Как найти боковую поверхность правильной шестиугольной пирамиды

Площадь поверхности правильной пирамиды через периметр, площадь и апофему

{S_{полн} = dfrac{1}{2}PL + S}

На странице вы найдете онлайн-калькуляторы, которые помогут найти площадь полной и боковой поверхности правильной пирамиды, а также треугольной, четырехугольной и шестиугольной пирамиды. Кроме того приводятся формулы, по которым вы можете произвести расчет самостоятельно.

  1. калькулятор площади поверхности пирамиды
  2. формула площади полной поверхности правильной пирамиды через периметр, площадь и апофему
  3. формула площади полной поверхности правильной пирамиды через сторону основания и высоту
  4. формула площади полной поверхности правильной треугольной пирамиды через сторону основания и апофему
  5. формула площади полной поверхности правильной треугольной пирамиды через сторону основания и боковую грань
  6. формула площади полной поверхности правильной треугольной пирамиды через сторону основания и высоту
  7. формула площади полной поверхности правильной четырехугольной пирамиды через сторону и боковую грань
  8. формула площади полной поверхности правильной четырехугольной пирамиды через сторону и высоту
  9. формула площади полной поверхности правильной четырехугольной пирамиды через сторону основания и апофему
  10. формула площади полной поверхности правильной шестиугольной пирамиды через сторону основания и апофему
  11. формула площади полной поверхности правильной шестиугольной пирамиды через сторону основания и боковую грань
  12. формула площади полной поверхности правильной шестиугольной пирамиды через сторону основания и высоту
  13. формула площади боковой поверхности правильной пирамиды через периметр и апофему
  14. формула площади боковой поверхности правильной пирамиды через сторону основания и высоту
  15. формула площади боковой поверхности правильной треугольной пирамиды через сторону основания и апофему
  16. формула площади боковой поверхности правильной треугольной пирамиды через сторону основания и боковую грань
  17. формула площади боковой поверхности правильной треугольной пирамиды через сторону основания и высоту
  18. формула площади боковой поверхности правильной треугольной пирамиды через периметр основания и апофему
  19. формула площади боковой поверхности правильной четырехугольной пирамиды через сторону основания и апофему
  20. формула площади боковой поверхности правильной четырехугольной пирамиды через сторону основания и боковую грань
  21. формула площади боковой поверхности правильной четырехугольной пирамиды через сторону основания и высоту
  22. формула площади боковой поверхности правильной шестиугольной пирамиды через сторону основания и апофему
  23. формула площади боковой поверхности правильной шестиугольной пирамиды через сторону основания и боковую грань
  24. формула площади боковой поверхности правильной шестиугольной пирамиды через сторону основания и высоту
  25. примеры задач

Познакомьтесь с важными понятиями, которые необходимо знать для расчета площади поверхности пирамиды.

Пирамида — многогранник, основание которого — многоугольник, а остальные грани — треугольники, имеющие общую вершину.

Правильная пирамида – это пирамида, основанием которой является правильный многоугольник, а вершина фигуры проецируется в центр ее основания.

Площадь полной поверхности пирамиды – это сумма площадей боковых граней и площади основания.

Площадь боковой поверхности пирамиды – это совокупная площадь всех боковых граней пирамиды.

Апофема — перпендикуляр, опущенный из вершины пирамиды на ребро основания.

Формула площади полной поверхности правильной пирамиды через периметр, площадь и апофему

Площадь полной поверхности правильной пирамиды через периметр, площадь и апофему

{S_{полн} = dfrac{1}{2}PL+S}

P – периметр основания пирамиды

L – апофема пирамиды

S – площадь основания пирамиды

Формула площади полной поверхности правильной пирамиды через сторону основания и высоту

Площадь полной поверхности правильной пирамиды через сторону основания и высоту

{S_{полн} = dfrac{na}{2} {Bigg( dfrac{a}{2 \tg ( dfrac{180°}{n})} + sqrt{h^2+ Bigg( dfrac{a}{2 \tg ( dfrac{180°}{n})} Bigg) ^2} Bigg)}}

a – сторона основания пирамиды

h – высота пирамиды

n – число сторон основания

Формула площади полной поверхности правильной треугольной пирамиды через сторону основания и апофему

Площадь полной поверхности правильной треугольной пирамиды через сторону основания и апофему

{S_{полн} = dfrac{a^2 sqrt{3}+6aL}{4}}

a – сторона основания пирамиды

L – апофема пирамиды

Формула площади полной поверхности правильной треугольной пирамиды через сторону основания и боковую грань

Площадь полной поверхности правильной треугольной пирамиды через сторону основания и боковую грань

{S_{полн} = dfrac{a^2 sqrt{3}+6a sqrt{b^2 – dfrac{a^2}{4}}}{4}}

a – сторона основания пирамиды

b – боковая грань пирамиды

Формула площади полной поверхности правильной треугольной пирамиды через сторону основания и высоту

Площадь полной поверхности правильной треугольной пирамиды через сторону основания и высоту

{S_{полн} = dfrac{3a}{2} {Bigg( dfrac{a}{2 tg ( 60°)} + sqrt{h^2+ Bigg( dfrac{a}{2 tg ( 60°)} Bigg) ^2} Bigg)}}

a – сторона основания пирамиды

h – высота пирамиды

Формула площади полной поверхности правильной четырехугольной пирамиды через сторону основания и боковую грань

Площадь полной поверхности правильной четырехугольной пирамиды через сторону и боковую грань

{S_{полн} = a^2 + 2a sqrt{b^2- dfrac{a^2}{4}}}

a – сторона основания пирамиды

b – боковая грань пирамиды

Формула площади полной поверхности правильной четырехугольной пирамиды через сторону основания и высоту

Площадь полной поверхности правильной четырехугольной пирамиды через сторону и высоту

{S_{полн} = 2a {Bigg( dfrac{a}{2 tg ( 45°)} + sqrt{h^2+ Bigg( dfrac{a}{2 tg ( 45°)} Bigg) ^2} Bigg)}}

a – сторона основания пирамиды

h – высота пирамиды

Формула площади полной поверхности правильной четырехугольной пирамиды через сторону основания и апофему

Площадь полной поверхности правильной четырехугольной пирамиды через сторону основания и апофему

{S_{полн} = a^2+2aL}

a – сторона основания пирамиды

L – апофема пирамиды

Формула площади полной поверхности правильной шестиугольной пирамиды через сторону основания и апофему

Площадь полной поверхности правильной шестиугольной пирамиды через сторону основания и апофему

{S_{полн} = dfrac{3sqrt{3}a^2}{2}+3aL}

a – сторона основания пирамиды

L – апофема пирамиды

Формула площади полной поверхности правильной шестиугольной пирамиды через сторону основания и боковую грань

Площадь полной поверхности правильной шестиугольной пирамиды через сторону основания и боковую грань

{S_{полн} = dfrac{3sqrt{3}a^2}{2}+3asqrt{b^2-dfrac{a^2}{4}}}

a – сторона основания пирамиды

b – боковая грань пирамиды

Формула площади полной поверхности правильной шестиугольной пирамиды через сторону основания и высоту

Площадь полной поверхности правильной шестиугольной пирамиды через сторону основания и высоту

{S_{полн} = 3a {Bigg( dfrac{a}{2 tg ( 30°)} + sqrt{h^2+ Bigg( dfrac{a}{2 tg ( 30°)} Bigg) ^2} Bigg)}}

a – сторона основания пирамиды

h – высота пирамиды

Формула площади боковой поверхности правильной пирамиды через периметр и апофему

Площадь боковой поверхности правильной пирамиды через периметр и апофему

{S_{бок} = dfrac{1}{2}PL}

P – периметр основания пирамиды

L – апофема пирамиды

Формула площади боковой поверхности правильной пирамиды через сторону основания и высоту

Площадь боковой поверхности правильной пирамиды через сторону основания и высоту

{S_{бок} = dfrac{na}{2} sqrt{h^2+ Bigg( dfrac{a}{2 tg ( dfrac{180°}{n})} Bigg) ^2} }

a – сторона основания пирамиды

h – высота пирамиды

n – число сторон основания

Формула площади боковой поверхности правильной треугольной пирамиды через сторону основания и апофему

Площадь боковой поверхности правильной треугольной пирамиды через сторону основания и апофему

{S_{бок} = dfrac{3}{2}aL}

a – сторона основания пирамиды

L – апофема пирамиды

Формула площади боковой поверхности правильной треугольной пирамиды через сторону основания и боковую грань

Площадь боковой поверхности правильной треугольной пирамиды через сторону основания и боковую грань

{S_{бок} = dfrac{3a sqrt{b^2 – dfrac{a^2}{4}}}{2}}

a – сторона основания пирамиды

b – боковая грань пирамиды

Формула площади боковой поверхности правильной треугольной пирамиды через сторону основания и высоту

Площадь боковой поверхности правильной треугольной пирамиды через сторону основания и высоту

{S_{бок} = dfrac{3a}{2} sqrt{h^2+ Bigg( dfrac{a}{2 tg ( 60°)} Bigg) ^2}}

a – сторона основания пирамиды

h – высота пирамиды

Формула площади боковой поверхности правильной треугольной пирамиды через периметр основания и апофему

Площадь боковой поверхности правильной треугольной пирамиды через периметр основания и апофему

{S_{бок} =dfrac{1}{2}PL}

P – периметр основания пирамиды

L – апофема пирамиды

Формула площади боковой поверхности правильной четырехугольной пирамиды через сторону основания и апофему

Площадь боковой поверхности правильной четырехугольной пирамиды через сторону основания и апофему

{S_{бок} = 2aL}

a – сторона основания пирамиды

L – апофема пирамиды

Формула площади боковой поверхности правильной четырехугольной пирамиды через сторону основания и боковую грань

Площадь боковой поверхности правильной четырехугольной пирамиды через сторону основания и боковую грань

{S_{бок} = 2a sqrt{b^2 – dfrac{a^2}{4}}}

a – сторона основания пирамиды

b – боковая грань пирамиды

Формула площади боковой поверхности правильной четырехугольной пирамиды через сторону основания и высоту

Площадь боковой поверхности правильной четырехугольной пирамиды через сторону основания и высоту

{S_{бок} = 2a sqrt{h^2+ Bigg( dfrac{a}{2 tg ( 45°)} Bigg) ^2}}

a – сторона основания пирамиды

h – высота пирамиды

Формула площади боковой поверхности правильной шестиугольной пирамиды через сторону основания и апофему

Площадь боковой поверхности правильной шестиугольной пирамиды через сторону основания и апофему

{S_{бок} = 3aL}

a – сторона основания пирамиды

L – апофема пирамиды

Формула площади боковой поверхности правильной шестиугольной пирамиды через сторону основания и боковую грань

Площадь боковой поверхности правильной шестиугольной пирамиды через сторону основания и боковую грань

{S_{бок} = 3asqrt{b^2-dfrac{a^2}{4}}}

a – сторона основания пирамиды

b – боковая грань пирамиды

Формула площади боковой поверхности правильной шестиугольной пирамиды через сторону основания и высоту

Площадь боковой поверхности правильной шестиугольной пирамиды через сторону основания и высоту

{S_{бок} = 3a sqrt{h^2+ Bigg( dfrac{a}{2 tg ( 30°)} Bigg) ^2}}

a – сторона основания пирамиды

h – высота пирамиды

Примеры задач на нахождение площади поверхности пирамиды

Задача 1

Стороны основания правильной четырехугольной пирамиды равны 60см, боковые ребра равны 78см. Найдите площадь поверхности этой пирамиды.

Решение

Так как пирамида правильная четырехугольная, то воспользуемся соответствующей формулой площади поверхности через сторону основания и боковую грань.

S_{полн} = a^2 + 2a sqrt{b^2- dfrac{a^2}{4}} = 60^2 + 2 cdot 60 sqrt{78^2- dfrac{60^2}{4}} = 3600 + 120 sqrt{6084- dfrac{3600}{4}} = 3600 + 120 sqrt{6084 – 900} = 3600 + 120 sqrt{5184} = 3600 + 120 cdot 72 = 3600 + 8640 = 12240 : см²

Ответ: 12240 см²

Проверим полученный ответ с помощью калькулятора .

Задача 2

Найти площадь боковой поверхности правильной треугольной пирамиды со стороной 6см и апофемой 10см.

Решение

Из условия мы знаем апофему и сторону правильной треугольной пирамиды, поэтому нам потребуется эта формула.

S_{бок} = dfrac{3}{2}aL = dfrac{3}{2} cdot 6 cdot 10 = dfrac{3}{2} cdot 60 = 90 : см²

Ответ: 90 см²

Убедимся в правильности решения с помощью калькулятора .

Задача 2

Найти площадь боковой поверхности правильной четырехугольной пирамиды сторона основания 6см и высота 4см.

Решение

Подставим значения в формулу и произведем расчет.

S_{бок} = 2a sqrt{h^2+ Bigg( dfrac{a}{2 tg ( 45°)} Bigg) ^2} = 2 cdot 6 sqrt{4^2+ Bigg( dfrac{6}{2 tg ( 45°)} Bigg) ^2} = 60 : см²

Ответ: 60 см²

Проверка .

В данной публикации мы рассмотрим, как можно вычислить площадь поверхности различных видов правильных пирамид: треугольной, четырехугольной и шестиугольной.

Правильная пирамида – это пирамида, вершина которой проецируется в центр основания, являющегося правильным многоугольником.

  • Формула площади правильной пирамиды

    • 1. Общая формула

    • 2. Площадь правильной треугольной пирамиды

    • 3. Площадь правильной четырехугольной пирамиды

    • 4. Площадь правильной шестиугольной пирамиды

Формула площади правильной пирамиды

Формула площади поверхности правильной пирамиды

1. Общая формула

Площадь (S) полной поверхности пирамиды равняется сумме площади ее боковой поверхности и основания.

Sполн. = Sбок. + Sосн.

Боковой гранью правильной пирамиды является равнобедренный треугольник.

Нахождение площади правильной пирамиды: формулы

Площадь треугольника вычисляется по формулам:

1. Через длину основания (a) и высоту (h):

Формула площади треугольника

2. Через основание (a) и боковую сторону (b):

Формула площади равнобедренного треугольника

Формула площади основания правильной пирамиды зависит от вида многогранника. Далее мы рассмотрим самые популярные варианты.

2. Площадь правильной треугольной пирамиды

2. Площадь правильной треугольной пирамиды

Основание: равносторонний треугольник.

L (апофема) – перпендикулярная линия, опущенная из вершины пирамиды на ребро основания. Т.е. апофема пирамиды является высотой (h) ее боковой грани.

3. Площадь правильной четырехугольной пирамиды

Площадь правильной четырехугольной пирамиды

Основание: квадрат.

Площадь Формула
основание Sосн. = a2
боковая поверхность Sбок. = 2aL
Нахождение площади правильной пирамиды: формулы
полная Sполн. = a2 + 2aL
Нахождение площади правильной пирамиды: формулы

microexcel.ru

4. Площадь правильной шестиугольной пирамиды

Площадь поверхности правильной шестиугольной пирамиды

Основание: правильный шестиугольник

A hexagonal pyramid is a three-dimensional shaped pyramid that has a hexagonal base along with the sides or faces in the shape of isosceles triangles that meet at the apex or the top of the pyramid. A hexagonal pyramid is one of the different types of pyramids, which are classified based on the shape of the base of a pyramid. It is also known as a heptahedron since a hexagonal pyramid consists of 7 faces, which includes a hexagonal base and 6 isosceles triangular lateral faces. It has a total of seven faces, twelve edges, and seven vertices. One of the seven vertices is the apex, which is at the top, and the other six are at the base of the pyramid. Out of the twelve edges, six edges connect the triangle edges that meet at the apex, and the other six are the edges of the base.

 Regular Hexagonal Pyramid

A regular hexagonal pyramid is a pyramid whose hexagonal base is regular and the pyramid is straight, whereas an irregular hexagonal pyramid is a pyramid whose hexagonal base is irregular and the pyramid is oblique. A right regular pyramid is a hexagonal pyramid with a regular hexagonal base and, the apex of the pyramid is right above the center of the base, such that the apex forms a right angle with the center of the base and any other vertex.

regular-hexagonal-pyramid

Regular Hexagonal Pyramid formula

There are two formulas for a regular hexagonal pyramid, i.e., the surface area of a regular hexagonal pyramid and the volume of a regular hexagonal pyramid. To calculate the surface area or the volume of a regular hexagonal pyramid, we need to know its four major aspects, i.e., the length of the side of the base; the apothem, which is the distance from the center of the base to any point on the side of the base; the height of the pyramid, which is the perpendicular distance from the apex to the center of the base; and finally the slant height of the pyramid, which is the height of the triangular faces or the perpendicular distance from the apex to any point on the boundary of the base of the pyramid.

regular-hexagonal-pyramid-formula

Lateral surface area (LSA)

The lateral surface area is the region occupied by the lateral surfaces or triangular faces of a regular hexagonal pyramid. The formula to determine the lateral surface area of the regular hexagonal pyramid (LSA) is given as follows,

The lateral surface area of the regular hexagonal pyramid = The sum of areas of the lateral surfaces (triangles) of the pyramid

= 6 × [½ × base × height] =3 (s × l)

Lateral surface area of the regular hexagonal pyramid = 3(s × l)

Where,

“s” is the side length of the base, and

“l” is the slant height of the pyramid. 

Total surface area (TSA)

The total surface area is the total region occupied by all the surfaces of a regular hexagonal pyramid, i.e., the area occupied by the lateral surfaces, or triangular faces, and also is hexagonal base. 

Total surface area of a pyramid (TSA) = Lateral surface area of the pyramid + Base area

The surface area of the hexagonal pyramid can be calculated when we have the slant height of the pyramid which is the height from the apex to any point on the boundary of the base of the pyramid. Hence, let us see both the formula of the hexagonal pyramid – base area and surface area.

Base area = 3as

Where,

“a” is the apothem length, and

“s” is the side length of the base.

TSA = LSA + Base area

TSA = 3sl + 3as

Hence,

Total surface area of the regular hexagonal pyramid (TSA) = 3sl + 3as

Where,

“s” is the side length of the base, 

“l” is the slant height, and 

“a” is the apothem length.

When the apothem of the regular hexagonal pyramid is not mentioned and the triangular faces are equilateral, there is another alternative formula to calculate its surface area, i.e.,

Total surface area of the hexagonal pyramid = 3(s × l) + 3√3/2 (s)2

Where, 

“s” is the side length of the base, and 

“l” is the slant height of the pyramid. 

Area of the hexagonal base = 3√3/2 (s)2

Volume of the regular hexagonal pyramid

The volume is the total space enclosed between all the faces of a regular hexagonal pyramid. The general formula for calculating the volume of a pyramid is equal to one-third of the product of the base area and the height of the pyramid.

Volume (V) = (1/3) × Base area × Height cubic units

Now, by substituting the values of the base area and the height, we get

Volume of the regular hexagonal pyramid = (a × s × h) cubic units

Where,

“a” is the apothem length,

“s” is the side length of the base, and

“h” is the height of the pyramid. 

When the apothem of the regular hexagonal pyramid is not mentioned and the triangular faces are equilateral, there is another alternative formula to calculate its volume, i.e.,

Volume of the regular hexagonal pyramid (V)= (√3/2) × s2 × h cubic units

Where,

“s” is the side length of the base, and

“h” is the height of the pyramid. 

Practice Problems based on Regular Hexagonal Pyramid

Problem 1: What is the volume of a regular hexagonal pyramid whose apothem length is 5 cm, length of the side of the base is 10 cm, and height is 13 cm?

Solution: 

Given data,

Apothem length (a) = 5 cm

The length of the side of the base  = 10 cm,

The height of the pyramid = 13 cm

We know that,

The volume of a regular hexagonal pyramid (V) = (a × s × h) cubic units

V = 5 × 10 × 13

Volume = 650 cm3

Therefore, the volume of the given hexagonal pyramid is 650 cu. cm.

Problem 2: What is the surface area of a regular hexagonal pyramid if its apothem length is 6 inches, the length of the side of the base is 8 inches, and the slant height is 15 inches?

Solution: 

Given data,

Apothem length (a) = 6 inches

The length of the side of the base (s)  = 8 inches

The slant height of the pyramid (l) = 15 inches

We know that,

The surface area of the hexagonal pyramid = 3as + 3sl square units

= 3 × 6 × 8 + 3 × 8 × 15

= 144 + 360 = 504 sq. in

Therefore, the surface area of the given pyramid is 504 sq. in.

Problem 3: Find the height of a regular hexagonal pyramid if its volume is 576 cu. cm, the length of the side of the base is 8 cm, and the apothem length is 8 cm.

Solution:

Given data,

Apothem length (a) = 8 cm

The length of the side of the base (s) = 8 cm

Volume = 576 cu. cm

We know that,

The volume of a regular hexagonal pyramid (V) = (a × s × h) cubic units

⇒ 8 × 8 × h = 576

⇒ 64h = 576

⇒ h = 576/64 = 9 cm

Hence, the height of a regular hexagonal pyramid is 9 cm.

Problem 4: What is the volume of a regular hexagonal pyramid if the sides of a base are 7 cm each and the height of the pyramid is 14 cm?

Solution:

Given data,

Height of the pyramid (h) = 14 cm

The length of the side of the base (s) = 7 cm

Area of the hexagonal base (A) = 3√3/2 b2 = 3√3/2 (7)2 = 147√3/2 sq. cm

The volume of a regular hexagonal pyramid (V) = 1/3 × A × h

V = 1/3 × (147√3/2) × 14 = 594.09 cm3

Hence, the volume of the given pyramid is 594.09 cm3.

 Problem 5: Determine the lateral surface area of a regular hexagonal pyramid if the side length of the base is 15 inches and the pyramid’s slant height is 21 inches.

Solution:

Given data,

The length of the side of the base (s) = 15 inches, and

Slant height (l) = 21 inches

The perimeter of the square base (P) = 6s = 6(15) = 90 inches

We know that,

The lateral surface area (LSA) = (½) Pl

= (½ ) × (90) × 21 = 945 sq. in

Therefore, the lateral surface area of the given pyramid is 945 sq. in.

FAQs based on Regular Hexagonal Pyramid

Question 1: What is a Hexagonal Pyramid?

Answer:

A hexagonal pyramid is a 3D shape with hexagonal base combined with 6 triangles faces against each sides of the hexagonal base erected  in such a way to form a pyramid at its apex. These triangles may be either isosceles triangles or equilateral triangles and these triangles are called as lateral faces. A hexagonal pyramid contains 7 vertices, 7 faces, and 12 edges.

Question 2: What is the formula for finding the volume of the Hexagonal Pyramid?

Answer:

The formula for calculating the volume of the hexagonal pyramid is given by,

Volume of Hexagonal Pyramid(V) = (abh) cubic units

where,

a is the apothem of the pyramid,

b is the base, and h is the height.

Question 3: What is the formula for finding the Surface Area of a Hexagonal Pyramid?

Answer:

Formula for finding the surface area of a hexagonal pyramid is given by,

Surface Area of Hexagonal Pyramid (TSA)= (3ab + 3bs) square units,

where,

a is the apothem of the pyramid,

b is the base, and

s is the slant height of the pyramid.

Пирамида, в основании которой лежит правильный шестиугольник, а боковые стороны образуются правильными треугольниками, называется шестиугольной.
шестиугольная пирамид
Этот многогранник отличается множеством свойств:

  • Все стороны и углы основания равны между собой;
  • Все ребра и двугранные угля пирамиды также равны между собой;
  • Треугольники, образующие боковые стороны одинаковы, соответственно, у них одинаковые площади, стороны и высоты.

Для расчета площади правильной шестиугольной пирамиды применяется стандартная формула площади боковой поверхности шестиугольной пирамиды:

S_bok={1/2}Pa

где P – периметр основания, a – длина апофемы пирамиды. В большинстве случаев можно рассчитать боковую площадь по этой формуле, однако иногда можно воспользоваться и другим методом. Так как боковые грани пирамиды образованы равными треугольниками, можно найти площадь одного треугольника, а потом умножить его на количество боковых сторон. В шестиугольной пирамиде их 6. Но этот способ можно применять и при расчете площади треугольной пирамиды.Рассмотрим пример расчета площади боковой поверхности шестиугольной пирамиды.

Иконка карандаша 24x24Пусть дана правильная шестиугольная пирамида, в которой апофема равна a = 7 см, сторона основания b = 3 см. Рассчитайте площадь боковой поверхности многогранника.
Для начала найдем периметр основания. Так как пирамида правильная – в ее основании лежит правильный шестиугольник. Значит, все его стороны равны, а периметр рассчитывается по формуле: P=6*b
Подставляем данные в формулу: P=6*3=18 cm
Теперь можем легко найти площадь боковой поверхности, подставив найденное значение в основную формулу:
S_bok={1/2}*18*7=9*7=63{cm}^2

Также немаловажным моментом является поиск площади основания. Формула площади основания шестиугольной пирамиды выводится из свойств правильного шестиугольника:
S_osn={3sqrt{3}}/2*b^2

Иконка карандаша 24x24Рассмотрим пример расчета площади основания шестиугольной пирамиды, взяв за основу условия из прошлого примера.Из них мы знаем, что сторона основания b = 3 см. Подставим данные в формулу:
S_osn={3sqrt{3}}/{2*3^2}={3sqrt{3}*9}/2=4,5*3sqrt{3}=22,95{cm}^2

Формула площади шестиугольной пирамиды представляет собой сумму площади основания и боковой развертки:
S_poln=S_osn+S_bok

Рассмотрим пример расчета площади шестиугольной пирамиды.

Иконка карандаша 24x24Пусть дана пирамида, в основании которой лежит правильный шестиугольник со стороной b = 4 см. Апофема заданного многогранника равна a = 6 см. Найдите полную площадь.
Мы знаем, что полная площадь состоит из площадей основания и боковой развертки. Поэтому для начала найдем их. Рассчитаем периметр:
P=6*4=24 cm
Теперь найдем площадь боковой поверхности:
S_bok={1/2}*24*6=12*6=72{cm}^2
Далее рассчитываем площадь основания, в котором лежит правильный шестиугольник:
S_osn={3sqrt{3}}/{2*4^2}={3sqrt{3}*16}/2=3sqrt{3}*8=40,8{cm}^2
Теперь можем сложить получившиеся результаты:
S_poln=40,8+72=112,8{cm}^2

Все что нужно знать о шестиугольной пирамиде

Пирамида – это трехмерная фигура, основание которой представляет собой многоугольник, а боковые стороны являются треугольниками. Шестиугольная пирамида – ее частный вид. Помимо того, существуют другие вариации, когда в основании треугольника (такая фигура называется тетраэдр) находится квадрат, прямоугольник, пятиугольник и так далее по нарастанию. Когда количество точек становится бесконечным, то получается конус.

Шестиугольная пирамида

В целом это одна из последних и самых сложных тем в стереометрии. Изучается где-то в 10-11 классах и рассматривается только вариант, когда в основании находится правильная фигура. Одно из труднейших заданий по ЕГЭ зачастую бывает связано с этим параграфом.

Удивительные факты о лошадяхВам будет интересно:Удивительные факты о лошадях

И-так, в основании правильной шестиугольной пирамиды лежит правильный шестиугольник. Что это значит? У фигуры в основании все стороны равны. Боковые же части состоят из равнобедренных треугольников. Вершины их соприкасаются в одной точке. Данная фигура представлена на фото ниже.

Как найти площадь всей поверхности и объем шестиугольной пирамиды?

В отличие от математики, которую преподают в университетах, школьная наука обучает обходить стороной и упрощать некоторые сложные понятия. Например, если не известно, как найти площадь фигуры, то приходится делить ее на части и уже по известным формулам площадей разделенных фигур находить ответ. Такому принципу нужно последовать и в представленном случае.

То есть, чтобы найти площадь поверхности всей шестиугольной пирамиды, надо найти площадь основания, затем площадь одной из боковых сторон и умножить ее на 6.

Применяются такие формулы:

S (полное) = 6S (боковой стороны) + S (основания) , (1);

S (основания) = 3√3 / 2a2 , (2);

6S (боковой стороны) = 6×1 / 2ab = 3ab , (3);

S (полное) = 3ab + (3√3 / 2a2) = 3(2a2b + √3) / 2a2 , (4).

Где S – площадь, см2;

a – длина основания, см;

b – апофема (высота боковой грани), см.

Для того чтобы найти площадь всей поверхности или какой-либо ее составляющей, требуется всего лишь сторона основания шестиугольной пирамиды и апофема. Если в задаче дано это в условии, то решение не должно составить труда.

С объемом дела обстоят намного легче, но чтобы его найти, нужна высота (h) самой шестиугольной пирамиды. Ну и, конечно же, сторона основания, благодаря которой нужно найти ее площадь.

Формула выглядит следующим образом:

V = 1/3 × S (основания) × h , (5).

Где V – объем, см3;

h – высота фигуры, см.

Вариант задачи, который может попасться на экзамене

Условие. Дана правильная шестиугольная пирамида. Длина основания равна 3 см. Высота составляет 5 см. Найти объем данной фигуры.

Решение: V = 1/3 × (3√3/2 × 32) × 5 = 5/3 × √3/6 = 5√3/18.

Ответ: объем правильной шестиугольной пирамиды составляет 5√3/18 см.

Автор:

Анжелика Солнцева

25-09-2018 13:51

Жду ваши вопросы и мнения в комментариях

Добавить комментарий