Как найти боковое ребро параллелограмма

Четырехугольная призма, в основании которой находится параллелограмм, является параллелепипедом. В параллелепипеде 6 граней: 4 — боковые и 2 — его основание. Грани, как правило, представляют собой параллелограмм. Противолежащие грани параллельны и равны. Параллелепипеды бывают прямыми и наклонными. У прямого параллелепипеда боковые грани являются прямоугольниками. Прямой параллелепипед, в основании которого лежит прямоугольник, называется прямоугольным. У него все шесть граней — прямоугольники, противоположные стороны которых параллельны и равны, а все углы — прямые. Прямоугольный параллелепипед строится на трех ребрах, расположенных друг к другу под прямым углом. Длины этих ребер, обладающих общим концом, называются его измерениями.

Боковое ребро прямоугольного параллелепипеда можно рассчитать несколькими способами, в зависимости от исходных данных.
Если известны объем (V) и два ребра (b, c) правильного параллелепипеда, третье ребро (а) будет равно частному от деления объема на произведение двух ребер (b×c):

a = V / bc

Если известна площадь боковой поверхности и два ребра (b, c), находим неизвестное ребро (а) путем деления площади боковой поверхности (S) на удвоенную сумму двух известных ребер 2 (b+c).

a = Sб.п. / 2 (a+c)

Если известны два ребра (b, c) и полная площадь поверхности (S п.п.), неизвестное ребро (а) находим по формуле:

a = (Sп.п. — 2bc) / 2 (b+c)

Проведенный внутри параллелепипеда отрезок, соединяющий противоположные вершины двух его оснований, является диагональю параллелепипеда (D). Отрезок, соединяющий противоположные вершины одного из оснований, является диагональю основания (d). Внутри прямоугольного параллелепипеда можно построить прямоугольный треугольник, у которого гипотенузой будет диагональ параллелепипеда D, одним из катетов — диагональ основания d, другим — боковое ребро параллелепипеда (а). Используя теорему Пифагора, выразим квадрат диагонали основания d (гипотенузу) как сумму квадратов его сторон (катетов) b, с. Отсюда, квадрат длины диагонали прямоугольного параллелепипеда (D) равен сумме квадратов трёх его измерений (а,b,с). Зная ребра и диагональ параллелепипеда, находим боковое ребро по формуле:

a = √D2 + d2 = √D2 + b2 + c2

Боковое ребро параллелепипеда
где b, c — ребра параллелепипеда, a — боковое ребро параллелепипеда, D — диагональ параллелепипеда, d — диагональ основания.

Калькулятор расчета длины бокового ребра правильного параллелепипеда

Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань — параллелограмм. Правильный параллелепипед это когда все его углы равны 90 градусов.

.

Поделиться расчетом:

Найти боковое ребро правильного параллелепипеда
зная длину ребра и диагональ

Длина ребра параллелепипеда a

Длина ребра параллелепипеда c

Диагональ параллелепипеда d

Вычислить

Прямоугольный параллелепипед является прямой призмой, в основании которой лежит квадрат или прямоугольник, таким образом, совокупность ребер прямоугольного параллелепипеда может представлять собой два или три разных параметра. Если же они все равны между собой, то можно с уверенностью сказать, что такой параллелепипед является кубом, и его ребро можно найти по формулам, приведенным в разделе «Ребро куба».
Ребро прямоугольного параллелепипеда можно найти, зная объем тела и другие ребра:


Также можно рассчитать ребро прямоугольного параллелепипеда через площадь боковой или полной поверхности, тоже зная остальные два ребра:

   


Как и в случае с кубом, внутри прямоугольного параллелепипеда можно провести диагональ, которая соединит противоположные вершины оснований. В прямоугольном треугольнике диагональ параллелепипеда D будет гипотенузой, а диагональ основания d и ребро a – катетами. Тогда боковое ребро параллелепипеда можно будет найти через теорему Пифагора.

Если дана диагональ параллелепипеда, но нужно найти ребро, не входящее во внутренний прямоугольный треугольник, а являющееся стороной основания, то формула придет к точно такому же виду.

Установить Боковое ребро параллелепипеда на мобильный

Найти боковое ребро правильного параллелепипеда
зная длину ребра и диагональ

Найти боковое ребро правильного параллелепипеда, зная ребра и диагональ
Длина ребра параллелепипеда a
Длина ребра параллелепипеда c

Диагональ параллелепипеда d

Длина ребра параллелепипеда b

Скачать калькулятор

Рейтинг: 3.3 (Голосов 13)

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Сообщить об ошибке

Смотрите также

Сторона треугольника Стороны прямоугольного треугольника Стороны равностороннего треугольника Сторона квадрата
Стороны прямоугольника Стороны ромба Стороны параллелограмма Ребро куба

Добавить комментарий