Вписанный четырехугольник. Задание 6
Вписанный четырехугольник. Задание 6
При решении задач на нахождение углов вписанного четырехугольника нам нужно вспомнить, что
1. Четырехугольник называется вписанным в окружность, если все его вершины лежат на окружности:
2. Сумма противоположных углов вписанного четырехугольника равна 180°:
Рассмотрим решение задач из Открытого банка заданий по математике:
1 .Задание B7 (№ 27871)
Угол A четырехугольника ABCD, вписанного в окружность, равен 58°. Найдите угол C этого четырехугольника. Ответ дайте в градусах.
Сумма углов А и С равна 180°, поэтому угол С равен 180°-58°=122°
Ответ: 122°
2 . Задание B7 (№ 27927)
Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.
Углы 82° и 58° не могут быть противоположными, так как их сумма не равна 180°. Значит, оставшиеся углы являются противоположными к этим. очевидно. что величина большего угла равна 180°-58°=122°
3 . Задание B7 (№ 27928)
Углы A, B и C четырехугольника ABCD относятся как 1:2:3. Найдите угол D, если около данного четырехугольника можно описать окружность. Ответ дайте в градусах.
Введем единичный угол. Тогда величины углов А, В и С можно записать так:
А=х, В=2х, С=3х. Суммы противоположных углов вписанного четырехугольника равны и равны 180°. Сумма углов А и С равна 4х и равна 180°. Отсюда х=45°.
Очевидно, что величина угла D равна 4х-2х=90°
Как найти больший угол в вписанном четырехугольнике
Два угла вписанного в окружность четырехугольника равны и Найдите больший из оставшихся углов. Ответ дайте в градусах.
Это задание ещё не решено, приводим решение прототипа.
Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.
Сумма противоположных углов вписанного четырехугольника равна 180°. Больший из оставшихся углов лежит напротив меньшего из указанных в условии. Поэтому он равен 180° − 58° = 122°.
Четырехугольники, вписанные в окружность. Теорема Птолемея
Вписанные четырехугольники и их свойства |
Теорема Птолемея |
Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Фигура | Рисунок | Свойство |
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |
Произвольный вписанный четырёхугольник |
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Окружность, описанная около параллелограмма | |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |
Окружность, описанная около ромба | |
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |
Окружность, описанная около трапеции | |
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |
Окружность, описанная около дельтоида | |
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |
Произвольный вписанный четырёхугольник | |
Окружность, описанная около параллелограмма |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
[spoiler title=”источники:”]
http://ege.sdamgia.ru/problem?id=53975
http://www.resolventa.ru/spr/planimetry/ofcircle.htm
[/spoiler]
Углы А,В,С четырёхугольника АВСD, вписанного в окружность, относятся как 3 : 2 : 7.
Найдите больший угол этого четырёхугольника (в градусах).
Задания
Версия для печати и копирования в MS Word
Тип 15 № 132783
i
Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.
Спрятать решение
Решение.
Сумма противоположных углов вписанного четырехугольника равна 180°, поэтому в условии говорится об односторонних углах. Пусть = Тогда
Таким образом, искомый угол равен 122°.
Ответ: 122.
Аналоги к заданию № 132783: 139369 139371 139373 … Все
Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.
Спрятать решение
·
Помощь
Ksenia Strizhius
Знаток
(267),
на голосовании
10 лет назад
Голосование за лучший ответ
Leonid
Высший разум
(388685)
10 лет назад
Сумма противоположных углов вписанного четырёхугольника равна 180 град. Задачка получается для второго класса.
Похожие вопросы
поделиться знаниями или
запомнить страничку
- Все категории
-
экономические
43,651 -
гуманитарные
33,653 -
юридические
17,917 -
школьный раздел
611,896 -
разное
16,900
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.