Как найти большую десятичную дробь

Чтобы узнать наибольшую из этих десятичных дробей, нужно вначале найти дробь с наибольшей целой частью: у дробей 9,8 и 9,4 целые части – 9, у дробей 10,14 и 10,3 целые части – 10. Целая часть 10 больше целой части 9, значит дроби 9,8 и 9,4 можем больше не сравнивать – они в любом случае будут меньше двух оставшихся(10,14 и 10,3).

Теперь у нас осталось две дроби – 10,14 и 10,3. Целые части у них одинаковые, значит теперь нам нужно сравнивать дробные части. Начнём сравнение с десятых частей (10, 1 и 10, 3). У дроби 10,14 десятичная часть – 1, у дроби 10,3 десятичная часть – 3. Десятичная часть 1 в любом случае будет меньше десятичной части 3, значит можно даже не смотреть на сотую часть первой дроби(,14). Также есть способ полегче: 10,3 = 10,30(к концам десятичных дробей можно прибавлять сколько угодно нолей, они все равно не изменятся). Теперь у нас есть дроби 10,14 и 10,30. Как уже можно понять, сотая часть 14 меньше сотой части 30, а это значит, что десятичная дробь 10,14 меньше десятичной дроби 10,3.

Итак, можно составить тройное неравенство: 9,4 < 9,8 < 10,14 < 10,3. Из этого неравенства, да и из самих вычислений можно легко понять, что десятичная дробь 10,3 является наибольшей в данном списке.

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Сравнение десятичных дробей

Поддержать сайтспасибо

Запомните!
!

Удобно сравнивать десятичные дроби с одинаковым количеством цифр (знаков) справа от запятой.

Чтобы сравнить десятичные дроби нужно:

  • Убедиться, что у обеих десятичных дробей
    одинаковое количество знаков (цифр) справа от запятой. Если нет, то дописываем (убираем) нужное количество
    нулей в одной из десятичных дробей.
  • Сравниваем десятичные дроби слева направо.
    Целую часть с целой, десятые с десятыми, сотые с сотыми и т.д.
  • Когда одна из частей десятичной дроби (целая часть, десятые, сотые и т.д.) окажется больше чем в другой дроби, эта дробь и больше.

Как сравнивать десятичные дроби

Пример. Сравним десятичные дроби:

Сравнение десятичных дробей

  • Сперва дописываем в первой десятичной дроби нужное количество нулей,
    чтобы уравнять количество знаков справа от запятой.

    39,700 и 39,719

  • Начинаем сравнивать десятичные дроби слева направо.

    Целую часть с целой частью:

    39 = 39

    Целые части
    равны. Переходим к десятым.

    Десятые с десятыми:

    7 = 7

    Десятые также равны. Переходим к сотым.

    Сотые с сотыми:

    0 < 1

    Так как сотые второй десятичной дроби оказались больше,
    значит и сама дробь больше.

    39,700 < 39,719

    39,7 < 39,719

Другой способ сравнения десятичных дробей

Так же как и в предыдущем методе сравнения
необходимо вначале уравнять количество знаков
справа от запятой в обеих десятичных дробях.

Затем, отбросив запятую в обеих дробях, сравнить
полученные результаты.

Пример:

3,656 и 3,48

Уравняем количество знаков справа у десятичных дробей.

3,656 и 3,480

Теперь отбросим запятые и сравним полученные числа.

3 656 > 3 480

3,656 > 3,48


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

4 мая 2023 в 17:15

Василина Перикова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Василина Перикова
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить


Сравнение десятичных дробей

  • Калькулятор сравнения десятичных дробей

Десятичные дроби сравнивают по тем же правилам, что и натуральные числа:

  • Из двух десятичных дробей больше та, у которой больше разрядов в целой части. Например:

    647,78 > 43,952,

    потому что число  647  имеет больше разрядов в целой части, чем число  43.

  • Из двух десятичных дробей с одинаковым числом разрядов больше та, у которой больше первая (слева направо) из неодинаковых цифр. Например:

    432,35 > 432,21,

    потому что у первого числа, цифра в разряде десятых больше, чем цифра в этом же разряде у второго числа.

  • Две десятичные дроби равны, если у них одинаковое число разрядов и цифры одинаковых разрядов равны. Например, числа  7832,0954  и  7832,0954  равны. В этом легко убедиться, записав их одно под другим:

    7832,0954
    7832,0954

Калькулятор сравнения десятичных дробей

Данный калькулятор поможет вам сравнить десятичные дроби. Просто введите две десятичные дроби и нажмите кнопку Сравнить. Вместо запятой, в записи десятичной дроби, используйте точку:

Содержание

  1. Сравнение десятичных дробей
  2. Понятие десятичной дроби
  3. Свойства десятичных дробей
  4. Правило сравнения десятичных дробей
  5. Десятичные дроби
  6. Понятие десятичной дроби
  7. Свойства десятичных дробей
  8. Как записать десятичную дробь
  9. Как читать десятичную дробь
  10. Преобразование десятичных дробей
  11. Как перевести десятичную дробь в проценты
  12. Преобразование десятичных дробей
  13. Как перевести десятичную дробь в обыкновенную
  14. Действия с десятичными дробями
  15. Как разделить десятичную дробь на натуральное число
  16. Как разделить десятичную дробь на обыкновенную
  17. Как умножить десятичную дробь на обыкновенную

Сравнение десятичных дробей

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие десятичной дроби

Прежде чем мы расскажем, как сравнивать десятичные дроби, вспомним основные определения, виды дробей и разницу между ними.

Дробь — это число в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

  • обыкновенный вид — 1/2 или a/b,
  • десятичный вид — 0,5.

В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Ее записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

  • 0,1
  • 2,53
  • 9,932

Конечная десятичная дробь — это когда количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Свойства десятичных дробей

Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:

  • 0,600 = 0,6
  • 21,10200000 = 21,102

Основные свойства

  1. Дробь не имеет значения, при условии, если делитель равен нулю.
  2. Дробь равна нулю, если числитель равен нулю, а знаменатель — нет.
  3. Две дроби a/b и c/d называются равными, если a * d = b * c.
  4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:

  • Целая часть десятичной дроби равна целой части смешанной дроби. Если числитель меньше знаменателя, то целая часть равна нулю.
  • Дробная часть десятичной дроби содержит те же цифры, что и числитель этой же дроби в обыкновенном виде.
  • Количество цифр после запятой зависит от количества нулей в знаменателе обыкновенной дроби. То есть 1 цифра — делитель 10, 4 цифры — делитель 10000.

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Правило сравнения десятичных дробей

Чтобы сравнить две десятичные дроби, сначала нужно сравнить их целые части. Если целые части равны, продолжаем искать первый несовпадающий разряд. Большей будет та дробь, у которой соответствующий разряд больше.

Вот так с первой строчки раскрыли тему сравнения десятичных дробей 😜 Но это еще не все — едем дальше.

Алгоритм сравнения десятичных дробей

  1. Убедиться, что у обеих десятичных дробей одинаковое количество знаков (цифр) справа от запятой. Если нет, то дописать (убрать) нужное количество нулей в одной из десятичных дробей.
  2. Сравнить десятичные дроби слева направо. Целую часть с целой, десятые с десятыми, сотые с сотыми и т. д.
  3. Когда одна из частей десятичной дроби окажется больше, чем другая, эту дробь можно назвать большей.

Применим правило на практике. Сравним десятичные дроби: 15,7 и 15,719.

  • Допишем в первой десятичной дроби нужное количество нулей, чтобы уравнять количество знаков справа от запятой: 15,700 и 15,719.
  • Сравним десятичные дроби слева направо.

Целую часть с целой частью: 15 = 15. Целые части равны.

Десятые с десятыми: 7 = 7. Десятые также равны.

Сотые с сотыми: 0

Чтобы сравнить две десятичные дроби, нужно уравнять количество знаков после запятой (приписать к одной из них справа нули), затем отбросить запятую, и сравнить два натуральных числа.

Сравним 3,656 и 3,48.

  • Уравниваем количество знаков справа после запятой: 3,656 и 3,480.
  • Отбросим запятые: 3656 и 3480.
  • Сравним полученные числа: 3656 > 3480.

Источник

Десятичные дроби

О чем эта статья:

5 класс, 6 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие десятичной дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Свойства десятичных дробей

Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:

  • 0,600 = 0,6
  • 21,10200000 = 21,102
Основные свойства
  1. Дробь не имеет значения, при условии, если делитель равен нулю.
  2. Дробь равна нулю, если числитель равен нулю, а знаменатель — нет.
  3. Две дроби a/b и c/d называются равными, если a * d = b * c.
  4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь

Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:

  • Целая часть десятичной дроби равна целой части смешанной дроби. Если числитель меньше знаменателя, то целая часть равна нулю.
  • Дробная часть десятичной дроби содержит те же цифры, что и числитель этой же дроби в обыкновенном виде.
  • Количество цифр после запятой зависит от количества нулей в знаменателе обыкновенной дроби. То есть 1 цифра — делитель 10, 4 цифры — делитель 10000.

Обучение на курсах по математике — отличный способ закрепить полученные знания на практике и подтянуть сложные темы.

Как записать десятичную дробь

Давайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части.

Пример 1. Перевести обыкновенную дробь 16/10 в десятичную.

  1. Знаменатель равен 10 — это один ноль.
  2. Отсчитываем справа налево в числителе дробной части один знак и ставим запятую.
  3. В полученной десятичной дроби цифра 1 — целая часть, цифра 6 — дробная часть.

Пример 2. Перевести 37/1000 в десятичную дробь.

  1. Знаменатель равен 1000 — это три нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Так как в числителе только две цифры, то на пустующие места пишем нули.
  4. В полученной десятичной дроби цифра 0 — целая часть, 037 — дробная часть.

Ответ: 37/1000 = 0,037.

Как читать десятичную дробь

Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:

Сколько цифр после запятой? Читается, как
одна цифра — десятых; 1,3 — одна целая, три десятых;
две цифры — сотых 2,22 — две целых, двадцать две сотых;
три цифры — тысячных; 23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных;
четыре цифры — десятитысячных; 0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных;
и т.д.

Сохраняй наглядную картинку, чтобы быстрее запомнить.

Преобразование десятичных дробей

Чтобы ни одна задача не смутила вас своей формулировкой, важно знать, как преобразовывать десятичные дроби в другие виды. Сейчас научимся!

Как перевести десятичную дробь в проценты

Уже в пятом классе задачки по математике намекают, что дроби как-то связаны с процентами. И это правда: процент — это одна сотая часть от любого числа, обозначают его значком %.

Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить наше число на 100, как в примере выше.

А чтобы перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Давайте на примере:

0,15 = 0,15 · 100% = 15%.

Выразить дробь в процентах просто: сначала превратим её в десятичную дробь, а потом применим предыдущее правило.

2/5 = 0,4
0,4 · 100% = 40%

8/25 = 0,32
0,32 · 100% = 32%

Чтобы разрезать торт на равные кусочки и не обижать гостей, нужно всего-то запомнить соотношения частей и целого. Наглядная табличка — наш друг-помощник:

Преобразование десятичных дробей

Десятичная дробь — это число с остатком, где остаток стоит после целой части и разделяется запятой.

Смешанная дробь — это тоже число с остатком, но остаток записывают в виде простой дроби (с черточкой).

Чтобы переводить десятичные дроби в смешанные, не нужно запоминать особые алгоритмы. Достаточно понимать определения и правильно читать заданную дробь — этим школьники и занимаются в 5 классе. А теперь давайте потренируемся!

Пример 1. Перевести 5,4 в смешанное число.

  1. Читаем вслух: пять целых четыре десятых. «Четыре десятых» подсказывают, что в числителе будет 4, а в знаменателе — 10. В смешанном виде эта дробь выглядит так: 5 4/10.
  2. А теперь сократим числитель и знаменатель на два (потому что можно) и получим: 5 2/5.

Пример 2. Перевести 4,005 в смешанное число.

  1. Читаем вслух: четыре целых пять тысячных. Значит 5 — идет в числитель, а 1000 — в знаменатель. В смешанном виде получается так: 4 5/1000. После сокращения: 4 1/200.

Ответ: 4,005 = 4 1/200.

Пример 3. Перевести 5,60 в смешанное число.

  1. Читаем вслух: пять целых шестьдесят сотых. Отправляем 60 в числитель, а 100 — в знаменатель. В смешанном виде дробь такая: 5 60/100.
  2. Сократим дробную часть на 10 и получим 5 6/10. Или можно вспомнить про свойство десятичной дроби и просто отбросить нули в числителе и знаменателе.

Ответ: 5,60 = 5 6/10.

Как перевести десятичную дробь в обыкновенную

Не будем придумывать велосипед и рассмотрим самый простой способ превращения десятичной дроби в обыкновенную. Вот, как это сделать:

  1. Перепишем исходную дробь в новый вид: в числитель поставим исходную десятичную дробь, а в знаменатель — единицу. Например:
    • 0,35 = 0,35/1
    • 2,34 = 2,34/1
  2. Умножим числитель и знаменатель на 10 столько раз, чтобы в числителе исчезла запятая. При этом после каждого умножения запятая в числителе сдвигается вправо на один знак, а у знаменателя соответственно добавляются нули. На примере легче:
    • 0,35 = 0,35/1 = 3,5/10 = 35/100
    • 2,34 = 2,34/1 = 23,4/10 = 234/100
  3. А теперь сокращаем — то есть делим числитель и знаменатель на кратные им числа:
    • 0,35 = 35/100, делим числитель и знаменатель на пять, получаем 6/20, еще раз делим на 2, получаем итоговый ответ 3/10.
    • 2,34 = 234/100 = 117/50 = 2 17/50.

Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка!

Действия с десятичными дробями

С десятичными дробями можно производить те же действия, что и с любыми другими числами. Рассмотрим самые распространенные на простых примерах.

Как разделить десятичную дробь на натуральное число

  1. Разделить целую часть десятичной дроби на это число.
  2. Поставить запятую в частном и продолжить вычисление, как при обычном делении.

Пример 1. Разделить 4,8 на 2.

  1. Записать деление уголком.
  2. Разделить целую часть на два. Записать полученный результат в частное и поставить запятую.
  3. Умножить частное на делитель, записать, посмотреть на остаток от деления. Но мы еще не закончили, поэтому остаток «ноль» не записываем. Сносим 8 и делим её на 2.
  4. Делим еще раз. Записываем полученную 4 в частном и умножаем её на делитель:

Ответ: 4,8 : 2 = 2,4.

Пример 2. Разделить 183,06 на 45.

  1. Записать деление уголком.
  2. Разделить целую часть 183 на 45. Записать результат, поставить запятую в частном.
  3. Записать результат разницы 183 и 180. Снести 0. Записать 0 в частное, чтобы снести 6.
  4. Записать результат разницы 306 и 270. 36 не делится на 45, поэтому добавляем ноль и производим разницу.

Ответ: 183,06 : 45 = 4,068.

Как разделить десятичную дробь на обыкновенную

Чтобы разделить десятичную дробь на обыкновенную или смешанную, нужно представить десятичную дробь в виде обыкновенной, а смешанное число записать, как неправильную дробь.

Пример 1. Разделить 0,25 на 3/4.

  1. Записать 0,25 в виде обыкновенной дроби: 0,25 = 25/100.
  2. Разделить дробь по правилам:

Ответ: 0,25 : 3/4 = 1/3.

Пример 2. Разделить 2,55 на 1 1/3.

  1. Записать 2,55 в виде обыкновенной дроби: 2,55 = 255/1000.
  2. Записать 1 1/3 в виде обыкновенной дроби: 1 1/3 = 4/3.
  3. Разделить дробь по правилам:

Ответ: 2,55 : 1 1/3 = 1 73/80.

Как умножить десятичную дробь на обыкновенную

Чтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила за 6 класс. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем.

Пример 1. Умножить 2/5 на 0,8.

  1. Записать 0,8 в виде обыкновенной дроби: 0,8 = 8/10.
  2. Умножаем по правилам: 2/5 ∗ 8/10 = 2/5 ∗ 4/5 = 8/25 = 0,32.

Ответ: 2/5 ∗ 0,8 = 0,32.

Пример 2. Умножить 0,28 на 6 1/4.

  1. Записать 6 1/4 в виде десятичной дроби: 6 1/4 = 6,25.
  2. Умножаем по правилам: 0,28 ∗ 6,25 = 0,8.

Ответ: 0,28 ∗ 6 1/4 = 0,8.

Источник

Добавить комментарий