Приветствую вас на очередном выпуске. И сегодня речь пойдет о том, какие бывают IP-адреса, и как ими пользоваться. Что такое маска подсети, как она считается, и для чего она нужна. Как делить сети на подсети и суммировать их. Заинтересовавшихся приглашаю к прочтению.
Начнем, или уже продолжим, с самого популярного, заезженного и больного. Это IP-адреса. На протяжении 4-х статей это понятие встречалось по несколько раз, и скорее всего вы уже либо сами поняли для чего они, либо нагуглили и почитали о них. Но я обязан вам это рассказать, так как без ясного понимания двигаться дальше будет тяжело.
Итак IP-адрес — это адрес, используемый узлом на сетевом уровне. Он имеет иерархическую структуру. Что это значит? Это значит, что каждая цифра в его написании несет определенный смысл. Объясню на очень хорошем примере. Примером будет номер обычного телефона — +74951234567. Первой цифрой идет +7. Это говорит о том, что номер принадлежит зоне РФ. Далее следует 495. Это код Москвы. И последние 7 цифр я взял случайными. Эти цифры закреплены за районной зоной. Как видите здесь наблюдается четкая иерархия. То есть по номеру можно понять какой стране, зоне он принадлежит. IP адреса придерживаются аналогично строгой иерархии. Контролирует их организация IANA(англ. Internet Assigned Numbers Authority). Если на русском, то это «Администрация адресного пространства Интернет». Заметьте, что слово «Интернет» с большой буквы. Мало кто придает этому значение, поэтому объясню разницу. В англоязычной литературе термин «internet» используется для описания нескольких подключённых друг к другу сетей. А термин «Internet» для описания глобальной сети. Так что примите это к сведению.
Несмотря на то, что тема статьи больше теоретическая, нежели практическая, я настоятельно рекомендую отнестись к ней со всей серьезностью, так как от нее зависит понимание дальнейших тем, а особенно маршрутизации. Не для кого, я думаю, не секрет, что мы привыкли воспринимать числовую информацию в десятичном формате (в числах от 0-9). Однако все современные компьютеры воспринимают информацию в двоичном (0 и 1). Не важно при помощи тока или света передается информация. Вся она будет воспринята устройством как есть сигнал (1) или нет (0). Всего 2 значения. Поэтому был придуман алгоритм перевода из двоичной системы в десятичную, и обратно. Начну с простого и расскажу, как выглядят IP адреса в десятичном формате. Вся эта статья посвящена IP адресам версии 4. О версии 6 будет отдельная статья. В предыдущих статьях, лабах, да и вообще в жизни, вы видели что-то вроде этого «193.233.44.12». Это и есть IP адрес в десятичной записи. Состоит он из 4-х чисел, называемых октетами и разделенных между собой точками. Каждое такое число (октет) может принимать значение от 0 до 255. То есть одно из 256 значений. Длина каждого октета равна 8 битам, а суммарная длина IPv4 = 32 битам. Теперь интересный вопрос. Каким образом этот адрес воспримет компьютер, и как будет с ним работать?
Можно конечно набить это в калькулятор, коих навалом в Интернете, и он переведет его в двоичный формат, но я считаю, что переводить вручную должен уметь каждый. Особенно это касается тех, кто планирует сдавать экзамен. У вас не будет под рукой ничего, кроме бумаги и маркера, и полагаться придется только на свои навыки. Поэтому показываю, как это делать вручную. Строится таблица.
Вместо «x» записывается либо 1, либо 0. Таблица разделена на 8 колонок, каждая из которых несет в себе 1 бит (8 колонок = 8 бит = 1 октет). Расположены они по старшинству слева направо. То есть первый (левый) бит — самый старший и имеет номер 128, а последний (правый) — самый младший и имеет номер 1. Теперь объясню, откуда эти числа взялись. Так как система двоичная, и длина октета равна 8-ми битам, то каждое число получается возведением числа 2 в степень от 0 до 7. И каждая из полученных цифр записывается в таблицу от большего к меньшему. То есть слева направо. От 2 в 7-ой степени до 2 в 0-ой степени. Приведу таблицу степеней 2-ки.
Думаю теперь понятно, каким образом строится таблица. Давайте теперь разберем адрес «193.233.44.12» и посмотрим, как он выглядит в двоичном формате. Разберем каждый октет отдельно. Возьмем число 193 и посмотрим, из каких табличных комбинаций оно получается. 128 + 64 + 1 = 193.
Те числа, которые участвовали в формировании комбинации получают 1, а все остальные получают 0.
Берем первый октет 233. 128 + 64 + 32 + 8 + 1.
Для 44 — это 32 + 8 + 4.
И напоследок 12. 8 + 4.
Получается длинная битовая последовательность 11000001.11101001.00101100.00001100. Именно с данным видом работают сетевые устройства. Битовая последовательность обратима. Вы можете так же вставить каждый октет (по 8 символов) в таблицу и получить десятичную запись. Я представлю совершенно случайную последовательность и приведу ее к десятичному виду. Пусть это будет 11010101.10110100.11000001.00000011. Строю таблицу и заношу в нее первый блок.
Получаю 128 + 64 + 16 + 4 + 1 = 213.
Вычисляю второй блок.
Считаю 128 + 32 + 16 + 4 = 180.
Третий блок.
128 + 64 + 1 = 193.
И напоследок четвертый.
2 + 1 = 3
Собираем результаты вычислений и получаем адрес 213.180.193.3. Ничего тяжелого, чистая арифметика. Если тяжело и прям невыносимо трудно, то попрактикуйтесь. Сначала может показаться страшным, так как многие закончили учебу лет 10 назад и многое позабыли. Но уверяю, что как только набьете руку, считать будет гораздо легче. Ну а для закрепления дам вам несколько примеров для самостоятельного расчета (под спойлером будут ответы, но открывайте их только когда прорешаете сами).
Задача №1
1) 10.124.56.220
2) 113.72.101.11
3) 173.143.32.194
4) 200.69.139.217
5) 88.212.236.76
6) 01011101.10111011.01001000.00110000
7) 01001000.10100011.00000100.10100001
8) 00001111.11011001.11101000.11110101
9) 01000101.00010100.00111011.01010000
10) 00101011.11110011.10000010.00111101
Ответы
1) 00001010.01111100.00111000.11011100
2) 01110001.01001000.01100101.00001011
3) 10101101.10001111.00100000.11000010
4) 11001000.01000101.10001011.11011001
5) 01011000.11010100.11101100.01001100
6) 93.187.72.48
7) 72.163.4.161
8) 15.217.232.245
9) 69.20.59.80
10) 43.243.130.61
Теперь IP-адреса не должны быть чем-то страшным, и можно углубиться в их изучение.
Выше мы говорили о структуре телефонных номеров и их иерархии. И вот на заре рождения Интернета в том представлении, в каком мы его привыкли видеть, возник вопрос. Вопрос заключался в том, что IP-адреса нужно как-то сгруппировать и контролировать выдачу. Решением было разделить все пространство IP-адресов на классы. Это решение получило название классовая адресация (от англ. Classful). Она уже давно устарела, но практически в любой книге на нее отводятся целые главы и разделы. Cisco тоже не забывает про это и в своих учебных материалах рассказывает про нее. Поэтому я пробегусь по этой теме и покажу, чем она блистала с 1981 по 1995 год.
Пространство было поделено на 5 классов. Каждому классу был назначен блок адресов.
Начнем с класса A. Если внимательно посмотреть на таблицу, то можно заметить, что этому блоку дан самый большой блок адресов, а если быть точным, то половина всего адресного пространства. Предназначался данный класс для крупных сетей. Структура этого класса выглядит следующим образом.
В чем суть. Первый октет, то есть 8 бит, остаются за адресом сети, а 3 последних октета (то есть оставшиеся 24 бита) назначаются хостам. Вот для того, чтобы показать, какой кусок относится к сети, а какой к хостам, используется маска. По структуре записи она аналогична записи IP-адреса. Отличие маски от IP-адресов в том, что 0 и 1 не могут чередоваться. Сначала идут 1, а потом 0. Таким образом, там где есть единица, значит это участок сети. Чуть ниже, после разбора классов, я покажу, как с ней работать. Сейчас главное знать, что маска класса A — 255.0.0.0. В таблице еще упомянут какой-то первый бит и для класса A он равен 0. Этот бит как раз нужен для того, чтобы сетевое устройство понимало, к какому классу оно принадлежит. Он же еще задает начальный и конечный диапазон адресов. Если в двоичном виде записать на всех октетах единицы, кроме первого бита в первом октете (там всегда 0), то получится 127.255.255.255, что является границей класса A. Например, возьмем адрес 44.58.63.132. Мы знаем, что у класса A первый октет отдается под адрес сети. То есть «44» — это адрес сети, а «58.63.132» — это адрес хоста.
Поговорим про класс B
Этому классу был дан блок поменьше. И адреса из этого блока предназначались для сетей средних масштабов. 2 октета отданы под адрес сети, и 2 — под адрес хостов. Маска у B класса — 255.255.0.0. Первые биты строго 10. А остальные меняются. Перейдем к примеру: 172.16.105.32. Два первых октета под адрес сети — «172.16». А 3-ий и 4-ый под адрес хоста — «105.32».
Класс C
Этот класс обделили адресами и дали ему самый маленький блок. Он был предназначен для мелких сетей. Зато этот класс отдавал целых 3 октета под адрес сети и только 1 октет — под хосты. Маска у него — 255.255.255.0. Первые биты 110. На примере это выглядит так — 192.168.1.5. Адрес сети «192.168.1», а адрес хоста «5».
Классы D и E. Я неcпроста объединил их в один. Адреса из этих блоков зарезервированы и не могут назначаться сетям и хостам. Класс D предназначен для многоадресной рассылки. Аналогию можно привести с телевидением. Телеканал вещает группе лиц свой эфир. И те, кто подключены, могут смотреть телепередачи. То есть в распоряжение администраторов могут попасть только 3 первых класса.
Напомню, что первые биты у класса D — это 1110. Пример адреса — 224.0.0.5.
А первые биты у класса E — это 1111. Поэтому, если вдруг увидите адрес вида 240.0.0.1, смело говорите, что это адрес E класса.
Про классы обмолвились. Теперь озвучу вопрос, который мне недавно задали. Так зачем тогда маски? У нас итак хосты понимают в каком они классе. Но суть вот в чем. Например, у вас есть маленький офис, и вам нужен блок IP-адресов. Никто не будет вам выдавать все адреса класса C. А дадут только его кусок. Например 192.168.1.0 с маской 255.255.255.0. Так вот эта маска и будет определять вашу границу. Мы уже говорили, что октет варьируется в значении от 0 до 255. Вот этот 4 октет полностью в вашем распоряжении. За исключением первого адреса и последнего, то есть 0 и 255 в данном случае. Первый адрес — это адрес сети (в данном случае 192.168.1.0), а последний адрес — широковещательный адрес (192.168.1.255). Напомню, что широковещательный адрес используется в том случае, когда надо передать информацию всем узлам в сети. Поэтому есть правило. Если вам надо узнать номер сети, то все биты относящиеся к хосту обращаете в 0, а если широковещательный, то все биты — в 1. Поэтому, если из 256 адресов забирается 2 адреса, то на назначение хостам остается 254 адреса (256 — 2). На собеседованиях и экзаменах часто любят спрашивать: «Количество IP-адресов в сети?» и «Сколько доступных IP-адресов в сети для назначения хостам?». Два разных вопроса, которые могут поставить в тупик. Ответом на первый будет — все адреса, включая адрес сети и широковещательный адрес, а на второй вопрос — все адреса, кроме адреса сети и широковещательного адреса.
Теперь углубимся в изучении маски.
Я записал адрес класса C 192.168.1.1 с маской 255.255.255.0 в десятичном и двоичном формате. Обратите внимание на то, как выглядит IP-адрес и маска в двоичном формате. Если в IP-адресе 0 и 1 чередуются, то в маске сначала идут 1, а потом 0. Эти биты фиксируют адрес сети и задают размер. По таблице выше можно сделать вывод, что в двоичном виде маска представлена последовательностью 24 единиц подряд. Это говорит о том, что целых 3 октета выделено под сеть, а 4 октет свободен под адресацию для хостов. Здесь ничего необычного. Это стандартная маска класса C.
Но вот в чем загвоздка. Например, в вашем офисе 100 компьютеров, и расширяться вы не планируете. Зачем плодить сеть из 250+ адресов, которые вам не нужны?! На помощь приходит разделение на подсети. Это очень удобная вещь. Объясню принцип на примере того же класса C. Как бы вы не хотели, но трогать 3 октета нельзя. Они фиксированы. Но вот 4 октет свободен под хосты, поэтому его можно трогать. Заимствуя биты из хостового куска, вы дробите сеть на n-ое количество подсетей и, соответственно, уменьшаете в ней количество адресов для хостов.
Попробуем это воплотить в реальность. Меняю маску. Заимствую первый бит из хостовой части(то есть 1-ый бит 4-ого октета выставляю в единицу). Получается следующая маска.
Данная маска делит сеть на 2 части. Если до дробления у сети было 256 адресов(от 0 до 255), то после дробления у каждого куска будет по 128 адресов(от 0 до 127 и от 128 до 255).
Теперь посмотрю, что изменится в целом с адресами.
Красным цветом я показал те биты, которые зафиксированы и не могут изменяться. То есть маска ей задает границу. Соответственно биты помеченные черным цветом определены для адресации хостов. Теперь вычислю эту границу. Чтобы определить начало, надо все свободные биты(помеченные черным цветом) обратить в ноль, а для определения конца обратить в единицы. Приступаю.
То есть в четвертом октете меняются все биты, кроме первого. Он жестко фиксирован в рамках этой сети.
Теперь посмотрим на вторую половину сети и вычислим ее адреса. Деление у нас производилось заимствованием первого бита в 4-ом октете, значит он является делителем. Первая половина сети получалась, когда этот бит принимал значение 0, а значит вторая сеть образуется, когда этот бит примет значение 1. Обращаю этот бит в 1 и посмотрю на границы.
Приведу в десятичный вид.
Соответственно .128 и .255 назначать хостам нельзя. Значит в доступности 128-2=126 адресов.
Вот таким образом можно при помощи маски управлять размером сети. Каждый заимствованный бит делит сеть на 2 части. Если откусить 1 бит от хостовой части, то поделим на 2 части (по 128 адресов), 2 бита = 4 части (по 64 адреса), 3 бита = 8 (по 32 адреса) и так далее.
Если вы рассчитали количество бит, отдаваемые под хосты, то количество доступных IP-адресов можно вычислить по формуле
В книге У. Одома по подготовке к CCNA R&S приведена хорошая формула для расчета битов, отдаваемых на подсеть и хосты:
N + S + H = 32, где N — кол-во битов сети (класс A — 8 бит, B — 16 бит, C — 24 бита), S — кол-во заимствованных битов на подсеть (это то, что мы делали выше, когда заимствовали 1 бит из хостовой части), H — кол-во бит отводимых хостам.
Внесу ясность и объясню, как и где применять эти формулы.
Возьмем пример:
Нам выдали сеть 172.16.0.0 и попросили создать 120 подсетей со 180 хостами и записать маску. Приступим.
В качестве шпаргалки, и для быстроты вычисления, я ниже подготовил таблицу степеней двойки.
Двигаемся дальше. Первое главное условие, при использовании классовой адресации — это то, что должна использоваться одна маска для всех подсетей. То есть, если у вас для одной подсети маска 255.255.255.0, то для другой подсети она не может быть 255.255.255.128.
Теперь смотрим на выданную сеть. Путем логических размышлений понимаем, что это адрес класса B. А значит его N (кол-во битов сети) = 16. Ок. Значит на хосты выделено тоже 16 бит. Вспоминаем условия задачи. Нужно создать 120 подсетей. «Откусывать» биты от сетевой части запрещено, значит кусаем от хостовой части.
Теперь нужно взять такое кол-во бит, чтобы хватило для 120 подсетей, однако оставляло достаточное кол-во под биты для хоста. Смотрим на таблицу выше. Если взять 7 бит, то получим 128. 128>120, следовательно попадаем под условие. Если возьмем 6 бит, то получим 64. 64<128, поэтому не попадаем под условие и отбрасываем этот вариант.
Ок. Выяснили, что S надо выделить не меньше 7 бит. Теперь посмотрим, что осталось под хосты.
Если N + S + H = 32 => H = 32 — (N + S) => H = 32 — (16 + 7) = 9. Смотрим на таблицу выше (или возводим 2 в 9 степень в уме) и получаем число 512. Отнимаем 2 (адрес сети и широковещательный адрес) и получаем 510 адресов. Нам нужно 180, а значит под условие мы попадаем причем с большим запасом. В таких случаях вам предоставляется право выбора. Сделать больше подсетей или хостов на подсеть. Объясняю, что это значит. У нас есть 9 бит на хосты. Если мы возьмем 8 бит, то получим число 256. 256 — 2 = 254 адреса. Этот вариант нам тоже подходит. Возьмем 7 бит. Получаем 128. Даже не отнимая 2 адреса, становится понятно, что это меньше 180 => данный вариант отбрасывается сразу. Итого получаем, что минимальное количество для подсети — 7 бит, а для хостов — 8 бит. Поэтому свободный бит можно отдать либо на подсеть, либо на хосты. Маска получается сложением N и S. В нашем случае получаем, если под подсеть отдаем 7 бит, то получаем 23. В десятичном виде маска будет выглядеть 255.255.254.0. А если отдадим под подсеть 8 бит, то получим 24 (или в десятичном виде 255.255.255.0). Иногда бывает, что под задачу существует всего одна маска. Ну и, конечно, могут быть случаи, когда маска не попадает не под какие условия. В этих случаях нужно брать сеть другого класса или доказывать заказчику, что это невозможно.
Думаю теперь понятно, как работала классовая адресация, и как ее рассчитывали. Возможно с первого раза голова не переварит этого, поэтому перечитывайте еще раз и повнимательнее. Как только начнет что-то проясняться, потренируйтесь на задачках, которые я оставлю.
Задача №2
1) Записать маску для проекта: сеть 172.16.0.0. 250 подсетей и 220 хостов.
2) Записать маску для проекта: сеть 10.0.0.0. 2000 подсетей и 1500 хостов.
3) Записать маску для проекта: сеть 192.168.0.0. 4 подсети и 60 хостов.
Ответы на задачи
1) 24 бита или 255.255.255.0
2) 19 бит (255.255.224.0), 20 бит (255.255.240.0), 21 бит (255.255.248.0)
3) 26 бит или 255.255.255.192
На этом разговор про классовые сети начну закруглять и подведу итоги. Классовая адресация — это зарождение сегодняшнего интернета, и именно с нее все началось. Поэтому плюсов у нее много, и за это создателям спасибо. Но, как вы могли заметить, у нее было жесткая привязка к одной маске. За счет этого IP-адреса использовались не экономно и расточительно. А в связи с бурным ростом Интернета адресов стало не хватать, и срочно нужно было вносить изменения.
Поняли ведущие умы, что использовать классовые сети не удобно и нужно от них отказываться. Это привело к созданию бесклассовой адресации и маскам переменной длины, о чем мы ниже поговорим. Но перед этим пару слов о видах IP-адресов. Несмотря на то, что переход от классовой адресации к бесклассовой предполагал экономию IP-адресов, на деле эта проблема все равно решалась не полностью. Все упиралось в саму технологию IPv4. Объясню почему. Выше я говорил, что длина IP адреса равна 32 бита. Каждый бит может принимать значение 0 или 1, то есть два значения. Соответственно, чтобы вычислить все комбинации, надо возвести 2 в 32-ую степень. Получаем 4294967296 адресов. Если вычесть отсюда зарезервированные для специальных нужд и прочего, то останется примерно 4.2 млрд. адресов, когда на Земле проживает около 7.3 млрд. человек. Поэтому ведущие умы быстро просекли эту фишку и начали искать решение. Они решили выделить некое адресное пространство, которое будет использоваться только в пределах локальной сети и не будет использоваться в Интернете. Это разделило адреса на 2 лагеря: белые или публичные (англ. public) и серые или частные (англ. private).
Привожу диапазон адресов, которые выделены под локальные сети:
1) 10.0.0.0 — 10.255.255.255 с маской 255.0.0.0 (или кратко 10/8).
2) 172.16.0.0 — 172.31.255.255 с маской 255.240.0.0 (или кратко 172.16/12).
3) 192.168.0.0 — 192.168.255.255 (или кратко 192.168/16).
Если честно, я мало где видел применение адресации 172.16.X.X. Обычно в корпоративной среде всегда используется 10.X.X.X, а в домах/квартирах и мелких офисах 192.168.X.X.
Теперь прошу обратить внимание на очень важную вещь, которую многие путают. Не путайте классовую адресацию и диапазон частных адресов. Очень много людей наступают на эти грабли и свято верят, что диапазон частных адресов 10.0.0.0 — 10.255.255.255 — это диапазон A класса.
Разобрались, что такое частные адреса или private адреса. Но это еще не все. Есть еще список зарезервированных адресов, которые не могут светиться в Интернете. По ним написана целая документация на IETF. Привожу ссылку, где можете прочитать оригинал. Я кратко опишу часто встречающиеся.
1) 0.0.0.0/8 — диапазон адресов, используемый хостами для самоидентификации. Обычно это можно увидеть, когда хост пытается получить IP-адрес от DHCP сервера. Так как изначально у него нету IP-адреса, то в поле источника он вставляет адрес из данного диапазона.
2) 127.0.0.0/8 — loopback или localhost адреса. Это IP-адреса, используемые компьютером, чтобы обратиться к самому себе. Очень полезно для проверки работы TCP/IP. Дело в том, что независимо от наличия соединения с Интернетом или локальной сетью, адреса из этого пула должны всегда пинговаться. Если этого не происходит, значит система накрылась или накрывается медным тазом.
3) 169.254.0.0/16 — link-local address или локальные адреса. Автоматически используются хостами при отсутствии DHCP-сервера или его недоступности. Это позволяет быстро организовать локальную сеть и проверить работу узлов. Однако данный пул адресов не маршрутизируется. Следовательно, выйти в Интернет с них не получится.
4) 224.0.0.0/4 — блок адресов, зарезервированный под многоадресную рассылку или multicast. Для тех, кто хочет побольше узнать про multicast, оставляю ссылку.
Бесклассовая адресация (англ. Classless Inter-Domain Routing или CIDR). Описана была в стандарте RFC1519 в 1993 году. Она отказалась от классовых рамок и фиксированной маски. Адреса делятся только на публичные и зарезервированные, о которых написано выше. Если в классовой адресации маска нарезалась единой для всех подсетей, то в бесклассовой — у каждой подсети может быть своя маска. На теории все хорошо и красиво, но нет ничего лучше, чем практика. Поэтому перехожу к ней и объясню, как можно делить на подсети с разным количеством хостов.
В качестве шпаргалки приведу список всех возможных масок.
Представим ситуацию. Вам выдали сеть 192.168.1.0/24 и поставили следующие условия:
1) Подсеть на 10 адресов для гостей.
2) Подсеть на 42 адреса для сотрудников.
3) Подсеть на 2 адреса для соединения 2 маршрутизаторов.
4) Подсеть на 26 адресов для филиала.
Ок. Данная маска показывает, что в нашем распоряжении находятся 256 адресов. По условию эту сеть надо каким-то образом разделить на 4 подсети. Давайте попробуем. 256 очень хорошо делится на 4, давая в ответе 64. Значит один большой блок в 256 адресов можно поделить на 4 равных блока по 64 адреса в каждом. И все было бы прекрасно, но это порождает большое число пустых адресов. Для сотрудников, которым нужно 42 адреса, ладно, может в дальнейшем компания еще наймет. Но вот подсеть для маршрутизаторов, которая требует всего 2 адреса, оставит 60 пустых адресов. Да, вы можете сказать, что это private адреса, и кому дело до них. А теперь представьте, что это публичные адреса, которые маршрутизируются в Интернете. Их и так мало, а тут мы еще будем их отбрасывать. Это не дело, тем более, когда мы можем гибко управлять адресным пространством. Поэтому возвращаемся к примеру и нарежем подсети так, как нам нужно.
Итак, какие подсети должны быть нарезаны, чтобы вместились все адреса, заданные по условию?!
1) Для 10 хостов, наименьшей подсетью будет блок из 16 адресов.
2) Для 42 хостов, наименьшей подсетью будет блок из 64 адресов.
3) Для 2 хостов, наименьшей подсетью будет блок из 4 адресов.
4) Для 26 хостов, наименьшей подсетью будет блок из 32 адресов.
Я понимаю, что не все могут с первого раза в это вникнуть, и в этом нет ничего страшного. Все люди разные и по-разному воспринимают информацию. Для полноты эффекта покажу деление на картинке.
Вот у нас блок, состоящий из 256 адресов.
После деления на 4 части получается следующая картинка.
Выше мы выяснили, что при таком раскладе адреса используются не рационально. Теперь обратите внимание, как стало выглядеть адресное пространство после нарезки подсетей разной длины.
Как видите, в свободном доступе осталось куча адресов, которые мы в дальнейшем сможем использовать. Можно посчитать точную цифру. 256 — (64 + 32 + 16 + 4) = 140 адресов.
Вот столько адресов мы сэкономили. Двигаемся дальше и ответим на следующие вопросы:
— Какими будут сетевые и широковещательные адреса?
— Какие адреса можно будет назначить хостам?
— Как буду выглядеть маски?
Механизм деления на подсети с разной маской получил название VLSM (от англ. Variable Length Subnet Mask) или маска подсети переменной длины. Дам важный совет! Начинайте адресацию с самой большой подсети. Иначе вы можете попасть на то, что адреса начнут перекрываться. Поэтому сначала планируйте сеть на бумаге. Нарисуйте ее, изобразите в виде фигур, просчитайте вручную или на калькуляторе и только потом переходите настройке в боевых условиях.
Итак, самая большая подсеть состоит из 64 адресов. С нее и начнем. Первый пул адресов будет следующий:
Адрес подсети — 192.168.1.0.
Широковещательный адрес — 192.168.1.63.
Пул адресов для назначения хостам от 192.168.1.1 до 192.168.1.62.
Теперь выбор маски. Тут все просто. Отнимаем от целой сети нужный кусок и полученное число записываем в октет маски. То есть 256 — 64 = 192 => маска 255.255.255.192 или /26.
Дальше идет подсеть поменьше. Состоит она из 32 адресов. Если первая заканчивалась на .63, то эта будет начинаться с .64:
Адрес подсети — 192.168.1.64.
Широковещательный адрес — 192.168.1.95.
Пул адресов для назначения хостам будет от 192.168.1.65 до 192.168.1.94.
Маска: 256 — 32 = 224 => 255.255.255.224 или /27.
3-я подсеть, которая предназначена для филиала, начнет старт с .96:
Адрес подсети — 192.168.1.96.
Широковещательный адрес — 192.168.1.111.
Пул адресов для назначения хостам будет от 192.168.1.97 до 192.168.1.110.
Маска: 256 — 16 = 240 => 255.255.255.240 или /28.
Ну и для последней подсети, которая уйдет под интерфейсы, соединяющие роутеры, будет начинаться с .112:
Адрес подсети — 192.168.1.112.
Широковещательный адрес — 192.168.1.115.
Разрешенными адресами будут 192.168.1.113 и 192.168.1.114.
Маска: 256 — 4 = 252 => 255.255.255.252 или /30.
Замечу, что адрес 192.168.1.115 является последним используемым адресом. Начиная с 192.168.1.116 и до .255 свободны.
Вот таким образом, при помощи VLSM или масок переменной длины, мы экономно создали 4 подсети с нужным количеством адресов в каждой. Думаю это стоит закрепить задачкой для самостоятельного решения.
Задача №3
Разделите сеть 192.168.1.0/24 на 3 разные подсети. Найдите и запишите в каждой подсети ее адреса, широковещательный адрес, пул разрешенных к выдаче адресов и маску. Указываю требуемые размеры подсетей:
1) Подсеть на 120 адресов.
2) Подсеть на 12 адресов.
3) Подсеть на 5 адресов.
Ответ
1) Адрес подсети — 192.168.1.0.
Широковещательный адрес — 192.168.1.127.
Пул адресов для назначения хостам будет от 192.168.1.1 до 192.168.1.126.
Маска: 256 — 128 = 128 => 255.255.255.128 или /25.
2) Адрес подсети — 192.168.1.128.
Широковещательный адрес — 192.168.1.143.
Пул адресов для назначения хостам будет от 192.168.1.129 до 192.168.1.142.
Маска: 256 — 16 = 240 => 255.255.255.240 или /28.
3) Адрес подсети — 192.168.1.144.
Широковещательный адрес — 192.168.1.151.
Пул адресов для назначения хостам будет от 192.168.1.145 до 192.168.1.150.
Маска: 256 — 8 = 248 => 255.255.255.248 или /29.
Теперь, когда вы знаете, как делить сети на подсети, самое время научиться собирать подсети в одну общую подсеть. Иначе это называется суммированием или summarization. Суммирование чаще всего используется в маршрутизации. Когда у вас в таблице маршрутизатора несколько соседних подсетей, маршрутизация которых проходит через один и тот же интерфейс или адрес. Скорее всего этот процесс лучше объяснять при разборе маршрутизации, но учитывая то, что тема маршрутизации и так большая, то я объясню процесс суммирования в этой статье. Тем более, что суммирование это сплошная математика, а в этой статье мы ею и занимаемся. Ну что же, приступлю.
Представим, что у меня компания состоящая из главного здания и корпусов. Я работаю в главном здании, а в корпусах коллеги. Хоть у меня и главное здание, но в нем всего 4 подсети:
— 192.168.0.0/24
— 192.168.1.0/24
— 192.168.2.0/24
— 192.168.3.0/24
Тут коллеги с соседнего здания очухались и поняли, что у них слетела конфигурация на маршрутизаторе, а бекапов нет. Наизусть они не помнят, какие в главном здании подсети, но помнят, что они находятся рядом друг с другом, и просят прислать одну суммированную. Теперь у меня возникает задача, как их суммировать. Для начала я переведу все подсети в двоичный вид.
Посмотрите внимательно на таблицу. Как видите, у 4 подсетей первые 22 бита одинаковые. Соответственно, если я возьму 192.168.0.0 с маской /22 или 255.255.252.0, то покрою свои 4 подсети. Но обратите внимание на 5 подсеть, которую я специально ввел. Это подсеть 192.168.4.0. 22-ой бит у нее отличается от предыдущих 4-х, а значит выше выбранное не покроет эту подсеть.
Ок. Теперь я отправлю коллегам суммированную подсеть, и, если они все правильно пропишут, то маршрутизация до моих подсетей будет работать без проблем.
Возьмем тот же пример и немного изменим условия. Нас попросили прислать суммарный маршрут для подсетей 192.168.0.0 и 192.168.1.0. Я не поленюсь и создам еще одну таблицу.
Обратите внимание, что у 2 первых подсетей одинаковые не 22 бита, а 23 бита. Это значит, что их можно просуммировать еще компактнее. В принципе работать будет и так, и так. Но как говорилось в одной рекламе: «Если нет разницы — зачем платить больше?». Поэтому старайтесь суммировать, не задевая при этом соседние подсети.
Таким образом, переводя подсети в двоичный формат и находя одинаковые биты, можно их суммировать.
Вообще суммирование полезно применять, когда надо объединить несколько подсетей, расположенных вблизи друг с другом. Это позволит сэкономить ресурсы маршрутизаторов. Однако это не всегда возможно. Просуммировать, например, подсеть 192.168.1.0 и 192.168.15.0, не захватив при этом соседние подсети, невозможно. Поэтому перед суммированием стоит подумать над ее целесообразностью. Поэтому повторюсь еще раз, что начинать какую-либо революцию надо на бумажке. Ну и для закрепления материала оставлю небольшую задачу.
Задача №4
Даны 4 подсети:
1) 10.3.128.0
2) 10.3.129.0
3) 10.3.130.0
4) 10.3.131.0
Просуммируйте подсети и найдите маску, которая сможет покрыть их, не задевая при этом соседние подсети.
Ответ
Исходя из этого, ответом будет 10.3.128.0/22 (255.255.252.0)
Пришло время закругляться. Статья получилась не очень длинной. Я бы даже сказал наоборот. Но все, что требует знать Cisco про IPv4, мы рассмотрели. Самое главное, что требуется от вас — это научиться работать с адресами и масками и уметь конвертировать их из десятичной в двоичную и обратно. Ну и, конечно, правильно делить на подсети и распределять адресное пространство. Спасибо, что дочитали. А если еще и задачки все сами прорешали, то цены вам нет) А если еще не прорешали, то приятного времяпровождения.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 сентября 2022 года; проверки требуют 6 правок.
Маска подсети — битовая маска для определения по IP-адресу адреса подсети и адреса узла (хоста, компьютера, устройства) этой подсети. В отличие от IP-адреса маска подсети не является частью IP-пакета.
Благодаря маске можно узнать, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети.
Например, узел с IP-адресом 12.34.56.78 и маской подсети 255.255.255.0, с длиной префикса 24 бита (/24), находится в сети 12.34.56.0.
В случае адресации IPv6 адрес 2001:0DB8:1:0:6C1F:A78A:3CB5:1ADD с длиной префикса 32 бита (/32) находится в сети 2001:0DB8::/32.
Другой вариант определения — это определение подсети IP-адресов. Например, с помощью маски подсети можно сказать, что один диапазон IP-адресов будет в одной подсети, а другой диапазон соответственно в другой подсети.
Чтобы получить адрес сети, зная IP-адрес и маску подсети, необходимо применить к ним операцию поразрядной конъюнкции (побитовое И). Например, в случае более сложной маски:
IP-адрес: 11000000 10101000 00000001 00000010 (192.168.1.2) Маска подсети: 11111111 11111111 11111110 00000000 (255.255.254.0) Адрес сети: 11000000 10101000 00000000 00000000 (192.168.0.0)
Легенда:
- часть маски, определяющая адрес сети и состоящая из единиц;
- адрес сети, который определяется маской подсети;
- диапазон адресов устройств в этой сети.
Разбиение одной большой сети на несколько маленьких подсетей позволяет упростить маршрутизацию. Например, пусть таблица маршрутизации некоторого маршрутизатора содержит следующую запись:
Сеть назначения | Маска сети | Адрес шлюза |
---|---|---|
192.168.1.0 | 255.255.255.0 | 10.20.30.1 |
Пусть теперь маршрутизатор получает пакет данных с адресом назначения 192.168.1.2. Обрабатывая построчно таблицу маршрутизации, он обнаруживает, что при наложении (применении операции «побитовое И») на адрес 192.168.1.2 маски 255.255.255.0 получается адрес сети 192.168.1.0. В таблице маршрутизации этой сети соответствует шлюз 10.20.30.1, которому и отправляется пакет.
Битовые операции при расчёте адреса сети в IPv6 выглядят аналогично. Но в IPv6 можно просто рассчитать адрес сети по длине префикса, применив формулу: «длина префикса в битах» / 4 = «кол-во 0xF у адреса сети». Взяв полученное количество 0xF из адреса узла, получаем адрес сети.
Маски при бесклассовой маршрутизации (CIDR)[править | править код]
Маски подсети являются основой метода бесклассовой маршрутизации (англ. CIDR). При этом подходе маску подсети записывают вместе с IP-адресом в формате «IP-адрес/количество единичных бит в маске». Число после знака дроби ( длина префикса сети) означает количество единичных разрядов (бит) в маске подсети.
Рассмотрим пример записи диапазона IP-адресов в виде 10.96.0.0/11. В этом случае маска подсети будет иметь двоичный вид 1111_1111.1110_0000.0000_0000.0000_0000, или то же самое в десятичном виде: 255.224.0.0. 11 разрядов IP-адреса отводятся под адрес сети, а остальной 32-11=21 разряд полного адреса (1111_1111.1110_0000.0000_0000.0000_0000) — под локальный адрес в этой сети. Итого, 10.96.0.0/11 означает диапазон адресов от 10.96.0.0 до 10.127.255.255.
CIDR | Последний IP-адрес в подсети | Маска подсети | Количество адресов в подсети | Количество хостов в подсети | Класс подсети |
---|---|---|---|---|---|
a.b.c.d/32 | 0.0.0.0 | 255.255.255.255 | 1 | 1* | 1/256 C |
a.b.c.d/31 | 0.0.0.1 | 255.255.255.254 | 2 | 2* | 1/128 C |
a.b.c.d/30 | 0.0.0.3 | 255.255.255.252 | 4 | 2 | 1/64 C |
a.b.c.d/29 | 0.0.0.7 | 255.255.255.248 | 8 | 6 | 1/32 C |
a.b.c.d/28 | 0.0.0.15 | 255.255.255.240 | 16 | 14 | 1/16 C |
a.b.c.d/27 | 0.0.0.31 | 255.255.255.224 | 32 | 30 | 1/8 C |
a.b.c.d/26 | 0.0.0.63 | 255.255.255.192 | 64 | 62 | 1/4 C |
a.b.c.d/25 | 0.0.0.127 | 255.255.255.128 | 128 | 126 | 1/2 C |
a.b.c.0/24 | 0.0.0.255 | 255.255.255.000 | 256 | 254 | 1 C |
a.b.c.0/23 | 0.0.1.255 | 255.255.254.000 | 512 | 510 | 2 C |
a.b.c.0/22 | 0.0.3.255 | 255.255.252.000 | 1024 | 1022 | 4 C |
a.b.c.0/21 | 0.0.7.255 | 255.255.248.000 | 2048 | 2046 | 8 C |
a.b.c.0/20 | 0.0.15.255 | 255.255.240.000 | 4096 | 4094 | 16 C |
a.b.c.0/19 | 0.0.31.255 | 255.255.224.000 | 8192 | 8190 | 32 C |
a.b.c.0/18 | 0.0.63.255 | 255.255.192.000 | 16 384 | 16 382 | 64 C |
a.b.c.0/17 | 0.0.127.255 | 255.255.128.000 | 32 768 | 32 766 | 128 C |
a.b.0.0/16 | 0.0.255.255 | 255.255.000.000 | 65 536 | 65 534 | 256 C = 1 B |
a.b.0.0/15 | 0.1.255.255 | 255.254.000.000 | 131 072 | 131 070 | 2 B |
a.b.0.0/14 | 0.3.255.255 | 255.252.000.000 | 262 144 | 262 142 | 4 B |
a.b.0.0/13 | 0.7.255.255 | 255.248.000.000 | 524 288 | 524 286 | 8 B |
a.b.0.0/12 | 0.15.255.255 | 255.240.000.000 | 1 048 576 | 1 048 574 | 16 B |
a.b.0.0/11 | 0.31.255.255 | 255.224.000.000 | 2 097 152 | 2 097 150 | 32 B |
a.b.0.0/10 | 0.63.255.255 | 255.192.000.000 | 4 194 304 | 4 194 302 | 64 B |
a.b.0.0/9 | 0.127.255.255 | 255.128.000.000 | 8 388 608 | 8 388 606 | 128 B |
a.0.0.0/8 | 0.255.255.255 | 255.000.000.000 | 16 777 216 | 16 777 214 | 256 B = 1 A |
a.0.0.0/7 | 1.255.255.255 | 254.000.000.000 | 33 554 432 | 33 554 430 | 2 A |
a.0.0.0/6 | 3.255.255.255 | 252.000.000.000 | 67 108 864 | 67 108 862 | 4 A |
a.0.0.0/5 | 7.255.255.255 | 248.000.000.000 | 134 217 728 | 134 217 726 | 8 A |
a.0.0.0/4 | 15.255.255.255 | 240.000.000.000 | 268 435 456 | 268 435 454 | 16 A |
a.0.0.0/3 | 31.255.255.255 | 224.000.000.000 | 536 870 912 | 536 870 910 | 32 A |
a.0.0.0/2 | 63.255.255.255 | 192.000.000.000 | 1 073 741 824 | 1 073 741 822 | 64 A |
a.0.0.0/1 | 127.255.255.255 | 128.000.000.000 | 2 147 483 648 | 2 147 483 646 | 128 A |
0.0.0.0/0 | 255.255.255.255 | 000.000.000.000 | 4 294 967 296 | 4 294 967 294 | 256 A |
* Чтобы в сетях с такой размерностью маски возможно было разместить хосты, отступают от правил, принятых для работы в остальных сетях.
Возможных узлов подсети меньше количества адресов на два: начальный адрес сети резервируется для идентификации подсети, последний адрес используется в качестве широковещательного адреса (возможны исключения в виде адресации в IPv4 сетей /32 и /31).
Выбор маски для подсети[править | править код]
Если — количество компьютеров в подсети, округлённое до ближайшей большей степени двойки, и (для сетей класса C), то маска подсети вычисляется по следующей формуле: , где двойка вычитается, так как один IP-адрес (первый в задаваемом маской диапазоне) является IP-адресом подсети и ещё один IP-адрес (последний в задаваемом маской диапазоне) является широковещательным адресом (для отправки данных всем узлам подсети). Для будет другая формула.
Пример: в некой подсети класса C есть 30 компьютеров; маска для такой сети вычисляется следующим образом:
28 - 30 - 2 = 224 = E0h; маска: 255.255.255.224 = 0xFF.FF.FF.E0.
См. также[править | править код]
- Бесклассовая адресация
Примечания[править | править код]
Литература[править | править код]
- Олифер В. Г., Олифер Н. А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов = Computer Networks. Principles, Technologies and Protocols for Network Design. — 3-е изд. — СПб.: Издательский дом «Питер», 2006. — С. 572—576. — 958 с. — ISBN 5-469-00504-6.
Ссылки[править | править код]
- Ivan Pascal. «Вычисление сетевой маски для подсети». OpenNet.ru (3 июня 2002). Дата обращения: 21 февраля 2011.
- Сергей Верещагин. «Wildcard Mask (шаблонная маска)» (30 мая 2009). Дата обращения: 21 февраля 2011. Архивировано 25 августа 2011 года.
Количество подсетей = 2n, где n – это количество занятых бит от порции хоста.
Cisco формула расчёта хостов (узлов)
Количество хостов в подсети = 2n-2, где n – это количество свободных бит (нулей) в порции хоста, а «-2» – это вычет адреса сети (в порции хоста все нули) и широковещательного адреса (в порции хоста все единицы).
Объяснение формул расчета сетей
IP адрес
IP адрес состоит из 32 битов, которые поделены на 4 части по 8 бит соответственно (эти части называются октетами). В жизни используется запись IP адреса в десятичном виде.
Примеры IP адресов:
172.16.2.15 = 10101100.00010000.00000010.00001111
178.68.128.168 = 10110010.01000100.10000000.10101000
217.20.147.94 = 11011001.00010100.10010011.01011110
Из этих 32 битов часть относится к адресу хоста, которому принадлежит этот IP адрес, а другая часть относится к адресу сети, в которой находится этот хост. Первая часть (слева направо) IP адреса обозначает адрес сети, а вторая часть (оставшиеся биты) – адрес хоста. Чтобы узнать, сколько битов относится к адресу сети, надо воспользоваться маской сети.
Маска сети
Маска сети тоже состоит из 32 битов, но в отличие от IP адреса, в маске единицы и нолики не могут перемешиваться. В жизни используется запись сетевой маски в десятичном виде.
Примеры масок сети:
255.255.255.0 = 11111111.11111111.11111111.00000000
255.0.0.0 = 11111111.00000000.00000000.00000000
255.255.240.0 = 11111111.11111111.11110000.00000000
255.255.255.128 = 11111111.11111111.11111111.10000000
Префикс маски
Еще чаще, маска сети записывается в виде короткого префикса маски. Число в префиксе обозначает количество бит относящихся к адресу сети.
/16 = 11111111.11111111.00000000.00000000 = 255.255.0.0
/24 = 11111111.11111111.11111111.00000000 = 255.255.255.0
/26 = 11111111.11111111.11111111.11000000 = 255.255.255.192
IP адрес и маска сети
Чтобы узнать, какая часть IP адреса относится к порции сети, необходимо выполнить бинарную логическую операцию AND (И).
Бинарная логическая операция AND (И)
Смысл операции заключается в сравнении двух битов, причем только в одном случае бинарная операция даёт единицу на выходе – в случае сравнения двух единиц. В остальных случаях логическая операция AND даёт на выходе 0.
Результаты сравнения логической операцией AND двух битов:
1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0
Операция AND над IP адресом и маской
Представим, что у нас есть IP адрес 192.168.1.31 с маской сети в виде префикса /24, наша задача вычислить адрес сети, порцию сети, порцию хоста.
Сначала надо перевести IP адрес из десятичной системы счисления в двоичную систему. Затем перевести префикс в двоичный вид и нормальный вид маски сети (десятичный). Далее останется только сложить IP адрес с маской с помощью логической операции AND.
192.168.1.31/24
192.168.1.31 = 11000000.10101000.00000001.00011111
/24 = 11111111.11111111.11111111.00000000 = 255.255.255.0
11000000.10101000.00000001.00011111 (IP)
AND
11111111.11111111.11111111.00000000 (Mask)
=
11000000.10101000.00000001.00000000 (Адрес сети в двоичном виде)
192.168.1.0/24 (Адрес сети в десятичном виде с сетевым префиксом)
Вот мы и узнали адрес сети. Единички в маске указывают на длину порции адреса сети (11000000.10101000.00000001.), а нолики – на порцию адреса хоста (.00011111).
Примеры расчета сетей
Деление сети осуществляется присвоением битов из порции адреса хоста к порции адреса сети. Тем самым мы увеличиваем возможное количество подсетей, но уменьшаем количество хостов в подсетях. Чтобы узнать, сколько получается подсетей из присвоенных битов надо воспользоваться cisco формулой расчета сетей: 2n, где n является количеством присвоенных бит.
Пример расчета сети на 2 подсети.
У нас есть адрес сети 192.168.1.0/24, нам надо разделить имеющуюся сеть на 2 подсети. Попробуем забрать от порции хоста 1 бит и воспользоваться формулой: 21=2, это значит, что если мы заберём один бит от части хоста, то мы получим 2 подсети. Присвоение одного бита из порции хоста увеличит префикс на один бит: /25. Теперь надо выписать 2 одинаковых IP адреса сети в двоичном виде изменив только присвоенный бит (у первой подсети присвоенный бит будет равен 0, а у второй подсети = 1). Захваченный бит я выделю более жирным шрифтом красного цвета.
2 подсети (захваченный бит я выделю более жирным шрифтом красного цвета):
1) 11000000.10101000.00000001.00000000
2) 11000000.10101000.00000001.10000000
Теперь запишем рядом с двоичным видом десятичный, и добавим новый префикс. Красным пометил порцию подсети, а синим – порцию хоста.
1) 11000000.10101000.00000001.00000000 = 192.168.1.0/25
2) 11000000.10101000.00000001.10000000 = 192.168.1.128/25
Всё, сеть разделена на 2 подсети. Как мы видим выше, порция хоста теперь составляет 7 бит.
Чтобы высчитать, сколько адресов хостов можно получить используя 7 бит, необходимо воспользоваться cisco формулой расчёта хостов: 2n-2, где n = количество бит в порции хоста.
27 – 2 = 126 хостов. В начале статьи было сказано, что вычитаемая цифра 2 является двумя адресами, которые нельзя присвоить хосту: адрес сети и широковещательный адрес.
Адрес сети, это когда в порции хоста все нули, а широковещательный адрес, это когда в порции хоста все единицы. Выпишем эти адреса для каждой подсети в двоичном и десятичном виде:
11000000.10101000.00000001.00000000 = 192.168.1.0/25 (адрес сети первой подсети)
11000000.10101000.00000001.01111111 = 192.168.1.127/25 (широковещательный адрес первой подсети)
11000000.10101000.00000001.10000000 = 192.168.1.128/25 (адрес сети второй подсети)
11000000.10101000.00000001.11111111 = 192.168.1.255/25 (широковещательный адрес второй подсети)
Пример расчета сети на 4 подсети.
Этот пример делается абсолютно по тому же алгоритму, что и предыдущий, поэтому я запишу текст немного короче. Адрес я буду использовать тот же, чтобы вы видели отличия. Если нужны подробности, пишите на почту eaneav@gmail.com.
У нас есть адрес сети 192.168.1.0/24, надо разделить сеть на 4 подсети. Высчитываем по формуле, сколько нам надо занять бит от хоста: 22 = 4. Префикс изменяется на /26.
4 подсети (захваченный бит я выделю более жирным шрифтом красного цвета):
1) 11000000.10101000.00000001.00000000
2) 11000000.10101000.00000001.01000000
3) 11000000.10101000.00000001.10000000
4) 11000000.10101000.00000001.11000000
Красным пометил порцию подсети, а синим – порцию хоста:
1) 11000000.10101000.00000001.00000000 = 192.168.1.0/26
2) 11000000.10101000.00000001.01000000 = 192.168.1.64/26
3) 11000000.10101000.00000001.10000000 = 192.168.1.128/26
4) 11000000.10101000.00000001.11000000 = 192.168.1.192/26
Всё, сеть разделена на 4 подсети. Порция хоста теперь составляет 6 бит.
26 – 2 = 62 хостов.
11000000.10101000.00000001.00000000 = 192.168.1.0/26 (адрес сети первой подсети)
11000000.10101000.00000001.00111111 = 192.168.1.63/26 (широковещательный адрес первой подсети)
11000000.10101000.00000001.01000000 = 192.168.1.64/26 (адрес сети второй подсети)
11000000.10101000.00000001.01111111 = 192.168.1.127/26 (широковещательный адрес второй подсети)
11000000.10101000.00000001.10000000 = 192.168.1.128/26 (адрес сети третьей подсети)
11000000.10101000.00000001.10111111 = 192.168.1.191/26 (широковещательный адрес третьей подсети)
11000000.10101000.00000001.11000000 = 192.168.1.192/26 (адрес сети четвёртой подсети)
11000000.10101000.00000001.11111111 = 192.168.1.255/26 (широковещательный адрес четвёртой подсети)
Заключение
Таким способом можно разделить любую сеть на подсети, а cisco формулы расчета сетей и хостов помогут вам в этом деле.
На практике может возникнуть необходимость в разделении существующей IP-сети на подсети. На просторах глобальной сети можно найти достаточно большое число различных IP-калькуляторов, которые помогут с решениями подобных задач. Самостоятельное решение задач занимает достаточно много времени, но позволяет выполнить их более точно, исходя из задания или существующей потребности. Попробуем в данной статье рассмотреть алгоритм разделения заданной сети на подсети путем построения IP-дерева.
Определение параметров сети по известному IP-адресу узла и префиксу описано в статье
Пример. Пусть дана сеть 10.0.0.0. Необходимо разбить данную сеть на подсети. В каждой подсети планируется использовать следующее количество узлов:
1 сеть – 3 узла;
2 сеть – 25 узлов;
3 сеть – 62 узла;
4 сеть – 120 узлов;
5 сеть – 250 узлов;
6 сеть – 400 узлов;
7 сеть – 1017 узлов.
Необходимо понимать, что в данном случае такие понятия как сеть и подсеть идентичны. То есть IP-подсеть обладает всеми параметрами сети и ее можно также рассматривать как отдельную сеть.
Ход решения.
Переведем заданный номер сети в двоичный код и определимся с номерами бит. Предлагаю нумеровать биты в IP-адресе справа налево, чтобы работать с меньшими цифрами (Можно нумеровать и слева направо, ошибки не будет).
Для решения задачи необходимо построить дерево IP-адресов. Оно строится произвольным образом, с соблюдением определенных правил. Следует учитывать, что используется двоичный код, поэтому все числа являются степенями двойки (то есть 2, 4, 8, 16, 32 и так далее). Для начала можно сложить все то количество узлов, для которых необходимо составить IP-адресацию.
3+25+62+120+250+400+1017=1877
Ближайшее большее число степени двойки это 2048 (два в одиннадцатой степени – 2^11). Это число можно поделить на два значения по 1024 каждый (2^10). При этом одиннадцатый бит будет принимать значения либо ноль, либо один. Нарисуем получившееся начало дерева. Не имеет значения какой бит (верхний или нижний) примет нулевое значение. Желательно при создании дерева определится, чтобы было одинаково, например, все верхние биты равны нулю, а все нижние единицы (как в данном рисунке).
Таким образом продолжаем делить каждую ячейку до необходимых значений. Здесь нужно пояснить, что пытаемся решить задачу с минимально необходимым выделением адресов. То есть, если нужно выделить сеть на 62 узла, например, то нужно выбрать ячейку на 64 адреса. Можно выбрать и 128 адресов, но тогда будет избыточное значение незадействованных адресов. Также нужно понимать, что в любой сети (большой или маленькой) два IP-адреса являются служебными и их нельзя назначать в качестве IP-адресов узлов. Это самый первый адрес, который является номером сети и самый последний адрес – широковещательный адрес сети. То есть если нужно выделить сеть, например, для 63 узлов, то ячейки на 64 адреса будет недостаточно, нужно выбирать ячейку на 128 адресов.
Также необходимо по мере деления адресного пространства назначать определенные ячейки в качестве сетей. Самое большое количество адресов требуется для седьмой сети (1017 адресов), для этой сети необходимо выделить ячейку в 1024 адреса. Выберем для этого верхнюю ячейку (хотя можно и нижнюю, не имеет значение).
Таким образом верхняя ячейка получается полностью задействована для адресации седьмой сети в 1017 адресов. То, что часть адресов останется свободной не имеет значение. Их все равно уже нельзя использовать в других сетях. Далее делим только нижнюю ячейку в 1024 адреса, так как она осталась свободной. Не забываем на линии перехода подписывать номера бит и их значения. Соответственно между 1024 и 512 уже будет находится десятый бит. Для шестой сети нужно 400 адресов, ближайшая наибольшая ячейка это 512. Выберем нижнюю для адресации шестой сети.
Продолжаем делить оставшуюся часть адресного пространства в 512 адресов по тому же принципу, что и раньше. Подписываем номера бит и выделяем адресное пространство для пятой сети в 250 адресов.
Для удобства восприятия желательно рисовать таким образом, чтобы ячейки с одинаковым количеством адресов (например, 256) находились на одной вертикальной линии. Делим оставшуюся ячейку в 256 адресов на две части и определяем место для четвертой сети в 120 адресов.
Продолжая подобным образом находим места на дереве для третьей, второй и первой сети.
Таким образом, были определены места для всех заданных сетей. Одно важное замечание. Если по каким-либо причинам не хватило место для всех сетей, то нужно продолжить дерево влево, то есть увеличить адресное пространство в два раза, задействовав уже 4096 адресов. Пример приведен на рисунке
Теперь необходимо исходя из построенного дерева определить адресные параметры для каждой сети: номер сети, префикс и маску сети, широковещательный адрес сети. А также диапазон и количество адресов, которые будут назначаться в качестве IP-адресов узлов.
Алгоритм решения можно представить следующим образом:
1. Определение границы сети.
2. Определение номера сети.
3. Определение маски (префикса) сети.
4. Определение широковещательного адреса сети.
5. Определение диапазона и количества адресов.
Рассмотрим на примере первой сети для трех узлов. Для этой сети выбрано адресное пространство на 8 узлов.
1. Определение границы сети. Речь идет об определении границы в IP-адресе между номером сети и номером узла (хоста). Для этого необходимо найти по дереву IP-адресов (рисунок №2) номер бита, который является последним для данной подсети (это четвертый бит), соответственно граница проходит между четвертым и нижележащим (третьим) битом.
2. Определение номера сети. Для этого значения бит справа от границы сети заполняем нулями (это биты 3, 2 и 1). Для заполнения значения бит слева от границы используем дерево IP-адресов (рисунок №2). Нужно передвигаться от выбранной ячейки (8 адресов) по ветвям дерева к вершине и записывать значения бит. Четвертый бит равен нулю, пятый бит – единице, шестой – единице, седьмой – нулю и так далее. До одиннадцатого бита, который равен единице. Когда дерево закончилось, то значения бит необходимо переписать исходя из первоначально заданной сети (рисунок 1). Получаем следующую запись:
Теперь переводим номер подсети в десятичную систему: 10.0.4.176.
Перемещение от ячейки в 8 адресов до вершины дерева представлено на следующем рисунке
3. Определение маски (префикса) сети. Маска – второй параметр сети, поэтому его записываем отдельно. Для определения маски необходимо все биты, находящиеся слева от границы, заполнить единицами, а справа – нулями:
Переводим маску подсети в десятичную систему: 255.255.255.248. Префикс — это еще один вид записи маски, он указывает количество бит в IP-адресе отведенных под номер сети. В данном случае это количество единиц в двоичном коде маске (то есть префикс равен 29).
4. Определение широковещательного адреса сети. Широковещательный адрес сети – это самый последний адрес в данной сети. Для его определения переписываем биты относящиеся к адресу сети (рисунок 3) без изменения, а биты относящиеся к адресу узла (справа от границы сети) заменяем на единицы:
Переводим широковещательный адрес в десятичную систему счисления: 10.0.4.183.
5. Определение диапазона и количества адресов. Для того чтобы вычислить адрес первого узла в подсети, необходимо к номеру подсети прибавить единицу (10.0.4.177), а для того чтобы определить адрес последнего узла, – от широковещательного узла подсети отнять единицу (10.0.4.182). Получаем следующий диапазон адресов узлов: 10.0.4.177 – 10.0.4.182. Таким образом, максимальное количество адресов в подсети 10.0.4.176 с маской 255.255.255.248 составляет 6. Данное количество адресов достаточно для того, чтобы в подсети разместить 3 узла.
Все вышеизложенные рассуждения можно пропустить и записать все решение в компактной форме:
Номер подсети и префикс: 10.0.4.176/29
Маска подсети: 255.255.255.248
Широковещательный адрес: 10.0.4.183
Адрес первого узла: 10.0.4.177
Адрес последнего узла: 10.0.4.182
Диапазон адресов: с 10.0.4.177 до 10.0.4.182
Количество IP-адресов для адресации узлов: 6
Для более точного понимания перечислим эти шесть адресов:
10.0.4.177, 10.0.4.178, 10.0.4.179, 10.0.4.180, 10.0.4.181, 10.0.4.182
Еще раз обращаю внимание, что понятие сеть и подсеть почти одинаковы, так как каждая из них имеет полный набор параметров. В данном случае рассматривается деление большой сети на несколько более мелких (по количеству узлов в сети).
Для определения IP-адресации подсетей с 25, 62 и 120 узлами повторяем все те же действия, что описаны выше.
Могут возникнуть трудности для определения параметров сети с общим количеством адресов 512 и выше. Рассмотрим пример решения для шестой сети, в которой необходимо выделить адресацию на 400 узлов и для которой выделена ячейка на 512 адресов (рисунок 2). Алгоритм решения такой же, но из-за того, что граница проходит через третий байт, вычисления немного усложняются.
Следуя вышеуказанному алгоритму получаем:
Номер подсети и префикс: 10.0.6.0/23
Маска подсети: 255.255.254.0
Широковещательный адрес: 10.0.7.255
Адрес первого узла: 10.0.6.1
Адрес последнего узла: 10.0.7.254
Диапазон адресов: с 10.0.6.1 до 10.0.7.254
Количество IP-адресов для адресации узлов: 510
Если префикс сети составляет 23 и менее, то диапазон адресов можно разложить на составные части, в зависимости от изменений третьего байта. То есть
10.0.6.1 – 10.0.6.255 это 255 адресов
10.0.7.0 – 10.0.7.254 это 255 адресов
Итого 255+255=510 адресов
Для седьмой сети (на 1017 узлов) определяем аналогичным образом:
Номер подсети и префикс: 10.0.0.0/22
Маска подсети: 255.255.252.0
Широковещательный адрес: 10.0.3.255
Адрес первого узла: 10.0.0.1
Адрес последнего узла: 10.0.3.254
Диапазон адресов: с 10.0.0.1 до 10.0.3.254
Количество IP-адресов для адресации узлов: 1022
Для определения количества адресов разложим на четыре поддиапазона:
10.0.0.1 – 10.0.0.255 это 255 адресов
10.0.1.0 – 10.0.1.255 это 256 адресов
10.0.2.0 – 10.0.2.255 это 256 адресов
10.0.3.0 – 10.0.3.254 это 255 адресов
255+256+256+255=1022
Номер одной подсети может совпасть с номером первоначально заданной сети. Это допустимо, но только для одной подсети.
Компьютерам, серверам и роутерам в интернете нужно понимать, куда отправлять данные, чтобы они не потерялись в паутине проводов и прочих вайфаев по пути с какого-нибудь американского хранилища «Ютуба» в браузер дяди Васи в Череповце. Один из помощников в этом деле — IP-адрес. Он представляет собой что-то вроде дорожного указателя, маяка, который содержит данные о месте конкретного устройства в структуре Глобальной сети.
Чтобы узнать IP-адрес вашего устройства, можно открыть терминал и ввести ipconfig в Windows или ifconfig в macOS и Linux:
Скриншот: Skillbox Media
Чаще всего это четыре числа, которые разделены между собой точками (такой формат поддерживается в протоколе IPv4). Например, вот один из самых популярных IP-адресов — вы могли вводить его, чтобы зайти на свой роутер:
Каждое из чисел в адресе — это восьмизначное двоичное число, или октет. Оно может принимать значения от 0000 0000 до 1111 1111. Или же от 0 до 255 в десятичной системе счисления — то есть 256 разных значений.
Получается, диапазон IP-адресов стартует с 0.0.0.0 и заканчивается 255.255.255.255. Если посчитать количество всех адресов в этом диапазоне, получится 4 294 967 296.
Формат адресов IPv4 — не единственный, хоть и один из самых популярных в интернете. Есть ещё стандарт IPv6 — его адреса состоят уже из 128 битов (в IPv4 — 32 бита). Таким образом, IPv6 позволяет пронумеровать 2128 устройств (по 300 миллионов на каждого жителя Земли).
Ниже мы будем говорить только об IPv4, однако эти принципы хорошо ложатся и на IPv6.
На самом деле IP-адрес — это чуть больше, чем просто набор чисел. Он всегда состоит из двух частей: номера хоста (устройства) и номера сети.
Например, IPv4-адрес 192.168.1.34 состоит из таких смысловых частей:
В нём первые три числа означают номер сети, а четвёртое — номер хоста (то есть вашего устройства). Все устройства, идентификаторы которых начинаются с 192.168.1, находятся в одной сети.
Устройство, идентификатор которого начинается, например, с 192.168.2, будет принадлежать к другой сети и не сможет связываться с устройствами из сети 192.168.1. Чтобы это сделать, понадобится роутер, который соединит две сети между собой.
Он будет мостом, по которому данные переходят из одной сети в другую. Если же говорить техническим языком, то роутер — это сеть более высокого уровня, которая объединяет несколько подсетей. Со стороны это будет выглядеть так, будто у роутера есть устройства, которым он передаёт данные и которые могут связываться между собой.
Номер сети может храниться не только в первых трёх октетах, но и в первых двух или даже в одном. Остальные числа — это номера устройств в сети.
Чтобы компьютер понимал, какие октеты обозначают сеть, а какие — компьютеры и роутеры, используют несложный механизм. Первые несколько битов в двоичном представлении IP-адреса фиксируются, считываются компьютером и автоматически распознаются — это похоже на конструкцию switch в языках программирования:
- Если первый бит — это 0, значит, компьютер имеет дело с большой сетью, на которую указывает только одно, самое первое число.
При этом первый бит у нас уже зарезервирован под такой «свитч», поэтому всего таких сетей может быть 128 (от нуля до 127), а устройств в них — более 16 миллионов.
- Если первые два бита — это 10 (то есть 2 в десятичной системе счисления), значит, IP-адрес принадлежит к средней сети и использует два числа как указатель на неё.
У такого адреса уже зарезервировано два первых бита, а значит, для номера сети остаётся только 14 битов — это более 16 тысяч сетей и более 65 тысяч устройств.
- Если первые три бита — это 110, значит, компьютеру попался IP-адрес из маленькой сети, в качестве указателей на которую используются только три первых числа.
Всего таких сетей существует более двух миллионов, а подключаемых устройств в каждой — 256. Диапазон значений — от 192.0.0.0 и до 223.255.255.0 (223 — потому что у нас зарезервировано три бита).
Все эти виды IP-адресов имеют свои названия: класс A, B и C. Класс А — это большие сети, B и C — средние и маленькие. Кроме них существуют ещё сети класса D и E. В них входят зарезервированные адреса — например, 127.0.0.0 или 192.168.X.X. Первый указывает сам на себя — когда он отправляет данные по этому адресу, они тут же приходят обратно (его ещё называют localhost). А второй — это стандартный идентификатор интернет-модемов и Wi-Fi-роутеров.
Бывает, что хостов в сети больше, чем доступных IP-адресов, — в современном интернете дела обстоят именно так. В этом случае интернет-провайдеры выдают устройствам адреса формата IPv6. При этом адрес IPv4 можно легко переделать в формат IPv6, а вот в обратную сторону это уже не работает.
Однако не все интернет-провайдеры перешли на новую версию IP-адресов, и это создало новую проблему: невозможно напрямую отправлять данные с устройств, поддерживающих IPv4, на устройства с IPv6. Проблему решили с помощью туннелирования — создали специальный канал между двумя устройствами, по которому обмениваются информацией между сетями с разными версиями протокола.
Маска подсети — это более удобный способ разделить IP-адрес на номер сети и номер хоста. Она пришла на смену алгоритму, который мы описали выше. Маска подсети состоит из тех же четырёх чисел и похожа на IP-адрес:
В двоичном представлении такая маска выглядит как 1111 1111 0000 0000. Нули показывают, где находится номер хоста, а единицы — номер сети.
Чтобы применить маску, нужно воспользоваться логическими операторами «И» и «НЕ». Первый работает по следующим правилам:
Оператор «НЕ» просто меняет все нули на единицы, а единицы на нули. И делает он это справа налево:
Давайте применим к IP-адресу 192.168.1.34 маску подсети 255.255.255.0:
На картинке показано, как мы сначала перевели IP-адрес и маску подсети в двоичную систему счисления. А затем побитово справа налево применили операцию логического «И». Маска помогла удалить ненужную часть адреса, и мы выделили номер сети — 192.168.1.0.
Чтобы выделить номер хоста, нужно сначала применить операцию логического «НЕ» к маске подсети, а затем — операцию логического «И» к IP-адресу и полученной маске:
Так мы получили маску для выделения номера устройства. А теперь применим операцию логического «И»:
У нас получился адрес 0.0.0.34. Это и есть номер хоста.
Обычно маска задаётся программистами в настройках серверов или пользователями в настройках системы. Например, на MacBook маску подсети можно посмотреть в разделе «Сеть» → «Дополнительные настройки»:
Маска показывает, сколько битов включает в себя номер сети. Например, у большой сети номером будет только первое число (8 битов), а маска будет состоять из восьми единиц и 24 нулей: 255.0.0.0.
Если IP-адрес принадлежит к маленькой сети, то первые три числа в нём будут представлять номер сети. Значит, маска будет выглядеть так: 255.255.255.0.
Есть и слегка необычные маски подсетей — например, 255.255.254.0. Они тоже означают, сколько битов используется в номере сети. Только в данном случае их будет 23 — по 8 в первых двух числах и 7 в третьем. Остальные биты будут принадлежать номеру хоста.
Выделять номера хостов и сетей удобно, но это не самая интересная часть использования масок. Их главная суперсила — умение разделять большие сети на несколько маленьких.
Допустим, у нас есть номер сети 185.12.0.0 с маской 255.255.0.0. В такой сети может быть более 65 тысяч устройств, чего вполне хватит, чтобы вместить все компьютеры в одном большом офисе.
Но что если у нас есть несколько маленьких офисов в одном здании, и мы хотим их все подключить к сети? Создавать новую сеть с 65 тысячами IP-адресов для каждого офиса нерационально. Поэтому мы можем разбить сеть 185.12.0.0 на подсети.
Для этого вместо маски 255.255.0.0 мы возьмём маску 255.255.255.0. Так у нас появится 256 новых подсетей внутри одной большой. При этом в каждой подсети будет по 256 устройств.
Если в офисе понадобится больше устройств, мы можем взять другую маску — например, 255.255.254.0. И теперь нам будет доступно 512 устройств, а количество подсетей сократится до 128.
IP-адреса нужны, чтобы передавать данные внутри сетей. Их делят на классы A, B и C — для больших, средних и маленьких сетей. Ещё есть классы D и E, но они нужны для служебных задач.
Логически IP-адрес поделён на номер сети и номер хоста (устройства). Эти части позволяют определить, к какой сети подключено устройство и какой у него номер.
Маска подсети помогает удобно выделять из IP-адреса номер сети и номер хоста. Она выглядит как обычный IP-адрес, но на самом деле представляет собой набор последовательных единиц и нулей. Первые показывают, сколько битов занимает номер сети в IP-адресе, а второй — сколько битов принадлежит номеру хоста.
Ещё маски позволяют создавать подсети внутри одной сети. В этом случае подсети будут соединены одним компьютером, который похож на роутер. Он помогает хостам из разных сетей общаться между собой.