Как найти боковую сторону трапеции через синус

Трапеция — это выпуклый четырехугольник с двумя параллельными основами и двумя непараллельными
боковыми сторонами.

Иногда фигура определяется как четырёхугольник, у которого пара противолежащих сторон параллельна,
поэтому параллелограмм и прямоугольник являются частными случаями трапеции. Также это
четырехугольник, у которого одна пара противоположных сторон параллельна, а остальные стороны не
равны между собой.
Параллельные стороны называются основами, а остальные боковыми.

Вычисление стороны необходимо для нахождения периметра, площади трапеции, ее диагоналей и других
значимых параметров.

  • Длина основания через среднию линию и другое известное
    основание
  • Нижнее основание через верхнее основание, высоту и углы при
    нижнем основании
  • Верхнее основание через нижнее основание, высоту и углы при
    нижнем основании
  • Нижнее основание через боковые стороны, верхнее основание и
    углы при нижнем основании
  • Верхнее основание через боковые стороны, нижнее основание и
    углы при нижнем основании
  • Боковую сторону через высоту и угол при нижнем
    основании

Длина основания через среднюю линию и известное основание

Рис 1

Средняя линия — отрезок, соединяющий середины боковых сторон фигуры. Через её значение
вычисляется одна из основ. Нужно умножить ее на два и вычесть известную:

a = 2m – b

Цифр после
запятой:

Результат в:

Например, средняя линия MN равна 6, а основание а – 9. Соответственно, значения, подставленные в
формулу, показывают, что b = 2*6 – 9 = 3.

Нижнее основание через верхнее основание, высоту и углы при нижнем основании

Рис 2

Высота h или BK – перпендикуляр, проведенный от одной основы к другой. Высота проводится в любой их
точке, но удобнее всего это делать из вершины углов при меньшей основе. Чтобы найти нижнее
основание, надо к верхнему прибавить произведение высоты на сумму котангенсов углов при нижнем:

a = b + h*(ctga + ctgb)

Цифр после
запятой:

Результат в:

Дано верхнее основание 10, высота 6 и углы 30 и 45. По формуле а = 10 + 6*(3+1) = 10 + 63 + 6 = 16+63.
Для равнобедренного четырёхугольника выведены две формулы. В первой (a = 2S/h – b) основа выражена с
помощью формулы площади. Пример: Площадь равнобедренной трапеции ABCD = 18, высота = 6, а AD = 5.
Найти BC. BC = 2*18/6 – 5 = 6 – 5 = 1

Второе выражение сформулировано следующим образом: (a = b + 2h*ctga). Высота АН в трапеции ADEF =
10, DE = 4, а DAF = 45 градусам. Найти AF: AF = 4 + 10*2*1 = 24

Верхнее основание через нижнее основание, высоту и углы при нижнем основании

Рис 3

Чтобы найти верхнюю основу, надо из нижней вычесть произведение высоты на сумму котангенсов углов при
ней:

b = a – h*(ctg α + ctg β)

Цифр после
запятой:

Результат в:

Дана трапеция с нижним основанием 15, высотой 8 и углами в 45 градусов. По формуле а = 15 + 8*(1+1) =
15 + 16 = 31

Формулы для равнобедренного четырёхугольника: b = 2S/h – a и b = a – 2h*ctga.

  • Площадь трапеции KLMN = 44, KL=MN, высота равна 8, KN = 5. Найти LM: LM = 44*2/8 – 5 = 6
  • Высота трапеции DEFG = 15, DG= 5, а EDG = 45 градусам. Найти EF: EF = 5 + 15*2*1 = 35

Нижнее основание через боковые стороны, верхнее основание и углы при нижнем основании

Рис 4

Для нахождения основы а нужно к основе b прибавить произведение одной и другой стороны и косинусов
углов при них

a = b + c * cos α + d * cos β

Цифр после
запятой:

Результат в:

Дана равнобокая трапеция с верхним основанием 6, боковыми сторонами 5 и 11 и углами в 45 градусов.
Найти нижнее основание: а = 6 + 5*2/2 + 11*2/2 = 6 + 162/2 = 6 + 82

Отдельно для подобного типа фигур было выведено два выражения: a = (d1^2 – c^2)/b и a = b +
2c*cosa
.

  • трапеции ABCD AB = CD = 8, диагональ AC = 12, а BC = 4. Вычислить AD: AD = (12*12 – 8*8)/4
    = (144 – 64)/4 = 20
  • В трапеции KLMN KL = MN = 4, LM = 7, а LKN равен 30 градусам. Вычислить KN: KN = 7 +
    4*2*3/2 = 7 + 43

Верхнее основание через боковые стороны, нижнее основание и углы при нем

Рис 5

Для нахождения основы b нужно из основы а вычесть произведение одной и другой боковой стороны и углов
при них

b = a – c * cos α – d * cos β

Цифр после
запятой:

Результат в:

Дана трапеция с нижним основанием 27, боковыми сторонами 20 и 14 и углами в 30 и 60 градусов. Найти
верхнее основание: b = 27 — 20*3/2 — 14*1/2 = 27 — 103 — 7 = 20 —
103
. Формулы для равнобедренного типа: b = (d1^2 — c^2)/a и b = a — 2c*cosa.

  • В трапеции DEFG DE и FG = 11, диагональ АС = 13, а EF = 12. Вычислить DG: DG = (13*13 –
    11*11)/12= (169 – 121)/12 = 4
  • Боковые стороны трапеции BCDE BC и DE = 25, BE = 10, а CBE равен 60 градусам. Вычислить CD:
    CD = 25 – 10*2*1/2 = 15

Боковая сторона через высоту и угол при нижнем основании

Рис 6

Чтобы найти боковую сторону, надо разделить высоту на синус угла при ней

d = h / sin α

Цифр после
запятой:

Результат в:

Дана трапеция с высотой 12 и углами в 30 и 60 градусов. Найти боковые стороны: c = 12/0,5 =
24, d = 12/3/2 = 243

Для прямоугольного типа формулы несколько отличаются. Самая простая из них связывает высоту и меньшую
боковую сторону: c = h.
Для нее существует еще несколько формул: с = d*sina; c = (a – b)*tga; c
= (d^2 – (a – b)^2)

  • В прямоугольной трапеции CDEF сторона EF равна 22, а прилежащий угол = 45. Найти CD. CD =
    22*2/2 = 112
  • Прямоугольная трапеция MNOP имеет основания MP и NO, равные 32 и 19 соответственно. NMP равен 60
    градусам. Найти MP: MP = (32 – 19)*3 = 133
  • В прямоугольной трапеции ABCD AD и BC равны 35 и 15 соответственно. Диагональ АС = 26. Найти AB.
    AB = (26^2 – (35 – 15)^2) = 676 – 400 = 276 = 269

Первая вытекает из прямоугольного треугольника и свидетельствует о том, что отношение катета к
гипотенузе равно синусу противолежащего угла. В этом треугольнике второй катет равен разности двух
оснований. Отсюда возникает утверждение, приравнивающее тангенс угла к отношению катетов. Третья
формула выведена на основании теоремы Пифагора.

Для второй боковой стороны выведено и записано три выражения: d = (a — b)/cosa; d = c/sina; d =
(c^2 — (a — b)^2)
. Первое и второе получаются из соотношения сторон в прямоугольном
треугольнике, а третье выводится из теоремы Пифагора.

  • В прямоугольной трапеции KLMN KN = 28, LM = 13 а прилежащий угол = 30. Найти KL: KL = (28 –
    13)/3/2 = 103
  • В прямоугольной трапеции EFGH EF равна 45. FEH равен 30 градусам. Найти GH: GH = 45/0,5 =
    90
  • В прямоугольной трапеции NOPQ NQ и OP =.36 и 17. Диагональ равна 29. Найти NO: NO = (29^2 –
    (36 – 17)^2) = 841 – 361= 480 = 430

Для равнобокой трапеции существуют формулы c = d1^2 – ab; c = (a – b)/2cosa; c = S/m*sina; c =
2S/(a+b)*sina
.

  • В трапеции LMNO LM = NO. LO = 16, MN = 6, диагональ равна 10. Найти LM: LM = 10^2 – 16*6 =
    100 – 96 = 4
  • Трапеция ABCD – равнобокая, AB = CD. AD = 18, BC = 4, а прилежащий угол равен 45 градусам. Найти
    AB: AB = (18 – 4)/2/2 = 14/2/2 = 14/2
  • В трапеции BCDE BC=DE. Площадь фигуры равна 48, BE = 17, CD = 7, а CBE равен 30 градусам.
    Вычислить BC: m = (17 – 7)/2 = 5, BC = 48/5*1/2 = 96/5 = 19,2
  • Площадь равнобедренной трапеции KLMN = 90, основания KN и LM = 32 и 18 соответственно, а LKN =
    60 градусов. Вычислить KL: KL = 2*90/(32 + 18)*3/2 = 360/503 = 129600/7500 = 17,28

Виды трапеций

Существуют следующие виды трапеций:

  • Равнобедренная трапеция — фигура, у которой боковые стороны и углы при основании равны.
    Диагонали также равны. Треугольники, образованные диагоналями и основой, являются
    равнобедренными. Если диагонали взаимно перпендикулярны, то площадь равна квадрату высоты. Если
    разделить обе основы пополам и повести через эти точки линию, то она будет осью геометрической
    фигуры. Отрезки, последовательно соединяющие середины смежных сторон, образуют ромб.
  • Прямоугольная трапеция — фигура, у которой одна из боковых сторон перпендикулярна основам
    и равна высоте. Два угла будут равны 90 градусам, и они всегда принадлежат смежным вершинам, а
    другие всегда острый и тупой, их сумма всегда будет равна 180 градусам. Каждая диагональ
    образует с ее меньшей боковой стороной прямоугольный треугольник. А высота, которая проведена из
    вершины с тупым углом, делит фигуру на две. Одна из них прямоугольник, другая прямоугольный
    треугольник.
  • Разносторонняя трапеция — фигура, боковые стороны которой не равны и углы при основании не
    являются прямыми. Ее диагонали делят фигуру на четыре треугольника, два из которых подобны, а
    остальные — равновелики, то есть имеют одинаковые площади. Сумма углов при боковой стороне 180
    градусов.

Свойства трапеции

  1. Средняя линия параллельна основаниям и равна их полусумме.
  2. Любая биссектриса, выведенная из угла четырёхугольника, отсекает на основании (продолжении)
    отрезок с длиной боковой стороны.
  3. Треугольники AOD и COD, образованные отрезками диагоналей и основами, подобны.
    Коэффициент
    подобия – k = AD/BC.
    Отношение площадей треугольников — k^2.
  4. Треугольники ABO и DCO, образованные отрезками диагоналей и боковыми сторонами, имеют одинаковую
    площадь.
  5. В трапецию можно вписать окружность, если сумма оснований равняется сумме её боковых сторон.
  6. Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений
    боковых сторон лежат на одной прямой.
  7. Отрезок, соединяющий середины диагоналей, равняется половине разности основ и лежит на средней
    линии.

Amaxar 777

Высший разум

(105180)


4 года назад

Меньшее основание: c1 = a
Большее основание: c2 = a + 2b
Тогда разность оснований: c2 – c1 = (a+2b)-a = 2b
Тогда: b = (c2-c1)/2
b – катет прямоугольного треугольника, прилежащий к острому углу, боковая сторона X – гипотенуза.
cos(ф) = b/X
X = b/cos(ф)
Т. к. sin(ф) ^2 + cos(ф) ^2 = 1:
cos(ф) = sqrt(1 – sin(ф) ^2) = sqrt(1 – 9/25) = 4/5
Тогда X = 5 b / 4
Или X = 5 (c2 – c1) / 8

Дарья БрантУченик (150)

4 года назад

Спасибо))) мне очень помогла особенно формула Х=b/cos(ф)

Ира Люблю длинные вопросы и ответы на БВ.

Нахожу основание АЕ треугольника АЕВ. АЕ = (AD – ВС)/2 = (12 – 6)/2 = 6/2 = 3.

Чтобы найти гипотенузу, АВ в треугольнике АЕВ нужен не синус, а косинус. То есть отношение прилежащей стороны к гипотенузе, а не противолежащей. Смотрим на мой скрин ниже про определения. Вычисляю по формулам:

Мне нужен косинус, а не синус. Вычисляю:

sin²α + cos²α = 1.

cosα = √(1 – sin²α).

cosα = √(1 – 0,8²) = √(1 – 0,64) = √0,36 = 0,6.

Теперь вычисляю гипотенузу по косинусу угла:

3*10/6 = 5 ед.

Мой ответ: Боковая сторона равна 5-ти условным единицам.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,658
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,962
  • разное
    16,905

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 


1. Формулы длины диагонали равнобедренной трапеции через ее стороны

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

d – диагональ трапеции

Формула диагонали трапеции (d ):

2. Формулы длины диагонали равнобедренной трапеции по теореме косинусов

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

α, β углы трапеции

d – диагональ трапеции

Формулы диагонали трапеции (d ):


3. Формула длины диагонали равнобедренной трапеции

a – нижнее основание

b – верхнее основание

α, β углы между диагоналями

h – высота трапеции

m – средняя линия трапеции

S – площадь трапеции

d – диагональ трапеции

Формулы диагонали трапеции (d ):

Справедливо для данного случая :


4. Формулы длины диагонали трапеции через высоту и стороны

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

h – высота трапеции

α – угол при нижнем основании

d – диагональ трапеции

Формулы диагонали трапеции (d ):



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


Найти длину диагонали трапеции

зная все четыре стороны

или две стороны и угол

или высоту, сторону и угол

или площадь, другую диагональ и угол

и еще много других формул.

1. Формулы длины диагоналей трапеции по теореме косинусов или через четыре стороны

Формулы диагонали трапеции по теореме косинусов

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α, β углы трапеции

d1 , d2 – диагонали трапеции

Формулы диагоналей трапеции по теореме косинусов:

Все формулы диагонали трапеции

Все формулы диагонали трапеции

Формулы диагоналей трапеции через четыре стороны:

Формулы диагонали трапеции через стороны

Формулы диагонали трапеции через стороны

2. Формула длины диагоналей трапеции через высоту

Формула длины диагоналей трапеции через высоту

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α, β углы трапеции

h – высота трапеции

d1 , d2 – диагонали трапеции

Формулы диагоналей трапеции через высоту:

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту


3. Формула длины диагонали трапеции через другую диагональ

Формула длины диагонали трапеции через другую диагональ

a – нижнее основание

b – верхнее основание

α, β углы между диагоналями

h – высота трапеции

m – средняя линия трапеции

S – площадь трапеции

d1 , d2 – диагонали трапеции

Формулы диагоналей трапеции :

Формулы диагонали трапеции через другую диагональ

Формулы диагонали трапеции через другую диагональ

Справедливо для данного случая :


4. Формулы длины диагонали трапеции через сумму квадратов диагоналей

Формулы длины диагоналей трапеции через сумму квадратов диагоналей

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

d1 , d2 – диагонали трапеции

Формула суммы квадратов диагоналей :

Сумма квадратов диагоналей трапеции

Формулы диагоналей трапеции :

Формула длины диагонали через сумму квадратов диагоналей трапеции

Формула длины диагонали через сумму квадратов диагоналей трапеци



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула средней линии трапеции через основания (для всех видов трапеции)

Формула средней линии трапеции через основания

a – нижнее основание

b – верхнее основание

m – средняя линия

Формула средней линии, (m ):

Формула средней линии трапеции через основания

2. Формулы средней линии через основания, высоту и угол при нижнем основании

Формулы средней линии прямоугольной трапеции через основание, высоту и углы

a, b – основания трапеции

c – боковая сторона под прямым углом к основаниям

d – боковая сторона

α – угол при основании

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, (m ):

Формулы средней линии прямоугольной трапеции через высоту

Формулы средней линии прямоугольной трапеции через боковую сторону

Формулы средней линии прямоугольной трапеции через боковые стороны


3. Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

Формула средней линии прямоугольной трапеции через диагонали, высоту и угол между диагоналями

d1 , d2 – диагонали трапеции

α , β – углы между диагоналями

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, (m ):

Формула средней линии трапеции через диагонали, высоту и угол между диагоналями


4. Формула средней линии трапеции через площадь и высоту (для всех видов трапеции)

Формула средней линии трапеции через площадь и высоту

S – площадь трапеции

h – высота трапеции

m – средняя линия

Формула средней линии трапеции, (m ):

Формула средней линии трапеции через площадь и высоту



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула боковой стороны (с) прямоугольной трапеции через другие стороны и угол при нижнем основании

боковая сторона (с) прямоугольной трапеции через другие стороны и угол при нижнем основании

a – нижнее основание

b – верхнее основание

d – боковая сторона

α – угол при нижнем основании

h – высота трапеции

c – боковая сторона под прямым углом к основаниям

Формулы длины боковой стороны (с) :

Формула боковой стороны (с) прямоугольной трапеции

Формула боковой стороны (с) прямоугольной трапеции

Формула боковой стороны (с) прямоугольной трапеции

Формула боковой стороны (с) прямоугольной трапеции

2. Формулы боковой стороны (с) прямоугольной трапеции через диагонали  и угол между ними

боковая сторона (с) прямоугольной трапеции через диагонали  и угол между ними

a – нижнее основание

b – верхнее основание

d1 , d2 – диагонали трапеции

α , β – углы между диагоналями

c – боковая сторона под прямым углом к основаниям

Формулы длины боковой стороны (с):

Формула боковой стороны (с) прямоугольной трапеции


3. Формулы боковой стороны (с) прямоугольной трапеции через площадь

боковая сторона (с) прямоугольной трапеции через площадь

a – нижнее основание

b – верхнее основание

m – средняя линия трапеции

c – боковая сторона под прямым углом к основаниям

Формула длины боковой стороны (с) :


4. Формулы боковой стороны (d) прямоугольной трапеции через другие стороны и угол при нижнем основании

боковая сторона (d) прямоугольной трапеции через другие стороны и угол при нижнем основании

a – нижнее основание

b – верхнее основание

c – боковая сторона под прямым углом к основаниям

α – угол при нижнем основании

h – высота трапеции

d – боковая сторона

Формулы длины боковой стороны (d) :


5. Формула боковой стороны (d) прямоугольной трапеции через площадь

боковая сторона (d) прямоугольной трапеции через площадь

a – нижнее основание

b – верхнее основание

m – средняя линия трапеции

α – угол при нижнем основании

d – боковая сторона

Формула длины боковой стороны (d) :

Формула боковой стороны (d) прямоугольной трапеции через площадь



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула длины оснований прямоугольной трапеции через среднюю линию

длина оснований прямоугольной трапеции через среднюю линию

a – нижнее основание

b – верхнее основание

m – средняя линия

Формулы длины оснований :

2. Формулы длины оснований через боковые стороны и угол при нижнем основании

длина оснований через боковые стороны и угол при нижнем основании

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α – угол при нижнем основании

Формулы длины оснований :


3. Формулы длины оснований трапеции через диагонали  и угол между ними

длина оснований трапеции через диагонали  и угол между ними

a – нижнее основание

b – верхнее основание

c – боковая сторона под прямым углом к основаниям

d1 , d2 – диагонали трапеции

α , β – углы между диагоналями

Формулы длины оснований :


4. Формулы длины оснований трапеции через площадь

длина оснований трапеции через площадь

a – нижнее основание

b – верхнее основание

c – боковая сторона под прямым углом к основаниям

h – высота трапеции

Формулы длины оснований :



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула средней линии равнобедренной трапеции через основания

средняя линия равнобедренной трапеции через основания

a – нижнее основание

b – верхнее основание

m – средняя линия

Формула средней линии, (m ):

Формула средней линии равнобедренной трапеции через основания

2. Формулы средней линии через основание, высоту и углы при нижнем основании

средняя линия через основание, высоту и углы при нижнем основании

a – нижнее основание

b – верхнее основание

c – боковая сторона

α – угол при нижнем осровании

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, (m ):

Формулы средней линии через основание, высоту и углы при нижнем основании

Формулы средней линии через основание, высоту и углы при нижнем основании

Формулы средней линии через основание, высоту и углы при нижнем основании

Формулы средней линии через основание, высоту и углы при нижнем основании


3. Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

средняя линия трапеции через диагонали, высоту и угол между диагоналями

d – диагонали трапеции

α , β – углы между диагоналями

h – высота трапеции

m – средняя линия

Формула средней линии трапеции, (m ):


4. Формула средней линии трапеции через площадь и высоту

средняя линия трапеции через площадь и высоту

S – площадь трапеции

h – высота трапеции

α – угол при нижнем осровании

m – средняя линия

Формула средней линии трапеции, (m ):

Формула средней линии трапеции через площадь и высоту



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула высоты равнобедренной трапеции через стороны и углы при основании

Высота равнобедренной трапеции через стороны и углы при основании

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

α – угол при нижнем основании

h – высота трапеции

Формулы длины высоты, (h ):

Формула высоты равнобедренной трапеции через стороны

Формула высоты равнобедренной трапеции через стороны и угол

2. Формула высоты равнобедренной трапеции через диагонали и углы между ними

Высота равнобедренной трапеции через диагонали и углы между ними

d – диагонали трапеции

α , β – углы между диагоналями

a , b – основания

h – высота трапеции

m – средняя линия

Формулы длины высоты, (h ):

Формулы длины высоты равнобедренной трапеции

Формулы длины высоты равнобедренной трапеции


3. Формула высоты равнобедренной трапеции через площадь

Высота равнобедренной трапеции через площадь

S – площадь трапеции

a , b – основания

h – высота трапеции

m – средняя линия

Формулы длины высоты, (h ):

Формула высоты равнобедренной трапеции через площадь



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула длины основания равнобедренной трапеции через среднюю линию

Основания равнобедренной трапеции

a – нижнее основание

b – верхнее основание

m – средняя линия

Формулы длины основания:

Формула длины стороны трапецииФормула длины стороны трапеции

2. Формулы длины сторон через высоту и угол при нижнем основании

Длина сторон равнобедренной трапеции

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

α угол при основании трапеции

h – высота трапеции

Формулы всех четырех сторон трапеции:

Формула длины сторон равнобедренной трапеции через высоту

Формула длины сторон равнобедренной трапеции через высоту

Формула длины сторон равнобедренной трапеции через боковую сторону


3. Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

Длина сторон равнобедренной трапеции через диагональ

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

d – диагонали

α , β – углы между диагоналями

h – высота трапеции

Формулы длины сторон трапеции:

Формула длины основания равнобедренной трапеции через диагонали

справедливо для данной ситуации:


4. Формулы длины сторон равнобедренной трапеции через площадь

Стороны равнобедренной трапеции через площадь

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

α , β – углы при основаниях

m – средняя линия

h – средняя линия

Формулы длины сторон равнобедренной трапеции через площадь:

Формулы длины сторон  равнобедренной трапеции через площадьФормулы длины сторон  равнобедренной трапеции через площадь

Формулы длины сторон  равнобедренной трапеции через площадь

Формулы длины сторон  равнобедренной трапеции через площадь



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

Трапеция это фигура, которая имеет четыре стороны, две из которых параллельны, а две другие, нет. Параллельные стороны называются – верхнее основание и нижнее основание. Две другие, называются боковыми сторонами.
Высота трапеции это отрезок, длина которого, равна кратчайшему расстоянию между основаниями и следовательно расположенному перпендикулярно к этим основаниям.


1. Формула высоты трапеции через стороны и углы при основании

Формула высоты произвольной трапеции

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α, β углы трапеции

h – высота трапеции

Формулы длины высоты, (h ):

Формула высоты произвольной трапеции

Формула высоты произвольной трапеции

2. Формула высоты трапеции через диагонали и углы между ними

Формула высоты трапеции через диагонали

d1 , d2 – диагонали трапеции

α , β – углы между диагоналями

a , b – основания

h – высота трапеции

m – средняя линия

Формулы длины высоты, (h ):


3. Формула высоты трапеции через площадь

Формула высоты трапеции через площадь

S – площадь трапеции

a , b – основания

h – высота трапеции

m – средняя линия

Формулы длины высоты, (h ):

Формула высоты произвольной трапеции через площадь



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

Трапеция это фигура, которая имеет четыре стороны, две из которых параллельны, а две другие, нет. Параллельные стороны называются – верхнее основание и нижнее основание. Две другие, называются боковыми сторонами.
Средняя линия трапеции – отрезок соединяющий середины боковых сторон и расположен параллельно к основаниям. Длина средней линии, равна полу сумме оснований.


1. Формула средней линии трапеции через основания

Формула средней линии трапеции через основания

b – верхнее основание

a – нижнее основание

m– средняя линия

Формула средней линии, (m ):

Формула средней линии трапеции через основания

2. Формулы средней линии через основание, высоту и углы при нижнем основании

Формула средней линии трапеции через основание, высоту и углы

b – верхнее основание

a – нижнее основание

α, β углы трапеции

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, (m):

Формулы средней линии через основание, высоту и углы при нижнем основании

Формулы средней линии через основание, высоту и углы при нижнем основании


3. Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

αβ – углы между диагоналями

d1 , d2 – диагонали трапеции

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, (m ):

Формула средней линии трапеции через диагонали, высоту и угол между диагоналями


4. Формула средней линии трапеции через площадь и высоту

Формула средней линии трапеции через площадь и высоту

S – площадь трапеции

h – высота трапеции

m – средняя линия

Формула средней линии трапеции, (m):

Формула средней линии трапеции через площадь и высоту



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула длины основания трапеции через среднюю линию

Длина основания трапеции через среднюю линию

a – нижнее основание

b – верхнее основание

m – средняя линия

Формулы длины оснований :

Формула длины стороны трапецииФормула длины стороны трапеции

2. Формулы длины сторон через высоту и углы при нижнем основании

Длина стороны трапеции

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α, β углы трапеции

h – высота трапеции

Формулы всех четырех сторон трапеции:

Формула длины стороны трапеции

Формула длины стороны трапеции

Формула длины стороны трапеции

Формула длины стороны трапеции

Формула длины стороны трапеции Формула длины стороны трапеции


3. Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

Длина сторон трапеции через диагонали и высоту

a – нижнее основание

b – верхнее основание

d1 , d2 – диагонали трапеции

α , β – углы между диагоналями

h – высота трапеции

Формулы длины сторон трапеции:

Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

Добавить комментарий