как найди угол образующийся мезду бОльшей диагональю параллелепипеда и основанием?
илья апухтин
Ученик
(161),
на голосовании
12 лет назад
стороны прямого параллелепипеда равны 1 см и 3 см, а угол между ними равен корень из 5/3. найдите угол, который образует бОльшая диагональ параллелепипеда с основанием, если боковое ребро параллелепипеда равно корень из 14 см
Голосование за лучший ответ
Как решить задачу (см.)?
Стороны основания прямоугольного параллелепипеда равны 6м и 8м,боковое ребро равно 10м. Найдите угол между диагональю параллелепипеда и плоскостью его основания.
Прямоугольный параллелепипед показан на рисунке.
Имеем b = 6 м, а = 8 м и с = 10м. Найти угол между диагональю параллелепипеда d =AG и плоскостью его основания ABCD, то есть угол между диагоналями AG и АС. (На рисунке диагональ АС не нарисована). Вначале найдем длину диагонали АС = sqrt(a^2 + b^2) = sqrt(8^2 + 6^2) = sqrt(64 + 36) = sqrt(100) = 10 м. (На рисунке диагональ АС не прочерчена, на своем рисунке прочертите ее для наглядности). Значок sqrt означает квадратный корень (от английских слов square root). Математический знак корня БВ не понимает, поэтому ставит вместо него знак вопроса ?). БВ не понимает ни греческие буквы, ни математические знаки, которых нет на клавиатуре. Итак, АС = 10 м. Имеем прямоугольный треугольник АСG. Теперь легко найти угол CAG в этом треугольнике CAG. Угол GCA будет прямоугольным (90°), так как ребро GC в параллелепипеде перпендикулярно основанию ADCB. Из прямоугольного треугольника AGC находим тангенс угла GAC. При этом заметим, GC = с = 10 м, так как оба эти катета – высота параллелепипеда. Имеем tg(GAC) = GC/AC = 10/10 = 1. А если тангенс равен 1, то это угол в 45°. Ответ 45°.
Диагональ параллелепипеда
Геометрический калькулятор для прямоугольного параллелепипеда можно запустить также, зная два из трех ребер тела и его диагональ. Поскольку диагональ параллелепипеда равна по теореме Пифагора квадратному корню из суммы квадратов всех трех его ребер, то из этого выражения алгебраически можно вывести формулу для третьего неизвестного ребра. (рис.22.4) d_4=√(a^2+b^2+c^2 ) b=√(a^2+c^2-〖d_4〗^2 )
Имея возможность вычислить неизвестное ребро параллелепипеда, можно следом найти все остальные диагонали его боковых граней. (рис.22.1, 22.2, 22.3) d_1=√(a^2+c^2 ) d_2=√(a^2+b^2 )=√(a^2+a^2+c^2-〖d_4〗^2 )=√(2a^2+c^2-〖d_4〗^2 ) d_3=√(b^2+c^2 )=√(a^2+c^2-〖d_4〗^2+c^2 )=√(a^2+2c^2-〖d_4〗^2 )
Чтобы найти угол α между диагональю прямоугольного параллелепипеда и диагональю его основания, необходимо воспользоваться отношением синуса — известного бокового ребра а к диагонали параллелепипеда. (рис.22.5) sinα=a/d_4
Периметр прямоугольного параллелепипеда равен учетверенной сумме ребер, составляющих параллелепипед. Для неизвестного ребра в формулу подставляется полученное из теоремы Пифагора выражение через диагональ параллелепипеда. P=4(a+b+c)
Площадь полной поверхности прямоугольного параллелепипеда через диагональ также можно вычислить посредством замены неизвестной переменной на соответствующее выражение. Изначально площадь параллелепипеда равна удвоенной сумме попарных произведений его ребер. S=2(ab+bc+ac)=2((a+c) √(a^2+c^2-〖d_4〗^2 )+ac)
Чтобы найти объем прямоугольного параллелепипеда, зная диагональ, нужно умножить два известных ребра параллелепипеда на квадратный корень из разности квадрата диагонали от суммы квадратов этих ребер. V=abc=ac√(a^2+c^2-〖d_4〗^2 )
Примеры с решениями
7.1Объем правильной треугольной призмы равен , сторона основания равна 6. Найти , где – угол между диагоналями двух боковых граней, проведенными из одной и той же вершины (рис. 7.1).
Решение. Дано: Найти
то для нахождения ребра H получаем уравнение
Применив теорему Пифагора, из найдем диагональ боковой грани
Теперь к применим теорему косинусов и получим уравнения для нахождения .
7.2 Основанием прямой призмы является равносторонний треугольник.
Объем призмы равен , площадь ее боковой поверхности равна 24. Вычислить , где — угол наклона диагонали боковой грани к плоскости основания (рис.7.2).
Решение. Дано: Найти
поэтому
Получаем систему уравнений и решаем ее делением первого уравнения на второе. Получаем
Тогда ребро (высота) призмы
Из треугольника находим диагональ боковой грани
и
7.3 Основанием прямой призмы является равнобедренный треугольник. Объем призмы равен 240. Диагональ одной из равных боковых граней наклонена к плоскости основания под углом, синус которого равен . Сумма длин этой диагонали и высоты призмы равна 24. Найти (в градусах) угол при вершине основания (рис.7.3).
Решение. Дано: Найти
Решаем систему уравнений
Тогда Из найдем
Площадь основания призмы
Ответ:
7.4Основанием прямой призмы является прямоугольный треугольник ABC, у которого , и катет Диагональ боковой грани призмы, проходящей через гипотенузу AB, образует с боковой гранью, проходящей через катет AC, угол . Найти , если объем призмы равен (рис.7.4).
Решение. Дано:
Найти
Согласно условию (по теореме о трех перпендикулярах), следовательно, Далее, поэтому и а это означает, что прямоугольный и равнобедренный, в нем
Решаем систему уравнений:
Во втором уравнении системы положим в результате чего уравнение приведется к виду
не удовлетворяет условию
Получаем, что поэтому
Из находим
7.5Основанием прямой призмы является равнобедренный тупоугольный треугольник. Диагональ боковой грани, противолежащей тупому углу основания, равна 6 и составляет с плоскостью основания угол 60 0 . Найти ( в градусах) тупой угол основания, если объем призмы равен 6,75 (рис 7.5).
Решение. Дано: Найти тупой
поэтому
Далее, к треугольнику применим теорему косинусов:
Ответ:
7.6 Основанием прямого параллелепипеда является ромб со стороной, равной 4, и острым углом . Объем параллелепипеда равен 96. Найти (в
градусах) угол наклона меньшей диагонали параллелепипеда к плоскости основания (рис. 7.6).
Решение. Дано:
Найти
Объем призмы где Найдем
равносторонний, поэтому
Из найдем
Ответ:
7.7 Основанием прямого параллелепипеда является квадрат. Длина бокового ребра равна 7. Найти ( в градусах) угол между диагональю параллелепипеда и боковой гранью, если диагональ параллелепипеда равна (рис. 7.7).
Решение. Дано:
Найти
Из найдем
Из прямоугольного находим, что
Рассмотрим
Ответ:
7.8Основанием прямоугольного параллелепипеда является квадрат. Высота параллелепипеда равна 4. Сумма диагонали параллелепипеда и стороны основания равна . Найти ( в градусах) угол между диагональю параллелепипеда и его боковой гранью (рис. 7.8).
Решение. Дано:
Найти
Диагональ квадрата
Из найдем Решаем систему
Решая квадратное уравнение, находим
Из прямоугольного находим
Ответ:
7.9Основанием прямого параллелепипеда является ромб. Объем параллелепипеда равен 1,5 и его высота равна . Найти (в градусах) угол наклона к плоскости основания большей диагонали параллелепипеда, если его меньшая диагональ наклонена к плоскости основания под углом (рис. 7.9).
Решение. Дано:
Найти
Так как диагонали ромба взаимно перпендикулярны, то
Из треугольников и выразим диагонали соответственно:
Ответ:
Прямоугольный параллелепипед показан на рисунке.
Имеем b = 6 м, а = 8 м и с = 10м. Найти угол между диагональю параллелепипеда d =AG и плоскостью его основания ABCD, то есть угол между диагоналями AG и АС. (На рисунке диагональ АС не нарисована). Вначале найдем длину диагонали АС = sqrt(a^2 + b^2) = sqrt(8^2 + 6^2) = sqrt(64 + 36) = sqrt(100) = 10 м. (На рисунке диагональ АС не прочерчена, на своем рисунке прочертите ее для наглядности). Значок sqrt означает квадратный корень (от английских слов square root). Математический знак корня БВ не понимает, поэтому ставит вместо него знак вопроса ?). БВ не понимает ни греческие буквы, ни математические знаки, которых нет на клавиатуре. Итак, АС = 10 м. Имеем прямоугольный треугольник АСG. Теперь легко найти угол CAG в этом треугольнике CAG. Угол GCA будет прямоугольным (90°), так как ребро GC в параллелепипеде перпендикулярно основанию ADCB. Из прямоугольного треугольника AGC находим тангенс угла GAC. При этом заметим, GC = с = 10 м, так как оба эти катета – высота параллелепипеда. Имеем tg(GAC) = GC/AC = 10/10 = 1. А если тангенс равен 1, то это угол в 45°. Ответ 45°.
Прямоугольный параллелепипед
Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.
На рисунке изображен прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями являются прямоугольники $ABCD$ и $A_1B_1C_1D_1$, а боковые ребра $AA_1, BB_1, CC_1$ и $DD_1$ перпендикулярны к основаниям.
Свойства прямоугольного параллелепипеда:
- В прямоугольном параллелепипеде $6$ граней и все они являются прямоугольниками.
- Противоположные грани попарно равны и параллельны.
- Все двугранные углы прямоугольного параллелепипеда – прямые.
- Диагонали прямоугольного параллелепипеда равны.
- Прямоугольный параллелепипед имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
- Любая грань прямоугольного параллелепипеда может быть принята за основание.
- Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.
- Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).
Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.
Чтобы были понятны формулы, введем обозначения:
$с$ – высота(она же боковое ребро);
$P_<осн>$ – периметр основания;
$S_<осн>$ – площадь основания;
$S_<бок>$ – площадь боковой поверхности;
$S_<п.п>$ – площадь полной поверхности;
$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.
$S_<бок>=P_<осн>·c=2(a+b)·c$ – площадь боковой поверхности равна произведению периметра основания на боковое ребро.
Дополнительные сведения, которые пригодятся для решения задач:
$а$ – длина стороны.
$d=a√3$ – диагональ равна длине стороны, умноженной на $√3$.
Пирамида
Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) – треугольники, имеющие общую вершину.
Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.
Объем любой пирамиды равен трети произведения основания и высоты.
В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.
В основании лежит треугольник.
- $S=/<2>$, где $h_a$ – высота, проведенная к стороне $а$.
- $S=/<2>$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
- Формула Герона $S=√$, где $р$ – это полупериметр $p=/<2>$.
- $S=p·r$, где $r$ – радиус вписанной окружности.
- $S=/<4R>$, где $R$ – радиус описанной окружности.
- Для прямоугольного треугольника $S=/<2>$, где $а$ и $b$ – катеты прямоугольного треугольника.
- Для равностороннего треугольника $S=/<4>$, где $а$ – длина стороны.
В основании лежит четырехугольник.
- Прямоугольник.
$S=a·b$, где $а$ и $b$ – смежные стороны. - Ромб.
$S=/<2>$, где $d_1$ и $d_2$ – диагонали ромба.
$S=a^2·sinα$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами. - Трапеция.
$S=<(a+b)·h>/<2>$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции. - Квадрат.
$S=a^2$, где $а$ – сторона квадрата.
Найдите объём многогранника, вершинами которого являются точки $C, A_1, B_1, C_1, D_1$ параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=8, AD=12, AA_1=4$.
Изобразим прямоугольный параллелепипед и на нем отметим вершины многогранника $C, A_1, B_1, C_1, D_1$, получим в итоге четырехугольную пирамиду. В основании пирамиды лежит прямоугольник, так основание пирамиды и прямоугольного параллелепипеда совпадают.
Объем пирамиды, в основании которой лежит прямоугольник
Для нашего рисунка стороны прямоугольника – это $А_1В_1$ и $A_1D_1$.
В прямоугольном параллелепипеде противоположные ребра равны и параллельны, следовательно, $AB=А_1В_1=8; AD=A_1D_1=12$.
Высотой в пирамиде $CA_1B_1C_1D_1$ будет являться ребро $СС_1$, так как оно перпендикулярно основанию (из прямоугольного параллелепипеда).
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Прямоугольный параллелепипед. Что это такое?
О чем эта статья:
10 класс, ЕГЭ/ОГЭ
Определение параллелепипеда
Начнем с того, что узнаем, что такое параллелепипед.
Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань — параллелограмм.
На рисунке два параллелограмма АВСD и A1B1C1D1. Основания параллелепипеда, расположены параллельно друг другу в плоскостях. А боковые ребра АA1, ВB1, CC1, DD1 параллельны друг другу. Образовавшаяся фигура — параллелепипед.
Внимательно рассмотрите, как выглядит параллелепипед и каковы его составляющие.
Когда пересекаются три пары параллельных плоскостей, образовывается параллелепипед.
Основанием параллелепипеда является, в зависимости от его типа: параллелограмм, прямоугольник, квадрат.
Параллелепипед — это:
Свойства параллелепипеда
Быть параллелепипедом ー значит неотступно следовать законам геометрии. Иначе можно скатиться до простого параллелограмма.
Вот 4 свойства параллелепипеда, которые необходимо запомнить:
- Противолежащие грани параллелепипеда равны и параллельны друг другу.
- Все 4 диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
- Параллелепипед симметричен относительно середины его диагонали.
- Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Подготовка к ЕГЭ по математике онлайн в школе Skysmart — отличный способ освежить знания и снять стресс перед экзаменом.
Прямой параллелепипед
Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.
Основание прямого параллелепипеда — параллелограмм. В прямом параллелепипеде боковые грани — прямоугольники.
Свойства прямого параллелепипеда:
- Основания прямого параллелепипеда — одинаковые параллелограммы, лежащие в параллельных плоскостях.
- Боковые ребра прямого параллелепипеда равны, параллельны и перпендикулярны плоскостям оснований.
- Высота прямого параллелепипеда равна длине бокового ребра.
- Противолежащие боковые грани прямого параллелепипеда — равные прямоугольники.
- Диагонали прямого параллелепипеда точкой пересечения делятся пополам.
На слух все достаточно занудно и сложно, но на деле все свойства просто описывают фигуру. Внимательно прочтите вслух каждое свойство, разглядывая рисунок параллелепипеда после каждого пункта. Все сразу встанет на места.
Формулы прямого параллелепипеда:
- Площадь боковой поверхности прямого параллелепипеда
Sб = Ро*h
Ро — периметр основания
h — высота - Площадь полной поверхности прямого параллелепипеда
Sп = Sб+2Sо
Sо — площадь основания - Объем прямого параллелепипеда
V = Sо*h
Прямоугольный параллелепипед
Определение прямоугольного параллелепипеда:
Прямоугольным параллелепипедом называется параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.
Внимательно рассмотрите, как выглядит прямоугольный параллелепипед. Отметьте разницу с прямым параллелепипедом.
Свойства прямоугольного параллелепипеда
Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда.
- Прямоугольный параллелепипед содержит 6 граней. Все грани прямоугольного параллелепипеда — прямоугольники.
- Противолежащие грани параллелепипеда попарно параллельны и равны.
- Все углы прямоугольного параллелепипеда, состоящие из двух граней — 90°.
- Диагонали прямоугольного параллелепипеда равны.
- В прямоугольный параллелепипеде четыре диагонали, которые пересекаются в одной точке и делятся этой точкой пополам.
- Любая грань прямоугольного параллелепипеда может быть принята за основание.
- Если все ребра прямоугольного параллелепипеда равны, то такой параллелепипед является кубом.
- Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).
Формулы прямоугольного параллелепипеда:
- Объем прямоугольного параллелепипеда
V = a · b · h
a — длина, b — ширина, h — высота - Площадь боковой поверхности
Sбок = Pосн·c=2(a+b)·c
Pосн — периметр основания, с — боковое ребро - Площадь поверхности
Sп.п = 2(ab+bc+ac)
Диагонали прямоугольного параллелепипеда: теорема
Не достаточно просто знать свойства прямоугольного параллелепипеда, нужно уметь их доказывать.
Если есть теорема, нужно ее доказать. (с) Пифагор
Теорема: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
В данном случае, три измерения — это длина, ширина, высота. Длина, ширина и высота — это длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда.
Дан прямоугольный параллелепипед ABCDA1B1C1D1. Доказать теорему.
Доказательство теоремы:
Чтобы найти диагональ прямоугольного параллелепипеда, помните, что диагональ — это отрезок, соединяющий противоположные вершины.
Все грани прямоугольного параллелепипеда — прямоугольники.
ΔABD: ∠BAD = 90°, по теореме Пифагора
ΔB₁BD: ∠B₁BD = 90°, по теореме Пифагора
d² = d₁² + c² = a² + b² + c²
d² = a² + b² + c²
Доказанная теорема — пространственная теорема Пифагора.
Куб: определение, свойства и формулы
Кубом называется прямоугольный параллелепипед, все три измерения которого равны.
Каждая грань куба — это квадрат.
Свойства куба:
- В кубе 6 граней, каждая грань куба — квадрат.
- Противолежащие грани параллельны друг другу.
- Все углы куба, образованные двумя гранями, равны 90°.
- У куба четыре диагонали, которые пересекаются в центре куба и делятся пополам.
- Диагонали куба равны.
- Диагональ куба в √3 раз больше его ребра.
- Диагональ грани куба в √2 раза больше длины ребра.
Помимо основных свойств, куб характеризуется умением вписывать в себя тетраэдр и правильный шестиугольник.
Формулы куба:
- Объем куба через длину ребра a
V = a3 - Площадь поверхности куба
S = 6a2 - Периметр куба
P = 12a
Решение задач
Чтобы считать тему прямоугольного параллелепипеда раскрытой, стоит потренироваться в решении задач. 10 класс — время настоящей геометрии для взрослых. Поэтому, чем больше практики, тем лучше. Разберем несколько примеров.
Задачка 1. Дан прямоугольный параллелепипед. Нужно найти сумму длин всех ребер параллелепипеда и площадь его поверхности.
Для наглядного решения обозначим измерения прямоугольного параллелепипеда: a – длина, b – ширина, c – высота. Тогда a = 10, b = 5, c = 8.
Так как в прямоугольном параллелепипеде всего по 4 — высота, ширина и длина, и все измерения равны между собой, то:
1) 4 * 10 = 40 (см) – сумма длин параллелепипеда;
2) 4 * 5 = 20 (см) – суммарное значение ширины параллелепипеда;
3) 4 * 8 = 32 (см) – сумма высот параллелепипеда;
4) 40 + 20 + 32 = 92 (см) – сумма длин всех ребер прямоугольного параллелепипеда.
Отсюда можно вывести формулу по нахождению суммы длин всех сторон ПП:
X = 4a + 4b + 4c (где X – сумма длин ребер).
Формула нахождения площади поверхности параллелепипеда Sп.п = 2(ab+bc+ac).
Тогда: S = (5*8 + 8*10 + 5*10) * 2 = 340 см2.
Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.
Нужно найти длину ребра A1B1.
В фокусе внимания треугольник BDD1.
Угол D = 90°.
По теореме Пифагора:
BD1 2 = DD1 2 + BD 2
BD 2 = BD1 2 – DD1 2
BD 2 = 26 – 9 = 17
BD = √17
В треугольнике ADB угол А = 90°.
BD 2 = AD 2 + AB 2
AB 2 = BD 2 – AD 2 = (√17)2 — 4 2 = 1
A1B1 = AB = 1.
Задачка 3. Дан прямоугольный параллелепипед АВСDA1B1C1D1.
AB = 4
AD = 6
AA1= 5
Нужно найти отрезок BD1.
В треугольнике ADB угол A = 90°.
По теореме Пифагора:
BD 2 = AB 2 +AD 2
BD 2 = 4 2 + 6 2 = 16 + 36 = 52
В треугольнике BDD1 угол D = 90°.
BD1 2 = 52 + 25 = 77
BD1 = √77.
Самопроверка
Теперь потренируйтесь самостоятельно — мы верим, что все получится!
Задачка 1. Дан прямоугольный параллелепипед. Измерения (длина, ширина, высота) = 8, 10, 20. Найдите диагональ параллелепипеда.
Подсказка: если нужно выяснить, чему равна диагональ прямоугольного параллелепипеда, вспоминайте теорему.
Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.
Вычислите длину ребра AA1.
Как видите, самое страшное в параллелепипеде — 14 букв в названии. Чтобы не перепутать прямой параллелепипед с прямоугольным, а ребро параллелепипеда с длиной диагонали параллелепипеда, вот список основных понятий:
- прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию;
- параллелепипед называется прямоугольным, когда его боковые ребра перпендикулярны к основанию;
- основание прямоугольного параллелепипеда — прямоугольник;
- три измерения прямоугольного параллелепипеда: длина, ширина, высота;
- диагональ параллелепипеда равна сумме квадратов его измерений.
Стереометрия. Страница 5
- Главная
- Репетиторы
- Учебные материалы
- Контакты
1. Двугранный, трехгранный углы
Двугранный угол представляет собой фигуру, образованную двумя полуплоскостями и общей ограничивающей их прямой. Полуплоскости называются гранями двугранного угла, а прямая, ограничивающая их, – ребром (Рис.1).
Если провести плоскость, перпендикулярную ребру двугранного угла, то она пересечет его грани по двум полупрямым. Угол, образованный между двумя этими полупрямыми, называется линейным углом двугранного угла.
Градусная мера двугранного угла равна градусной мере линейного угла. Величина двугранного угла не зависит от выбора линейного угла, т.е. плоскости, перпендикулярной ребру двугранного угла.
7. Правильные многогранники
Если выпуклый многогранник имеет все грани правильные многоугольники с равным числом сторон и в каждой вершине многоугольника сходится одно и то же число ребер, то такой многогранник называется правильным.
Существует пять типов правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.
Тетраэдр это многогранник, у которого грани правильные треугольники.
Куб это многогранник, у которого все грани – квадраты.
Октаэдр – многогранник, который представляет собой две пирамиды с общим основанием. Основание этих пирамид – квадрат.
Додекаэдр это многогранник, у которого грани правильные пятиугольники. В каждой вершине сходится по три ребра.
Икосаэдр это многогранник, у которого грани правильные треугольники. В каждой вершине сходится по пять ребер.
8. Пример 1
Докажите, что сечение призмы, параллельное основаниям, равно основаниям.
Доказательство:
Пусть дана призма АВСA’B’C’ (Рис.7). Основания призмы равны и являются треугольниками. Они лежат в параллельных плоскостях и совмещаются параллельным переносом. Отсюда следует, что боковые ребра параллельны и равны.
Если провести плоскость α, параллельную основаниям, то в сечении получится такое же основание. Так как сторона A”C” параллельна АС, A”B” – AB, B”C” – BC. А так как боковые ребра AA’, BB’, CC’ параллельны, то АА”C”C, AA”B”B, BB”C”C прямоугольники (параллелограммы, если АВСA’B’C’ наклонная призма).
Отсюда следует, что A”C” = AC, A”B” = AB, B”C” = BC. Таким образом, треугольник A”B”C” равен треугольнику АВС и A’B’C’ соответственно. Отсюда можно сделать и общий вывод: если в основании призмы будет лежать како-либо многоугольник, то в сечении, параллельном основаниям, получится такой же многоугольник.
Рис.7 Задача. Докажите, что сечение призмы.
Пример 2
Боковое ребро наклонной призмы равно 16 м. Оно наклонено к плоскости основания под углом 30°. Найдите высоту призмы.
Решение:
Пусть дана наклонная призма АВСA’B’C’ (Рис. 8). Рассмотрим нижнее основание – треугольник АВС. Проведем прямую а через точку А в плоскости основания, перпендикулярную A’A. Проведем также прямую АР, перпендикулярную прямой а. Таким образом, прямая АР является проекцией наклонной A’A на плоскость основания. А плоскость, в которой лежит треугольник AA’P, перпендикулярна плоскости основания.
Рассмотрим треугольник AA’P. Угол A’AP равен 30° по условию задачи. Опустим высоту A’O. В прямоугольном треугольнике AA’O найдем A’O.
sin 30° = A’O / AA’ . Отсюда:
A’O = AA’ sin 30° = 16 / 2 = 8 м.
Рис.8 Задача. Боковое ребро наклонной призмы равно 15 м.
Пример 3
В правильной четырехугольной призме через середины двух смежных сторон основания проведена плоскость, пересекающая три боковые ребра и наклоненная к плоскости основания под углом 60°. Сторона основания равна 8 м. Найдите площадь полученного сечения.
Решение:
Пусть дана правильна четырехугольная призма АВСDA’B’C’D’ (Рис. 9). Заметим, что многоугольник PBCDF является проекцией многоугольника PKHSF на плоскость основания, площадь которого необходимо найти. Следовательно, найдем площадь многоугольника PBCDF.
SPBCDF = 8 2 – (8/2) 2 /2 = 56 м 2
Теперь найдем площадь многоугольника PKHSF из формулы:
SPKHSF = SPBCDF / cos 60° = 56 / 1 / 2 = 112 м 2
Рис.9 Задача. В правильной четырехугольной призме.
Пример 4
Боковая поверхность правильной четырехугольной призмы 12 м 2 . А полная поверхность 20 м 2 . Найдите высоту призмы.
Решение:
Пусть дана правильная четырехугольная призма АВСDA’B’C’D’ (Рис. 10). Так как призма имеет четыре боковые грани, то площадь одной боковой грани составляет 1/4 часть боковой поверхности.
SAA’D’D = Sбок / 4 = 12 / 4 = 3 м 2
Площадь основания призмы равна половине разности площадей между полной поверхностью призмы и ее боковой поверхностью.
2 SABCD = Sпол – Sбок = 20 – 12 = 8 м 2
Так как площадь боковой грани составляет 3 м 2 , то высоту призмы, т.е. AA’, можно найти из формулы:
Следовательно, высота призмы составляет 3 / 2 м.
Рис.10 Задача. Боковая поверхность правильной четырехугольной призмы.
Пример 5
Основание пирамиды – ромб с диагоналями 6 м и 8 м. Высота пирамиды проходит через точку пересечения диагоналей ромба и равна 7 м. Найдите боковую поверхность пирамиды.
Решение:
Пусть дана пирамида АВСDS (Рис. 11). Основание пирамиды – ромб ABCD с диагоналями АС = 8 м, BD = 6 м. Высота SO = 7 м.
По теореме Пифагора найдем боковые ребра SA и SD:
SA 2 = AO 2 + SO 2 = 4 2 + 7 2 = 65
SD 2 = OD 2 + SO 2 = 3 2 + 7 2 = 58
SA = , SD =
Теперь найдем сторону ромба AD:
AD 2 = AO 2 + OD 2 = 3 2 + 4 2 = 25 , AD = 5 м
Теперь по теореме косинусов найдем косинус угла α между боковыми ребрами:
AD 2 = SA 2 + SD 2 – 2 SA SD cos α = 65 + 58 – 2 cos α = 25
Отсюда, cos α = 49 / , sin α = 1369 /
Теперь найдем площадь боковой грани SASD:
SASD = SA SD sin α / 2 = 1369 / / 2 = 18.5 м 2
Отсюда, Sбок = 4 SASD = 4 * 18.5 = 74 м 2
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/pryamougolnyj-parallelepiped
http://www.mathtask.ru/0064-stereometry.php
[/spoiler]
|
||||
1 2 3 4 5 6 7 8 | ||||
Рис. 1 Двугранный угол. Трехгранный углыПусть заданы три луча a, b, c не лежащие в одной плоскости и исходящие из одной общей точки О. (Рис.1.1). Тогда трехгранным углом называется фигура, которая состоит из трех плоских углов. Точка О, из которой исходят лучи, называется вершиной трехгранного угла. Сами углы называются гранями, а стороны – ребрами. Понятие многогранного угла можно определить аналогичным образом. |
Рис. 1.1 Трехгранный угол. 2.Призма и построение ее сеченийПрямая призмаПризмой называется многогранник, у которого две стороны являются плоскими многоугольниками, лежащими в параллельных плоскостях и совмещаемых параллельным переносом, а боковые грани состоят из всех отрезков, соединяющих соответствующие точки этих многоугольников (Рис.2). Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие точки оснований, ее ребрами. Высотой призмы называется расстояние между ее основаниями. Если боковые ребра призмы перпендикулярны основанию, то такая призма называется прямой. В противном случае призма называется наклонной. Боковые ребра у призмы параллельны и равны. Боковые грани прямой призмы являются прямоугольниками. Если в основании призмы лежит правильный многоугольник, то такая призма называется правильной. Теорема: площадь боковой поверхности прямой призмы равна произведению периметра основания призмы на ее высоту. В основании призмы лежит правильный многоугольник. Боковые ребра призмы находятся под прямым углом к основанию и являются высотами. Боковые грани представляют собой прямоугольники. Отсюда следует, что площадь боковой поверхности призмы равна: где Полная площадь призмы равна сумме площадей двух оснований и боковой поверхности. Рис.2 Прямая призма Наклонная призмаЕсли боковые ребра призмы находятся под некоторым углом к основанию, то призма является наклонной (Рис.2.1). Используя правила параллельного проектирования, изображение призмы можно построить следующим образом. Сначала строится одно из оснований, т.е. многоугольник, а затем проводят боковые ребра из каждой вершины основания, которые параллельны и равны между собой. Затем концы этих отрезков соединяются и строится другое основание призмы. Для того, чтобы построить сечение призмы плоскостью, сначала задают прямую g в плоскости одного из оснований, которая называется следом. Затем проводят через заданную точку В прямую, которая находится в плоскости грани, и соединяют ее с заданным следом в точке Е. Отрезок АС на рассматриваемой грани есть пересечение этой грани с секущей плоскостью. Если грань, которая содержит точку В, параллельна следу, то секущая плоскость пересекает эту грань по отрезку, параллельному заданному следу и проходящему через точку В. Таким образом, можно провести отрезки на всех гранях призмы и получить сечение плоскостью с заданным следом. Рис.2.1 Наклонная призма 3. ПараллелепипедПризма, у которой основание есть параллелограмм, называется параллелепипедом. Параллелепипед, у которого грани расположены под некоторым углом ≠ 90° к основанию, называется наклонным. В противном случае – прямым, т.е. угол между боковыми гранями и основанием = 90°. Теорема. Противолежащие грани параллелепипеда параллельны и равны. Доказательство. Пусть дан параллелепипед ABCDA’B’C’D’ (Рис.3). Рассмотрим грани параллелепипеда AA’D’D и BB’C’C. Так как основания параллелепипеда параллелограммы, то сторона AD параллельна и равна стороне ВС, а сторона A’D’ параллельна и равна стороне B’C’. Сторона AB параллельна и равна стороне DС, а сторона A’B’ параллельна и равна стороне D’C’. Отсюда можно сделать вывод, что грани AA’D’D и BB’C’C лежат в параллельных плоскостях. Таким образом, грань AA’D’D совмещается параллельным переносом с гранью BB’C’C. Следовательно эти грани равны. Аналогично можно доказать параллельность и равенство граней DD’C’C и AA’B’B. Центральная симметрия параллелепипедаТеорема. Диагонали параллелепипеда пересекаются в одной точке, которая делит их пополам. Рассмотрим две грани параллелепипеда ABCD и BB’C’C. Сторона BC у них общая. Следовательно стороны AD и B’C’ равны, лежат на параллельных прямых и в одной плоскости. Так как грани параллелепипеда AA’B’B и DD’C’C лежат в параллельных плоскостях и совмещаются параллельным переносом, то диагонали AB’ и DC’ параллельны и лежат в плоскости сторон AD и B’C’. Отсюда можно сделать вывод, что AB’C’D – параллелограмм. Диагонали этого параллелограмма пересекаются в точке, которая делит их пополам. Отсюда следует, что точка пересечения диагоналей параллелепипеда является его центром симметрии. Рис. 3 Наклонный параллелепипед. 4.Прямоугольный параллелепипедПрямой параллелепипед, у которого основание является прямоугольником, называется прямоугольным. Длины не параллельных ребер параллелепипеда называются его линейными размерами. Теорема. В прямоугольном параллелепипеде квадрат диагонали равен сумме квадратов трех его измерений. Доказательство. Пусть дан параллелепипед ABCDA’B’C’D’ (Рис.4). Рассмотрим прямоугольный треугольник ACC’. Cторонами данного треугольника являются диагональ параллелепипеда AC’, диагональ основания AC и ребро боковой грани CC’. Тогда по теореме Пифагора находим: Рис. 4 Прямоугольный параллелепипед. AC’ 2 = AC 2 + CC’ 2 AC 2 = AD 2 + DC 2 Следовательно: AC’ 2 = AD 2 + DC 2 + CC’ 2 Стороны AD, DC, CC’ являются линейными размерами параллелепипеда. Симметрия прямоугольного параллелепипедаПрямоугольный параллелепипед имеет центр симметрии. Если все три измерения параллелепипеда разные, то он имеет три плоскости симметрии, которые проходят через центры граний (Рис.4.1) Если параллелепипед имеет два равных измерения, то у него есть еще две плоскости симметрии, которые проходят через диагональные сечения. Если у параллелепипеда все три линейные размера равны, то он является кубом. И у него девять плоскостей симметрии. Рис. 4.1 Симметрия прямоугольного параллелепипеда. 5. Пирамида Пирамидой называется многогранник, который состоит из многоугольника в основании, точки, не лежащей в плоскости основания, и всех отрезков, соединяющих вершины многоугольника и данную точку (Рис.5). Точка, не лежащая в плоскости основания, называется вершиной пирамиды. Отрезки, соединяющие вершины основания с вершиной пирамиды, называются боковыми ребрами. Перпендикуляр, опущенный из вершины пирамиды на плоскость основания, называется высотой пирамиды. На рисунке 5 изображена пирамида, в основании которой лежит правильный шестиугольник. A1A2A3A4A5A6 Построение пирамиды и ее плоских сеченийДля того чтобы построить пирамиду, необходимо сначала построить основание – плоский многоугольник. Затем взять точку, не лежащую в плоскости основания, и соединить ее боковыми ребрами с вершинами основания. Сечения пирамиды, проходящие через ее вершину, представляют собой треугольники. Например, треугольниками являются диагональные сечения, т.е. сечения, проходящие через два несоседних боковых ребра . Сечение пирамиды с боковым следом строится аналогично, как и сечение призмы (Рис.5). Т.е. сначала задается прямая в плоскости основания – след g. Затем берется какая-нибудь точка В, принадлежащая сечению, и строится пересечение следа g секущей плоскости c плоскостью этой грани – точка D. Полученный таким образом отрезок АС, представляет собой линию пересечения плоскости грани и плоскости сечения пирамиды. Если точка В лежит на грани, параллельной следу g (Рис.5.1), то секущая плоскость пересекает эту грань по отрезку BC, параллельному следу g. Концы отрезка также соединяют со следом по прямой ED в плоскости α другой грани и получают прямую пересечения этой грани с плоскостью сечения и т.д. Таким образом можно построить линии пересечения плоскости сечения со всеми гранями пирамиды. Рис. 5.1 Построение пирамиды и ее плоских сечений. 6. Усеченная пирамидаТеорема. Плоскость, пересекающая пирамиду и параллельная ее основанию, отсекает подобную пирамиду. Пусть дана пирамида ABCDES. ABCDE – основание пирамиды, пятиугольник. S – вершина пирамиды. α – секущая плоскость. Подвергнем пирамиду преобразованию подобия (гомотетии) с коэффициентом подобия k относительно вершины S. Так как при преобразовании подобия расстояние от вершины до точек фигуры изменяется в одно и тоже k число раз, то пятиугольник в основании переходит в плоскость α, параллельную основанию, т.е. секущую плоскость. Точки A’B’C’D’E’ – точки пересечения боковых ребер пирамиды с плоскостью α. И пирамида, которая образуется путем отсечения данной пирамиды плоскостью α, является подобной данной. Правильная пирамидаЕсли основание пирамиды есть правильный многоугольник, а основание высоты совпадает с центром этого многоугольника, то такая пирамида называется правильной. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой. Теорема. Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему. Рис. 6 Усеченная пирамида. |
|||
Рис. 6 Правильные многогранники. |
||||
План урока:
Понятие двугранного угла и угла между плоскостями
Перпендикулярность плоскостей
Прямоугольный параллелепипед
Трехгранный угол
Многогранный угол
Типичные задачи на углы между плоскостями
Понятие двугранного угла и угла между плоскостями
Напомним, что в планиметрии углом называют фигуру, состоящую из точки и двух лучей, выходящих из нее. Сама точка именуется вершиной угла, а лучи – сторонами угла.
По аналогии в стереометрии рассматривается схожая фигура – двугранный угол. Он состоит из двух полуплоскостей, которые исходят из одной прямой. Каждая из этих полуплоскостей именуется гранью двугранного угла, а их общая прямая – это ребро двугранного угла.
Для обозначения двугранного угла достаточно указать две точки на его ребре, а также ещё по одной точке на каждой грани. Например, на следующем рисунке показан угол САВD:
Двугранные углы часто встречаются в обычной жизни. Например, его образуют двухскатные крыши домов. В стереометрии двугранные угла можно найти в любом многограннике.
Двугранные углы можно измерять. Для этого надо выбрать произвольную точку на ребре угла и на каждой грани построить перпендикуляр, проходящий через эту точку. Через эти два перпендикуляра можно построить единственную плоскость. Угол между двумя перпендикулярами и принимается за величину двугранного угла.
Отдельно отметим, что плоскость, проходящая через перпендикуляры (на рисунке выше это γ) перпендикулярна ребру угла АВ. Это вытекает из признака перпендикулярности прямой и плоскости. Действительно, АВ⊥ВС и АВ⊥BD, поэтому и АВ⊥γ. Построенный угол ∠СBD называют линейным углом двугранного угла.
Понятно, что в каждом двугранном угле можно построить сколько угодно линейных углов:
Здесь помимо ∠ВСD построены линейные углы ∠В’С’D’ и ∠В’’С’’D’’. Однако все эти углы имеют одинаковую градусную меру. Сравним, например, ∠ВСD и ∠В’С’D’. Так как BD⊥AB и B’D’⊥АВ, то BD||B’D’. Аналогично можно прийти к выводу, что ВС||B’C’. Получаем, что стороны углов ∠ВСD и ∠В’С’D’ – это сонаправленные лучи, а потому ∠ВСD и ∠В’С’D’ одинаковы.
Двугранные углы, как и обычные углы, можно разделить на острые (их градусная мера меньше 90°), прямые (они в точности равны 90°) и тупые (которые больше 90°).
Если две плоскости пересекаются, то они образуют сразу 4 двугранных угла. Если среди них есть острый угол, то его величина считается углом между плоскостями. Если же все образуется 4 прямых двугранных угла, то угол между плоскостями принимается равным 90°.
Перпендикулярность плоскостей
В частном случае, когда угол составляет 90°, говорят, что пересекающиеся плоскости перпендикулярны.
Перпендикулярны друг другу пол и стены в доме, смежные грани кубика, стенки коробки. Существует особый признак перпендикулярности плоскостей.
Действительно, пусть плоскости α и β пересекаются по линии n, и в β есть такая прямая m, что m⊥α. Тогда m и n должны пересекаться в какой-нибудь точке К. Проведем в плоскости α через К прямую р, перпендикулярную n. Ясно, что m⊥р, ведь m⊥α. Получается, угол между m и р как раз и является углом между плоскостями α и β, ведь m⊥n и р⊥n. И этот угол равен 90°, ведь m⊥p, ч т. д.
Из доказанного признака вытекает следующее утверждение:
Прямоугольный параллелепипед
Ранее мы уже узнали про параллелепипед. Это фигура с 6 гранями, каждая из которых представляет собой параллелограмм. Особый интерес представляет его частный случай – прямоугольный параллелепипед.
Такую форму имеют многие шкафы, другие предметы мебели, коробки для обуви, небоскребы. Изображают прямоугольный параллелепипед так:
Для обозначения вершин параллелепипеда применяют латинские буквы. Очень часто для вершин одной грани используют 4 буквы без индекса (на рисунке выше это А, В, С, D), а другие 4 вершины обозначают такими же буквами, но с нижним индексом 1: А1, B1, C1 и D1. При этом одноименные вершины (например, А и А1) находятся на одном ребре, которое располагается на рисунке вертикально.
Докажем некоторые свойства прямоугольного параллелепипеда.
Например, ребро АD пересекается с гранями АВВ1А1 и CDD1C1. Значит, оно перпендикулярно этим граням (точнее говоря, оно перпендикулярно плоскостям, проходящим через эти грани). Действительно, AD⊥DC, ведь ∠ADC является углом в прямоугольнике АВСD и потому он прямой. Аналогично и AD⊥DD1, ведь и ADD1A1 – прямоугольник. Получается, что ребро AD перпендикулярно 2 прямым в грани CDD1C1 (которые при этом пересекаются), и потому оно перпендикулярно и всей грани. То же самое можно продемонстрировать для любого ребра прямоугольного параллелепипеда и любой грани, которую она пересекает.
Эти грани пересекаются по ребру А1D1. Этому ребру в свою очередь перпендикулярны ребра АА1 и А1В1, лежащие в гранях ADD1A1 и A1D1C1B1. Значит, ∠АА1В1 и будет углом между этими гранями. Но он составляет 90°, то есть грани перпендикулярны, ч. т. д.
Хотя у прямоугольного параллелепипеда есть 12 граней, многие из них имеют одинаковую длину. Поэтому для описания размеров этой фигуры достаточно указать только три параметра. Обычно их называют длиной, шириной и высотой:
Эти параметры также называют измерениями прямоугольного параллелепипеда. Зная их, можно вычислить длину диагонали прямоугольного параллелепипеда. Для этого используется следующая теорема:
Действительно, пусть есть прямоугольный параллелепипед АВСDA1B1C1D1. Назовем ребро AD его длиной, АВ – шириной, а ВВ1 – высотой. Пусть необходимо найти длину диагонали В1D:
Сначала построим отрезок BD и рассмотрим ∆ABD. Он прямоугольный, и потому для него верна теорема Пифагора:
Теперь перейдем к ∆В1ВD. Так как ребро BB1 перпендикулярно грани ABCD, то ∠В1ВD – прямой. Тогда и ∆В1ВD – прямоугольный, а потому и для него можно записать теорему Пифагора:
Дополнительно отметим уже известный нам факт, что тот прямоугольный параллелепипед, у которого все стороны одинаковы, именуется кубом. Можно дать и такое определение куба:
Трехгранный угол
Выберем в пространстве произвольную точку K. Далее из нее проведем три луча КА, КВ и КС так, чтобы они не находились в одной плоскости:
В результате мы получили фигуру, которую именуют трехгранным углом. Она состоит их трех плоских углов: ∠АКС, ∠АКВ и ∠ВКС. Эти углы так и называются – плоские углы трехгранного угла. Сам же трехгранный угол обозначают четырьмя буквами: КАВС. Обратите внимание, что через каждую пару лучей КА, КВ и КС можно провести плоскость. Таким образом, название «трехгранный» угол показывает, что в точке К сходятся три грани. Чаще всего в стереометрии такой угол возникает при рассмотрении вершин тетраэдра, в котором есть сразу четыре трехгранных угла:
Доказательство. Пусть в пространстве из точки D выходят лучи AD, BD и CD. Важно понимать, что мы можем свободно «передвигать» точки А, В и С по лучам, и величина плоских углов при этом меняться не будет. Если среди плоских углов нет наибольшего, то теорема очевидно выполняется. Поэтому надо рассмотреть лишь случай, когда один из углов – наибольший. Пусть им будет ∠BDC:
Это возможно сделать, ведь ∠BDC > AD, поэтому внутри ∠BDC можно провести луч DK. Далее «сместим» точку А на луче АD так, чтобы DK = AD. Естественно, что при этом плоские углы трехгранного угла никак не изменятся, также как останется верным равенство
Сравним ∆ADC и ∆DKC. У них есть общая сторона DC, одинаковы стороны DK и AD, а также совпадают углы между ними. Значит, эти треугольники равны, и тогда можно записать, что:
Теперь сравним ∆ABD и ∆DBK. У них BD – общая сторона, а DK = AD. При этом BK < AB. В таком случае против меньшей стороны будет лежать меньший угол (смотри примечание после доказательства), то есть
Именно это неравенство и необходимо было доказать.
Примечание. В ходе доказательства было использовано утверждение, что если у двух треугольников две стороны одинаковы, в третьи стороны отличаются, то против меньшей третьей стороны будет располагаться меньший угол:
Это утверждение часто не рассматривается в курсе планиметрии, поэтому есть смысл доказать его отдельно. Действительно, пусть есть ∆АВС и ∆А’B’C’, АС = А’C’ и АВ = A’B’, а СВ < C’B’. Надо показать, что ∠А <∠A’. Для этого выразим стороны СВ и C’B’ (а точнее говоря, их квадраты) с помощью теоремы косинусов:
Из последнего неравенства на основе определения косинуса для углов из интервала от 0° до 180° вытекает, что и
Многогранный угол
Возможен случай, когда из одной точки в пространстве выходят не три, а большее количество лучей, причем образуемые ими углы не располагаются в единой плоскости. Такая фигура именуется многогранным углом. Трехгранный угол можно считать его частным случаем. Также его частными случаями будут четырехгранный угол, пятигранный угол, шестигранный угол и т. д.
Более наглядна следующая демонстрация многогранного угла. Построим на плоскости α произвольный многоугольник. Далее выберем какую-нибудь точку вне плоскости α и соединим ее с вершинами многоугольника с помощью лучей. При этом у нас как раз получится многогранный угол. Если, например, в качестве многоугольника мы использовали пятиугольник, то и получим мы пятигранный угол:
Важно отметить, что в данном случае состоит многогранный угол именно из лучей КА1, КА2, КА3…, а не из одноименных отрезков. То есть многогранный угол – это ни в коем случае не многогранник КА1А2А3А4А5, у него есть только одна вершина – точка К. Многогранник КА1А2А3А4А5 – это пирамида, такая фигура изучается в курсе стереометрии чуть позже. Многоугольник А1А2А3А4А5 – это сечение многогранного угла. Углы ∠А1КА2, ∠А2КА3, ∠А3КА4… – это плоские углы многогранного угла.
Заметим, что на исходный многоугольник на плоскости может быть как выпуклым, так и невыпуклым. Соответственно и многогранный угол может быть как выпуклым, так и невыпуклым:
Так как любой треугольник – это выпуклый многоугольник, то и любой трехгранный угол является выпуклым. В выпуклом угле все его точки лежат по одну сторону от любой плоскости, проходящей, через какие-нибудь два смежных луча угла. Вообще любое сечение многогранного угла представляет собой выпуклый многоугольник.
Докажем важное утверждение:
Для доказательства возьмем произвольный многогранный угол и проведем в нем сечение А1А2А3…Аn, которое будет являться выпуклым многоугольником:
В последнем равенстве в каждой скобке стоят по два плоских угла в тех трехгранных углах, вершины которых совпадают с вершинами многоугольника А1А2А3…Аn. В предыдущей теореме мы выяснили, что эта сумма меньше третьего плоского угла, то есть
В правой части в скобках стоит сумма углов выпуклого n-угольника А1А2А3…Аn. Она, как мы знаем, составляет 180°•(n – 2), то есть
Последнее неравенство и необходимо было доказать.
Типичные задачи на углы между плоскостями
В школьной практике почти не встречаются задачи с многогранными углами, поэтому достаточно понимания и двугранного угла.
Задание. У тетраэдра ABCD все ребра одинаковы. Найдите величину двугранного угла между плоскостями АВС и АСD.
Решение. Отметим на ребре АС точку М, которая является его серединой:
Заметим, что плоскости АВС и АСD пересекаются по прямой АС. Раз все ребра тетраэдра одинаковы, то ∆АВС и ∆АСD – равносторонние. DM и BM – это медианы в ∆АВС и ∆АСD соответственно, ведь M – середина АС. Но раз треугольники равносторонние, то они одновременно являются и высотами, то есть BM⊥AC и DM⊥АС. Тогда ∠DMB как раз и представляет собой линейный угол двугранного угла BАСD. То есть именно его значение нам и надо вычислить (если, конечно, он окажется не больше 90°).
Пусть ребра тетраэдра имеют длину а. Тогда АМ вдвое короче. Найдем из прямоугольного ∆АМD длину MD:
Задание. Двугранный угол равен φ, меньший 90°. На одной из его граней отмечена точка К, которая находится на расстоянии d от другой грани. Каково расстояние между точкой К и ребром двугранного угла?
Решение. Пусть угол образован плоскостями α и β. Опустим из K два перпендикуляра – один на плоскость β в точку Н, а другой на линию пересечения плоскостей в точку Р:
По условию задачи ∠НРК = φ, а HK = d. Нам же надо найти РК. Это можно сделать, применив определение синуса к ∆РНК:
Задание. Верно ли, что плоскость, пересекающая две параллельные плоскости, образует с ними одинаковые углы?
Решение. Пусть есть параллельные друг другу плоскости α и β, а пересекает их плоскость γ. Линию пересечения α и γ обозначим как n, и такую же линию для β и γ обозначим как m:
Заметим, что m и n располагаются в одной плоскости γ и при этом не пересекаются, в противном случае у α и β нашлась бы общая точка, которой быть не должно. Значит, m||n.
Далее проведем в γ прямую р, перпендикулярную n. Раз m||n и р⊥n, то и р⊥m. То есть р – общий перпендикуляр для m и n.
Далее в α через точку пересечения n и p проведем прямую k, перпендикулярную n. Ясно, что k||β. После уже через точку пересечения m и p построим такую прямую k’, что k||k’:
Так как k||β и k||k’, то прямая k’ будет принадлежать плоскости β (по теореме 6 из этого урока). Так как k||k’, m||n и n⊥k, то по теореме о сонаправленных лучах можно утверждать, что и m⊥k’. Тогда углы, отмеченные на рисунке синим цветом – это и есть линейные углы двугранных углов. Они одинаковы, так как являются соответственными при секущей р и параллельных прямых k и k’. Если же двугранные углы равны, то одинаковы и углы между плоскостями, ч. т. д.
Примечание. Доказанный факт можно сформулировать в виде теоремы:
Она может быть использована при решении некоторых сложных задач.
Задание. В прямоугольном ∆АВС АВ и АС – катеты с длиной 7 и 24 соответственно. Через гипотенузу проведена плоскость β, образующая с плоскостью АВС угол 30°. Каково расстояние между точкой А и плоскостью β?
Решение.
Опустим из А перпендикуляр АН на β. Это и будет искомое нами расстояние. Также в ∆АВС построим высоту AD. Заметим, что раз АН⊥β, то по определению и АН⊥HD. Можно сказать, что HD – это проекция AD на β. Раз прямая ВС перпендикулярна наклонной AD, то она одновременно будет перпендикулярна и наклонной HD по обратной теореме о трех перпендикулярах.
Плоскости АВС и β пересекаются по прямой ВС, АD⊥ВС и HD⊥BC. Получается, что ADH – это как раз угол между АВС и β, и по условию он составляет 30°.
По теореме Пифагора вычислим гипотенузу ВС:
Теперь перейдем к ∆AHD. Он также прямоугольный (∠Н = 90°). Используем для него тригонометрию:
Задание. Известны измерения прямоугольного параллелепипеда. Его длина составляет 90 см, ширина – 20 см, а высота – 60 см. Какова длина диагонали такого параллелепипеда?
Решение. Обозначим измерения буквами а, b, с, а диагональ буквой d. Достаточно просто воспользоваться формулой:
Далее рассмотрим несколько задач, в которых надо найти угол между плоскостями, находящимися в кубе с ребром, чья длина составляет единицу.
Задание. Вычислите угол между гранью ADHЕ и сечением АBGН:
Решение. Заметим, что сечение АВGH содержит прямую АВ. Но АВ – это перпендикуляр к АЕНD. Если АВGH содержит перпендикуляр к ADH, то эти две плоскости перпендикулярны, и угол между ними составляет 90°.
Ответ: 90°.
Задание. Определите угол между гранью ADHE и сечением ADGF:
Решение. Две рассматриваемые плоскости пересекаются по ребру AD. Ребра DH и AD перпендикулярны как стороны квадрата. Так как AD – это перпендикуляр к грани СDHG, то AD⊥DG. Получается, что ∠HDG – это и есть искомый угол. Его величина равна 45°, ведь это угол между диагональю квадрата и его стороной.
Ответ: 45°.
Задание. Вычислите угол между сечениями АВGH и EFCD:
Решение. Пересекаются эти две плоскости по прямой KP, где K и P – точки пересечения диагоналей квадратов BFGH и AEHD. Докажем, что отрезки KG и KC перпендикулярны KP.
Действительно, рассмотрим четырехугольник АВGH. Ребра АВ и GH перпендикулярны граням AEHD и BFGH, поэтому все углы в АВGH – прямые, то есть это прямоугольник и BG||AH. Теперь рассмотрим четырехугольник АВKP. Стороны BK и AP параллельны и равны как половины равных отрезков BG и AH. Значит, BKAP – параллелограмм. Но в нем есть прямые углы ∠В и ∠А, поэтому BKAP – прямоугольник. Аналогично можно показать, что и KGHP – прямоугольник. Это и приводит к выводу о том, что KG⊥KP и PH⊥KP. Поэтому ∠СKG и является искомым углом между сечениями. Он является углом между диагоналями квадрата, то есть равен 90°.
Ответ: 90°.
Задание. Найдите угол между сечением AFH и гранью AEHD:
Решение. Обозначим середину диагонали AH буквой K. Докажем ∠EKF – искомый нами угол:
Действительно, плоскости AHD и AFH пересекаются по прямой AH. EK – медиана в равнобедренном ∆AEH с основанием AH, поэтому она также является и высотой, то есть EK⊥AH. AF и FH – диагонали в равных квадратах ABFE и EFGH, поэтому эти диагонали одинаковы. Значит, ∆AFH – равнобедренный, и поэтому его медиана FK также перпендикулярна основанию AH. Получается, что ∠EKF и является искомым. Вычислить его можно из ∆EKF.
Сначала найдем длину EK. В прямоугольном ∆AEK ∠KAE составляет 45° (угол между диагональю и стороной квадрата), поэтому
Задание. Вычислите угол между гранью BCGF и сечением AFH:
Решение. Вспомним, что в предыдущей задаче мы уже вычислили угол между гранью АЕHD и тем же сечением АFH. Но грани AEHD и BCFG параллельны, поэтому АFH должна пересекаться их под одним и тем же углом. Поэтому ответ этой задачи совпадает с ответом к предыдущей задаче.
Ответ: ≈ 54,74°.
Задание. Чему равен угол между сечениями АСH и AFGH?
Решение. Пусть диагонали СН и DG пересекаются в точке К. Точка K будет принадлежать обоим сечениям, как и точка А. Значит, сечения пересекаются по линии АК. Проведем в сечении AFGH через точку K прямую, перпендикулярны АК и пересекающую FG в какой-то точке Р (позже мы убедимся, что прямая действительно должна пересекать отрезок FG):
Докажем, что ∠CPK и является углом между сечениями. Мы специально провели РК так, что РК⊥АК. Теперь посмотрим на ∆АСН. Он равносторонний, ведь его стороны АС, СН и DH – это диагонали равных квадратов (граней куба). Прямая АК – медиана, ведь K – точка пересечения диагоналей квадрата СDHG, которая делит диагонали пополам. Но раз ∆АСН равносторонний, то его медиана – это ещё и высота, то есть АК⊥РК. Итак, АК⊥СК и АК⊥РК, поэтому ∠CPK – это угол между сечениями. Для его вычисления необходимо найти все стороны в ∆РСК и далее применить теорему косинусов.
Проще всего найти СК. ∆СKD – прямоугольный (∠К = 90°), а ∠СDK составляет 45° (угол между стороной и диагональю в квадрате). Тогда можно записать, что
Отдельно отметим, что отрезки GK и KD имеют такую же длину, ведь диагонали в квадрате (а значит и их половины) одинаковы.
Для нахождения РК покажем отдельно плоскость AFG, то есть красное сечение:
Обозначим ∠KAD как φ. Тогда ∠АКD будет составлять 90 – φ. Углы ∠АКD, ∠АKP и ∠PKG в сумме дают 180°, что позволяет найти ∠PKG:
Получилось, что у ∆АКD и ∆PKG есть по два одинаковых угла (φ и 90°). Значит, они подобны. Составим такую пропорцию:
Теперь можно вернуться ко всему кубу и найти отрезок РС. Здесь снова можно применить теорему Пифагора, но уже к ∆PCG:
Теперь для ∆PCK мы можем записать теорему косинусов
Неожиданно мы доказали, что два построенных сечения перпендикулярны друг другу. Прийти к этому выводу можно было и иначе. Достаточно было бы показать, что прямая CH – это перпендикуляр к сечению AFGD. Попробуйте сделать это самостоятельно.
Ответ: 90°.
Задание. Вычислите угол между сечениями BDHF и ADGF:
Решение. У сечений общими являются точки F и D. Значит, именно по прямой FD они пересекаются.
Опустим в синей сечении BDHF перпендикуляр на FD, который упадет в некоторую точку K:
Докажем, что отрезок GK также перпендикулярен FD. Действительно, BK – это высота в ∆BDF. Но ∆BDF и ∆GDF равны, ведь они одинаковы все три стороны (FD – общая сторона, BF и FG – ребра куба, BD и DG – диагонали на гранях куба). В равных треугольниках высоты должны делить стороны на равные отрезки, поэтому высота, опущенная из G на FD, также разделит FD на отрезки FK и KD. То есть она просто упадет в точку K. Это и значит, что KG – высота. Получается, что нам надо вычислить ∠BKG.
Сначала найдем длину диагоналей BD и BG. Можно применить теорему Пифагора для ∆BFG:
KG имеет ту же длину, ведь KG и BK – одинаковые высоты в равных треугольниках ∆BDF и ∆GDF.
Теперь используем теорему косинусов для ∆BKG:
Мы вычислили двугранный угол, но он оказался больше 90°. Это значит, угол между плоскостями равен не 120°, а 180° – 120°, то есть 60°.
Ответ: 60°.
Сегодня мы познакомились с понятием двугранного угла, научились вычислять углы между плоскостями. В частном случае вместо вычисления угла можно просто доказать перпендикулярность плоскостей.