+14)=2∙19=38.
Ответ: 38
Допустим, ты не знаешь, что биссектриса отсекает от параллелограмма равнобедренный треугольник.
1) Тогда нужно начать с того, что так как ABCD – параллелограмм ⇒ AD||BC (по определению);
2) ∠KAD=∠BKA как накрест лежащие углы при параллельных прямых BC и AD и секущей AK ⇒ ∠KAD=∠BKA=∠BAK;
3) Так как ∠KAD=∠BKA, то ∆BAK – равнобедренный ⇒ AB=BK=5;
4) BC=BK+KC=5+14=21;
5) Р_ABCD=2∙(5+14)=2∙19=38.
Ответ: 38
В 23 задании, если вам встретится задание с параллелограммом большинство задач можно решить зная свойство биссектрис в параллелограмме: биссектриса параллелограмма отсекает от него равнобедренный треугольник.
Но и без знания этого свойства все можно доказать, просто чуть дольше.
#параллелограмм #ОГЭ #задание23 #23задание #часть2 #втораячастьОгэ #геометрия