Как найти can шину на тойоте

Что такое CAN-шина в автомобиле (устройство и схема подключения)

Автомобили давно уже стали не просто компьютерами на колёсах, а скорее компьютерными сетями. Передача механических, гидравлических или пневматических усилий между узлами и механизмами со временем превратилась в обмен электрическими сигналами, а сейчас и в информационное взаимодействие.

Наряду с массовым внедрением дешёвых электронных комплектующих, потребовалось разработать достаточно сложное и надёжное сетевое физическое и программное обеспечение.

Зачем нужна в машине CAN-шина

По мере усложнения автомобильной электроники, производители столкнулись с некоторыми проблемами, которые всё больше проявлялись с ростом рыночной конкурентоспособности новых моделей.

Далее наращивать объём оборудования простым добавлением управляющих и исполнительных устройств стало невозможно:

  • количество проводов в жгутах, их масса, объёмы и расход дорогостоящей меди стали превышать разумные пределы;
  • многие узлы, особенно датчики и первичные преобразователи, многократно дублировались, что необоснованно увеличивало затраты;
  • сложнейшие автомобили, особенно премиального класса, стали совершенно неподъёмными в обслуживании и диагностике даже для профильных сервисов из-за отсутствия стандартизации технических решений;
  • надёжность машин падала по мере роста количества заключённого в них оборудования, как по чисто объективным законам связи сложности и безотказности, так и из-за отсутствия времени на отработку многочисленных уникальных систем.

Решение должно было быть радикальным, и этот качественный скачок в развитии автомобильной электроники произошёл.

Электросхемы машин стали делать по принципам, заложенным в основах вычислительной техники и к тому времени уже достаточно устоявшимся и понятным.

Автомобиль стал представлять собой сеть из микрокомпьютеров, каждый из которых обслуживал свою систему или отдельный узел.

Например, двигатель, коробку передач, узлы трансмиссии, блок климата и даже отдельные фонари наружного освещения или стеклоподъёмники. Уже не надо было тянуть к каждому устройству медные провода в огромном количестве через весь автомобиль.

Причём до появления единой информационной шины некоторые узлы были обвешаны сразу несколькими однотипными датчиками, электронными блоками и жгутами проводки.

CAN-шина обходится единственной витой парой, то есть скрученными между собой двумя тонкими проводками, которые обходят все устройства, имея ответвления на каждое из них.

По схеме получается, что все блоки соединены параллельно через данную шину. Последовательный способ передачи информации делает это возможным, отдельных проводов данных, адресов, синхронизации и назначения приоритета не требуется.

Более того, системе не нужен единый обрабатывающий и управляющий сервер, все ресурсы распределены по микроконтроллерам.

Схема и место расположения КАН-интерфейса

Сеть имеет выход наружу через диагностический OBD разъём, где на этот счёт стандартом чётко определена пара контактов.

Точнее, две пары, из дальнейшего рассмотрения станет понятно, что через диагностику можно подключаться к двум CAN-шинам различного вида и назначения.

Обеспечивающий совместную работу шлюз в разных автомобилях может быть выполнен в виде отдельного блока, входить в состав контроллера управления двигателем, но чаще – приборной панели.

Принцип работы

Работа CAN-шины определяется физическим и логическим протоколами, которые достаточно чётко стандартизованы, хотя и имеют целый ряд исполнений.

Физически это витая пара, каждый из проводов которой является сигнальным. Работают они в противофазе, один поэтому называется CAN-High, второй – CAN-Low.

Сделано так с целью обеспечить максимальную помехоустойчивость при большой скорости передачи данных. Сигнал с пары снимается по дифференциальному принципу, то есть парой встречно включённых компараторов.

На концах витой пары имеется волновое согласование двумя терминальными резисторами по 120 Ом. Хотя встречаются и другие номиналы, но редко.

Активным уровнем считается низкий, он же логический ноль. Это общий принцип в работе устройств с открытым коллектором, разве что тут не применяется инвертирование уровней. Отсюда и логический принцип работы – инициируется линия любым устройством, открывшим свой выходной транзистор и сформировавшим первый нулевой бит.

Далее идёт идентификация приоритетного устройства, которое должно передать свою информацию первым в случае конфликта во времени. Протокол стандартный, каждый бит посылки расписан в даташитах ISO.

Все устройства одновременно передают и считывают информацию чётко соблюдая протокол, зашитый в памяти их контроллеров. Ненужные или ошибочные данные определяются и игнорируются.

Виды CAN-шин

Обычно используют две шины – высокоскоростную и низкоскоростную (не желая использовать этот компрометирующий термин, некоторые производители говорят о среднескоростных устройствах).

Первая применена для связи наиболее важных устройств, агрегатов двигателя, трансмиссии, тормозов, подвесок, систем безопасности. Вторая обслуживает второстепенные функции комфорта и сервиса.

Это не значит, что системы автономны. Они связаны между собой через шлюз, обычно находящийся в приборной панели. Низкоскоростная линия также имеет свои контакты в диагностическом разъёме, записанные в стандарт.

Сделано так, чтобы системы низшего уровня важности не мешали максимально быстрому обмену приоритетных устройств. А большое быстродействие, например, регулировке сидений ни к чему.

На низшем уровне могут работать ещё более простые шины, однопроводные и низкоскоростные. Они подключаются к общей CAN через свой контроллер.

Например, в двери могут стоять стеклоподъёмники, блок кнопок управления, различные датчики, всё это нет необходимости выводить на общую шину. Но и плодить множество проводов тоже. Используются простейшие контроллеры и однопроводная сеть.

Как подключиться и сделать диагностику автомобиля

Сканеры могут внедряться в протокол шины и анализировать её состояние, а также проходящую информацию. Можно использовать виртуальные устройства, эмулирующие отдельные блоки, а также создавать и передавать тестовые команды отдельным участникам сети.

Для связи используются специальные адаптеры USB-CAN, более сложные устройства и программное обеспечение.

До появления профессиональных CAN-анализаторов и тестеров пользовались скоростным запоминающим осциллографом и логическим анализатором.

Эти приборы тоже способны сохранять и предоставлять для изучения отдельные фреймы CAN, но в работе неудобны, требуют больших затрат времени.

Неисправности

Отказы шины обычно сводятся к нескольким типовым случаям:

  • пропадание питания отдельных устройств;
  • повреждения проводки и разъёмов;
  • отказ контроллеров.

Базой всей сетевой периферии является современная микроэлектроника и большие интегральные контроллеры серийного производства, поэтому надёжность оборудования в целом достаточно высока. Но поиски проблемного блока иногда бывают долгими из-за параллельного их подключения и размещения по всему автомобилю.

Плюсы и минусы встроенных шин

Сейчас уже трудно представить себе автомобиль с достойным набором современных опций без информационной шины, а конкурентоспособность требует ещё и высокого быстродействия.

CAN-шина всё это обеспечивает:

  • имеется автоматический контроль проходящей информации на ошибки;
  • дифференциальная передача сигналов и использование витой пары даёт хорошую скорость и защиту от помех;
  • стандартизация протоколов упрощает диагностику и поиск неисправностей;
  • построение системы приоритетов упрощает проектирование;
  • все устройства функционально закончены и универсальны.

Но со временем усугубляются и недостатки. Так, усложнение автомобилей привело к тому, что быстродействия даже самых последних версий уже не хватает.

Поэтому в настоящее время эту самую распространённую автомобильную шину уже можно считать устаревшей, новые проекты обладают значительно более высоким быстродействием.

Источник

Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Чтобы отправить ответ, вы должны войти или зарегистрироваться

23/07/2014 15:35:43 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • maxdima
  • Wialon fan club
  • Неактивен
  • Зарегистрирован: 20/02/2013
  • Сообщений: 46
  • Карма: 0

Тема: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Здравствуйте объясните пожалуйста как грамотно подключить терминал к can шине ,автомобили Toyota Landcruiser и Toyota Hilux . Если можно схему подключения ! За ранее спасибо .

24/07/2014 07:33:43 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • mykola
  • Gurtam Partner
  • Неактивен
  • Откуда: Тюмень, РФ, Земля
  • Зарегистрирован: 19/04/2010
  • Сообщений: 277
  • Продукты: Wialon Hosting
  • Карма: 6

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Подключаться лучше бесконтактным считывателем кан от технотона или аналогичным.
Еще не помешает fms-адаптер. Мы работаем с телтоникой, поэтому используем lv-can200 от teltonika.
Схема подкллючения простая, можешь начать с диагностического разъема, 6 пин — CAN high, 14 пин — канлоу. Если не прочитается там, под приборкой найдешь эти же провода по цветам и там зацепишься индукционно. Под ТЛК200, хайландер и все остальные тойоты программа одинаковая, если используешь фмс от телтоники, номер программы 138. Какой прибор будет использоваться, в смысле терминал gps какой?

24/07/2014 07:39:00 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • mykola
  • Gurtam Partner
  • Неактивен
  • Откуда: Тюмень, РФ, Земля
  • Зарегистрирован: 19/04/2010
  • Сообщений: 277
  • Продукты: Wialon Hosting
  • Карма: 6

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Кан-лог также точно читает тлк-200, программа будет 138. Схема простая: терминал=канлог=индукционный считыватель.

Куда подключаться к машине, в том числе картинка расписано здесь:

Фиолетовый = кан хай, белый кан лоу.

24/07/2014 11:08:37 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • maxdima
  • Wialon fan club
  • Неактивен
  • Зарегистрирован: 20/02/2013
  • Сообщений: 46
  • Карма: 0

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Здравствуйте! Спасибо что расписали все как по нотам ! Мы используем терминал Ruptela FM-TCO3 и Ruptela EasyCan .

24/07/2014 13:45:35 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • Dmitriy
  • Gurtam Partner
  • Неактивен
  • Откуда: СПб
  • Зарегистрирован: 17/03/2011
  • Сообщений: 462
  • Карма: 48

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Вместо крокодила можно использовать ClickCAN, интеграторам он нравится больше. И по стоимости гуманее.

26/07/2014 15:49:44 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • mykola
  • Gurtam Partner
  • Неактивен
  • Откуда: Тюмень, РФ, Земля
  • Зарегистрирован: 19/04/2010
  • Сообщений: 277
  • Продукты: Wialon Hosting
  • Карма: 6

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

По идее, может прочитать без фмс адаптера — надо посмотреть мануал на эту руптелу

28/07/2014 15:05:36 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • maxdima
  • Wialon fan club
  • Неактивен
  • Зарегистрирован: 20/02/2013
  • Сообщений: 46
  • Карма: 0

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Могу выслать,если скажите куда .

03/08/2014 12:12:01 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • maxdima
  • Wialon fan club
  • Неактивен
  • Зарегистрирован: 20/02/2013
  • Сообщений: 46
  • Карма: 0

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Здравствуйте ! Помогите разобраться с подключением к CAN-шине на Toyota Hilux 2012 года и 2008 года.Данные снимаю при помощи импульсного считавателя . Машины дубайской сборки . Пробовал считать данные с OBD 2 подключился к пин 6 -CAN H, пин 14 — CAN — L. Данных нет, пояснить где можно найти провода CAN-линии ? Залез под тарпедку витой пары не обнаружил . Может вариант подсоединиться к ЭБУ блоку ? На машине 2008 года вообще пин 6 и пин 14 отсутствует с ними как быть . Выручите пожалуйста .

13/02/2017 16:30:20 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • nds88
  • Wialon fan club
  • Неактивен
  • Откуда: Актау
  • Зарегистрирован: 08/11/2013
  • Сообщений: 16
  • Продукты: Wialon HostingWialon Pro
  • Карма: 1

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Добрый день!Подскажите пожалуйста,как настроить Руптелу ПРО 4 по CAN- шине на автомобиль TOYOTA PRADO?подключаю CAN-шина как выше написано,но данные не получаю,и как подключить ремни безопасности и фары ,чтоб срабатывал сигнал оповещения?Заранее спасибо

13/02/2017 19:52:41 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • vad_98
  • Wialon fan club
  • Неактивен
  • Откуда: Северная Столица
  • Зарегистрирован: 29/01/2015
  • Сообщений: 545
  • Карма: 88

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Парни, куда ваши старшие технари смотрят, или они на уровне *САМ ДУРАК ВОТ САМ И СТАВЬ !! ?

13/02/2017 21:28:54 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • nds88
  • Wialon fan club
  • Неактивен
  • Откуда: Актау
  • Зарегистрирован: 08/11/2013
  • Сообщений: 16
  • Продукты: Wialon HostingWialon Pro
  • Карма: 1

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

13/02/2017 22:28:16 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • vad_98
  • Wialon fan club
  • Неактивен
  • Откуда: Северная Столица
  • Зарегистрирован: 29/01/2015
  • Сообщений: 545
  • Карма: 88

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Разъем щитка приборов. Белый лоу и зеленый хай(витая пара)

13/02/2017 23:07:22 Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

  • SiMaxDnepr
  • Wialon fan club
  • Неактивен
  • Откуда: Днепр
  • Зарегистрирован: 07/12/2015
  • Сообщений: 978
  • Карма: 113

Re: Подключение CAN шины на Toyota Landcruiser и Toyota Hilux

Парни, куда ваши старшие технари смотрят, или они на уровне *САМ ДУРАК ВОТ САМ И СТАВЬ !! ?

мне кажется, что всех объединяет общая проблема, а именно проблема с монтажниками, технарями и электронщиками, так как все хотят взять на работу продажника, а всё остальное как нибудь да сделается, к примеру форум подскажет, а так как работа специфическая и как Саша (DIESEL) всегда говорит- что продажник должен быть из монтажника, но в свою очередь монтажники не растут как яблочки на деревьях вот и приходим к словам Максима (BABAY)- всё заключает в кадрах, а где кадры взять если их нужно содержать и кормить вот и ходим по кругу, продать продаём, а реализовать и сделать сервис в последующем толком не можем, вот и вся суть, наверно.

Источник

Подключение кан шины к ГУ в комплектации “Классик”

После установки ГУ Toyota Touch 2 Хотел активировать считалку топлива. Порывшись на форуме нашел инфу по подключению, тестово кинул два провода к ОБД разъему Е11, контакты 6 CANH и 14 CANL и к ГУ Е60 контакты 9 CANH и 10 CANL, но фокус не удался, считалка не заработала… Так эту идею и забросил… как выяснилось позже, нужно было подать питание “+” от зажигания на Е60-1… Шло время, но мысль подключить кан шину к ГУ так и не давала покоя, а тут еще оказалось что на RedPower есть специальная софтина для просмотра информации о расходе топлива. Проштудировав форум и тех док решил вновь заняться этим вопросом.

Вот распиновка панели приборов
E46-31 (CANL) — масса W — масса Линия передачи данных CAN — —
E46-32 (CANH) — масса LG — масса Линия передачи данных CAN — —

Распиновка разьема ГУ
E60-9 (CANH) G Сигнал передачи данных CAN — —
E60-10 (CANL) W Сигнал передачи данных CAN — —

PS кинув 2 провода все заработало, но на будущее кинул питание +12 В от панели E46-39 к ГУ Е60-1

2 часа времени и результат на фото:

Цена вопроса: 0 ₽

Войдите или зарегистрируйтесь, чтобы писать комментарии, задавать вопросы и участвовать в обсуждении.

Все комментарии

Еще раз о диагностике CAN-шины

А. Пахомов. Еще раз о диагностике CAN-шиныВ предыдущей статье мы поговорили о проблемах в шине передачи данных CAN, возникших в результате износа аккумуляторной батареи и просадки питающего напряжения при запуске ниже порога работоспособности шины. Сегодня продолжим разговор о CAN-шине, но немного в другом ключе: прежде всего вспомним принцип ее работы, а затем рассмотрим один из случаев топологии шины и разберем осциллограмму дефекта.

Эта шина используется чаще всего как средство обмена данными в системах, для которых критично быстродействие и время принятия решения. Таковыми являются, например, система управления движением, объединяющая между собой блоки управления двигателем, автоматической трансмиссией, антиблокировочной системой тормозов, усилителем руля и т.п.

Конструктивно шина представляет собой неэкранированную витую пару. Провода шины называются CAN High и CAN Low.

Шина может находиться в двух состояниях:

  1. Рецессивное состояние, или логическая единица. Оба провода в этой ситуации имеют практически одинаковый потенциал: и на проводе CAN High, и на проводе CAN Low присутствует около 2,5 В. В рецессивном состоянии шина может находиться сколь угодно долго, хотя в реальности этого не происходит, ведь рецессивное состояние – это всего лишь пауза между сеансами передачи информации.
  2. Доминантное состояние, или логический ноль. В него шина переходит тогда, когда один из входящих в сеть блоков управления начинает передачу данных. Потенциалы на проводах шины меняются следующим образом: на проводе CAN High потенциал повышается на один вольт, на проводе CAN Low наоборот, становится на один вольт ниже.

Рассмотрим форму сигнала шины, чтобы обосновать ее помехоустойчивость:

А. Пахомов. Еще раз о диагностике CAN-шины

На рисунке показаны доминантный и рецессивный уровни шины, а также воздействие на шину электромагнитной помехи. Особенностью обработки сигналов шины является то, что в расчет берется не сам уровень сигнала, а разница уровней между проводами CAN High и CAN Low. При рецессивном уровне эта разница близка к нулю, при доминантном уровне она максимальна.

В витой паре провода располагаются очень близко друг к другу. Если возникает внешняя электромагнитная помеха X, то она является синфазной и наводит одинаковый всплеск напряжения в обоих проводах шины. В итоге на обоих проводах появляется наведенный помехой импульс, но разница потенциалов между проводами при этом не меняется. Это позволяет эффективно подавлять внешние помехи, что является большим преимуществом CAN-шины.

На самом деле витая пара – давно известный способ борьбы с помехами. В медицине, например, в кардиостимуляторах, где требуется высочайшая помехоустойчивость, она применяется очень широко.

Сигнал шины поступает в блок управления на дифференциальный усилитель и обрабатывается. Иллюстрация поясняет процесс обработки:

А. Пахомов. Еще раз о диагностике CAN-шины

Большинство автопроизводителей придерживаются скорости передачи 500 кБд, соответственно, продолжительность одного бита при этом составит 2 мкс.

Поговорим о топологии CAN-шины. Физически у шины нет начала и нет конца, шина – это просто единая сеть. Чаще всего встречаются два типа топологии: линейная топология и топология «пассивная звезда», а также их сочетания.

А. Пахомов. Еще раз о диагностике CAN-шины

А. Пахомов. Еще раз о диагностике CAN-шины

На современных автомобилях шина CAN очень разветвленная. Чтобы не перегружать линию большим количеством передаваемых данных, шина может состоять из нескольких ветвей, объединенных межсетевым шлюзом, иначе называемым Gateway. В итоге сеть представляет собой несколько ответвлений, в том числе и на диагностический разъем, использующих разную скорость и протоколы обмена.

Поэтому топология шины – вопрос для диагноста очень актуальный и, к сожалению, довольно сложный. Из тех электрических схем, которыми располагает диагност, не всегда можно понять топологию. Но в документации некоторых автопроизводителей приводится полная и подробная информация, в этом случае задача сильно упрощается.

Не зная тонкостей организации шины, найти в ней неисправность бывает достаточно сложно. Например, при наличии окисления контактов в разъеме пропадает связь с целым рядом блоков управления. Наличие под рукой топологии шины позволяет легко находить подобные проблемы, а отсутствие приводит к большой потере времени.

Ну что ж, мы немного освежили в памяти теорию шины, теперь самое время перейти к практике.

А. Пахомов. Еще раз о диагностике CAN-шины

Перед нами автомобиль Infinitit Q50, оснащенный весьма редким турбированным мотором VR30DDT объемом 3.0 л и мощностью 400 лошадиных сил. Но проблема заключается не в этом замечательном агрегате, а как раз в CAN-шине: подключив диагностический сканер, не удается установить связь с доброй половиной блоков управления.

Нам повезло – Nissan относится к тому узкому кругу производителей, которые дают диагностам качественную и полноценную информацию. В том числе есть в документации и подробная топология бортовой шины обмена данными. Открываем, смотрим:

А. Пахомов. Еще раз о диагностике CAN-шины

Следует сказать, что приведенная блок-схема достаточно общая. В документации имеется гораздо более подробная электрическая схема со всеми проводами и номерами контактов в блоках, но сейчас она нам пока что ни к чему, нам важно понять общую топологию.

Итак, первое, что нужно увидеть, это то, что вся сеть разделена на три большие ветви, обведенные пунктиром:

  • CAN communication circuit 1 (Коммуникационная цепь CAN 1);
  • CAN communication circuit 2 (Коммуникационная цепь CAN 2);
  • Chassis communication circuit (Коммуникационная цепь шасси).

Первые две цепи связаны между собой посредством CAN gateway (найдите его на иллюстрации). Цепь шасси связана с цепью CAN 2 через блок управления шасси, который также играет роль своеобразного Gateway.

А теперь вновь обратимся к сканеру и посмотрим, какие из блоков управления не выходят на связь. Дилерский сканер предоставляет нам очень удобную функцию: на экран выводятся блоки каждой из цепей по отдельности, а цветом отображается возможность (зеленый) либо невозможность (красный) установить с ними связь. Вот блоки цепи CAN 1:

А. Пахомов. Еще раз о диагностике CAN-шины

А это – блоки цепи CAN 2. Как видно, связи с ними попросту нет:

А. Пахомов. Еще раз о диагностике CAN-шины

Также нет связи с блоками цепи шасси, но это и понятно: эта цепь, согласно блок-схеме, подключена к цепи CAN 2.

Ну что ж, задача почти решена, осталось лишь локализовать неисправность. А для этого воспользуемся мотортестером и снимем осциллограмму на проводах шины сначала в CAN 1, а затем в CAN 2 и сравним их.

Сделать это очень несложно, ведь обе шины выведены прямо на диагностический разъем. Согласно более подробной схеме, о которой упоминалось выше, на контакты диагностической колодки 6 и 14 выведены провода CAN 1, а на контакты 12 и 13 – провода CAN 2.

Снимаем осциллограмму в цепи CAN 1. Она имеет прямо-таки академический вид:

А. Пахомов. Еще раз о диагностике CAN-шины

Давайте обмерим ее с помощью линеек.

  • На проводе CAN High в рецессивном состоянии потенциал составил 2,26 В, на проводе CAN Low – 2,25 В.
  • На проводе CAN High в доминантном состоянии потенциал составил 3,58 В, на проводе CAN Low – 1,41 В.
  • Ширина импульса, соответствующего одной единице передаваемой информации, составляет 2 мкс (обведено красным прямоугольником).

Просто идеальное соответствие теории и практики. Конечно, полосы пропускания нашего прибора явно недостаточно для корректного отображения сигнала, слишком уж широк его спектр. Однако, если закрыть на это глаза, то вполне можно оценить качество сигнала и сделать необходимые выводы.

А теперь делаем ту же операцию на контактах диагностической колодки 12 и 13, чтобы получить осциллограмму сигнала CAN 2. Вот она:

А. Пахомов. Еще раз о диагностике CAN-шины

Для наглядности масштаб осциллограмм на обеих иллюстрациях один и тот же.

То, что вы видите на этой осциллограмме, называется «мусор». Часто диагносты так и говорят: блок мусорит в шину. Вот только как найти блок, который это делает? Методика здесь очень проста и сводится она к поочередному отключению блоков и повторному наблюдению за сигналом шины.

Где именно находится тот или иной блок на автомобиле, в документации, как правило, показано. Например, на этом «финике» блоки расположены так:

А. Пахомов. Еще раз о диагностике CAN-шины

Но в нашем случае все проще. Кстати, маленький лайфхак, возьмите на заметку. В автомобилях Nissan и Infiniti чаще всего причиной наличия мусора в CAN-шине является блок ABS. Сняв разъем с блока, сразу получаем нормальный обмен и связь сканера со всеми блоками ветви CAN 2:

А. Пахомов. Еще раз о диагностике CAN-шины

Обратите внимание на то, что связь в цепи CAN 2 есть со всеми блоками, кроме блока ABS, ведь он отключен.

Завершая разговор, хотелось бы обратить ваше внимание еще на один важный нюанс. Частота следования импульсов по CAN-шине составляет 500 кГц. Поэтому при получении осциллограммы необходимо задействовать максимально возможную частоту дискретизации мотортестера, на какую только он способен.

Если частоту дискретизации вы зададите низкую, то импульсы на осциллограмме будут сильно искажены. В качестве примера посмотрите, как выглядит осциллограмма сигнала CAN-шины при специально сниженной частоте дискретизации прибора:

А. Пахомов. Еще раз о диагностике CAN-шины

Красным прямоугольником обведено время, в которое укладывается одно деление сетки. Оно составляет 0,2 мс. А на осциллограмме, которую мы рассматривали ранее, это время было равно 5 мкс, поэтому отображение импульсов было более правильным. Имейте это ввиду и не допускайте ошибок!

CAN-технология BOSCH в диагностике автомобилей

CAN Технологии
Применяемая на автомобилях система CAN (Controller_Area_Network) позволяет установить связь между отдельными электронными блоками управления. При эксплуатации автомобиля и при диагностике его агрегатов эта система предоставляет возможность использования новых функций, которые не могут быть возложены на отдельно действующие блоки управления.
Применяемая на автомобилях система CAN позволяет объединить в локальную сеть электронные блоки управления или сложные датчики, как, например, датчик угла поворота рулевого колеса. Обозначение CAN является сокращением от выражения Controller:Area:Network (локальная сеть, связывающая блоки управления). Применение системы CAN на автомобиле дает следующие преимущества:
Обмен данными между блоками управления производится на унифицированной базе. Эту базу называют протоколом. Шина CAN служит как бы магистралью для передачи данных.
Независимо действующие системы, например, система курсовой стабилизации ESP, могут быть реализованы с меньшими затратами.
Упрощается подключение дополнительного оборудования.
Шина данных CAN является открытой системой, к которой могут быть подключены как медные провода, так и стекловолоконные проводники.
Диагностика электронных блоков управления производится посредством кабеля «К».
Диагностика некоторых компонентов оборудования салона автомобиля уже сегодня производится через шину CAN (например, это подушки безопасности и блоки управления в дверях автомобиля). В данном случае речь идет о так называемом виртуальном кабеле «К». В будущем необходимость в кабеле «К» должна отпасть.
Можно проводить одновременную диагностику нескольких блоков управления, входящих в систему.
CAN
Промышленная сеть CAN (Controller Area Network) была создана в конце 80-х годов фирмой Bosch как решение для распределенных систем, работающих в режиме реального времени. Первая реализация CAN применялась в автомобильной электронике, однако сейчас CAN находит применение практически в любых типах машин и промышленных установок, от простейших бытовых приборов до систем управления ускорителями элементарных частиц. В настоящий момент CAN-протокол стандартизован в международном стандарте ISO 11898.

Основные положения стандарта CAN.
В качестве среды передачи в CAN используется дифференциальная линия связи — витая пара, сигналы по которой передаются в дифференциальном режиме.
Для контроля доступа к среде передачи используется метод недеструктивного арбитража.
Данные передаются короткими (максимальная длина поля данных — 8 байт) пакетами, которые защищены контрольной суммой.
В CAN отсутствует явная адресация сообщений. Вместо этого каждый пакет снабжен полем арбитража (идентификатор+RTR-бит), которое задает приоритет сообщения в сети.
CAN имеет исчерпывающую схему контроля ошибок, которая гарантирует повторную передачу пакета, в случае возникновения ошибок передачи/приема сообщения.
В CAN существует способ автоматического устранения узла, являющегося источником ошибочных пакетов в сети.
CAN контроллеры.
Протокол CAN полностью реализован аппаратно — в виде микросхем- CAN контроллеров или в виде стандартного периферийного устройства в составе микросхемы- микроконтроллера. Все производители современных микроконтроллеров по крайней мере в одном из семейств имеют микроконтроллеры со встроенным периферийным одним или несколькими CAN-контроллерами. Таким образом, сегодня, СAN-контроллер является таким же стандартным периферийным устройством как контроллер SPI, I2C или UART.
Что такое CAN-шина
Для повышения надежности в CAN-шине используется принцип дифференциальной передачи данных, требующий двух проводов, CAN-High (CAN-H) высокий и CAN-Low (CAN-L) низкий уровень напряжения.
Рецессивные и доминантные биты
Для повышения надежности в CAN-шине используется принцип дифференциальной передачи данных, требующий двух проводов, CAN-High (CAN-H) высокий и CAN-Low (CAN-L) низкий уровень напряжения.

Как это исполнено физически
Физически CAN-шина – система из специального кабеля с разветвителями для подключения электронных блоков и конечных устройств-терминаторов (резисторов).

Витая пара
Чаще всего шина CAN – скрученные (витые) пары проводов (по 30 витков на один погонный метр) с разветвителями для подключения ЭБУ (ECU) и конечными резисторами-терминаторами с номинальным сопротивлением 120 Ом на концах шины.
Сколько CAN-шин может быть на ТС
На ТС экологического уровня Евро-3 и выше может быть от 1 до 6 и более шин CAN, которые могут обозначаться как M-CAN, T-CAN, I-CAN, H-CAN, A-CAN, EBS-CAN и т.д.

Как найти CAN-шину
Признаками шины М-CAN и Т-CAN могут быть, например:
• наличие диагностического разъема OBD II;
• цвет и сечение проводов витых пар;
• связь витых пар с контактами в разъемах OBD II и ЭБУ.

Диагностический разъём OBD II и его распиновка
На большинстве ТС после 2003 года используется диагностический разъем OBD II или DLC (Diagnostic Link Connector), который находится под панелью приборов.

Как будем искать CAN-шину
С помощью мультиметра можно проверить любую витую пару проводов, чтобы убедиться в следующем:
1. Является ли проверяемая витая пара вообще CAN-шиной? (Проверка импеданса);
2. Если витая пара является CAN-шиной, то передаются ли в ней какие–либо сообщения? Проверка работоспособности);
3. Находится ли CAN-шина в работоспособном состоянии и какая из линий шины является CAN-L, а какая – CAN-H?

Внимание! Неосторожное обращение с включенной
CAN-шиной может привести к фиксации в ней ошибок!

Проверка импеданса
Проверка импеданса (полного сопротивления)

ВНИМАНИЕ!
Проверка должна производиться при полностью выключенном питании бортовой сети (выключенной массе).
Контрольное значение должно быть в пределах 60 Ом.

Проверка работоспособности CAN-шины
Находится ли CAN-шина в рабочем состоянии?

ВНИМАНИЕ! Проверка производится при включенном замке зажигания, работающем двигателе, нажатии и отпускании педали подачи топлива между проводами витой пары.
Контрольное значение напряжения должно быть в пределах 1,2-3,0 В.

Определение CAN-H и CAN-L
Какой из проводов является CAN-H, а какой CAN-L?

ВНИМАНИЕ! Проверка производится в состоянии рецессии (при включенном главном выключателе АКБ (кнопке массы), замок зажигания выключен!) и в доминантном состоянии (при включенном замке зажигания в положение «Приборы», при работающем и не работающем двигателе).
Проверка с помощью осциллографа
Учитывая возможные отклонения уровня напряжения от номинальных значений, состояние рецессии можно определить только с помощью осциллографа.

Цвет оболочки и цветовая маркировка проводов

CAN-шина. Что можно увидеть?
В зависимости от того, какую информацию заложил в CAN-шину производитель, могут распознавать:
Способы подключения:

Контактный способ:
Достоинства:
• просто и дешево;
• можно работать на считывание и передачу.
Недостатки:
• может оказывать мешающее влияние на CAN-шину; проблемы с возникновением и фиксацией ошибок;
• Проблемы с гарантией на ТС.

Безконтактный способ (CANCrocodile):

Достоинства:
• не оказывает мешающего воздействия на CAN-шину.
Недостатки:
• можно работать только на считывание.

Бесконтактныe считыватели Crocodile
CAN Crocodile – устройство для бесконтактного считывания данных с CAN-шины автомобиля. CAN Crocodile применяется для подключения к шине CAN систем GPS/ГЛОНАСС мониторинга, которые получают информацию о режимах работы двигателя, состоянии датчиков, уровне топлива, наличии неисправностей и т.д. CAN Crocodile не нарушает изоляцию проводов CAN и “слушает” обмен по шине с помощью специального беспроводного приемника. Применение CAN Crocodile абсолютно безопасно для автомобиля (!), незаметно для работы бортового компьютера, диагностического сканера и других электронных систем. Особенно актуально применение CAN Crocodile для гарантийных автомобилей, в которых подключение каких-либо электронных устройств к шине CAN часто служит поводом для снятия с гарантии.

Бесконтактным способом – без нарушения изоляционной оболочки проводов и электрического контакта.
Не нарушает изоляцию;
Не влияет на работу CAN-шины;
Не занимает диагностический разъём

Проверка кан шины мультиметром

proverka kan shiny multimetrom

Блог

CAN Технологии
Применяемая на автомобилях система CAN (Controller_Area_Network) позволяет установить связь между отдельными электронными блоками управления. При эксплуатации автомобиля и при диагностике его агрегатов эта система предоставляет возможность использования новых функций, которые не могут быть возложены на отдельно действующие блоки управления.
Применяемая на автомобилях система CAN позволяет объединить в локальную сеть электронные блоки управления или сложные датчики, как, например, датчик угла поворота рулевого колеса. Обозначение CAN является сокращением от выражения Controller:Area:Network (локальная сеть, связывающая блоки управления). Применение системы CAN на автомобиле дает следующие преимущества:
Обмен данными между блоками управления производится на унифицированной базе. Эту базу называют протоколом. Шина CAN служит как бы магистралью для передачи данных.
Независимо действующие системы, например, система курсовой стабилизации ESP, могут быть реализованы с меньшими затратами.
Упрощается подключение дополнительного оборудования.
Шина данных CAN является открытой системой, к которой могут быть подключены как медные провода, так и стекловолоконные проводники.
Диагностика электронных блоков управления производится посредством кабеля «К».
Диагностика некоторых компонентов оборудования салона автомобиля уже сегодня производится через шину CAN (например, это подушки безопасности и блоки управления в дверях автомобиля). В данном случае речь идет о так называемом виртуальном кабеле «К». В будущем необходимость в кабеле «К» должна отпасть.
Можно проводить одновременную диагностику нескольких блоков управления, входящих в систему.
CAN
Промышленная сеть CAN (Controller Area Network) была создана в конце 80-х годов фирмой Bosch как решение для распределенных систем, работающих в режиме реального времени. Первая реализация CAN применялась в автомобильной электронике, однако сейчас CAN находит применение практически в любых типах машин и промышленных установок, от простейших бытовых приборов до систем управления ускорителями элементарных частиц. В настоящий момент CAN-протокол стандартизован в международном стандарте ISO 11898.

Основные положения стандарта CAN.
В качестве среды передачи в CAN используется дифференциальная линия связи — витая пара, сигналы по которой передаются в дифференциальном режиме.
Для контроля доступа к среде передачи используется метод недеструктивного арбитража.
Данные передаются короткими (максимальная длина поля данных — 8 байт) пакетами, которые защищены контрольной суммой.
В CAN отсутствует явная адресация сообщений. Вместо этого каждый пакет снабжен полем арбитража (идентификатор+RTR-бит), которое задает приоритет сообщения в сети.
CAN имеет исчерпывающую схему контроля ошибок, которая гарантирует повторную передачу пакета, в случае возникновения ошибок передачи/приема сообщения.
В CAN существует способ автоматического устранения узла, являющегося источником ошибочных пакетов в сети.
CAN контроллеры.
Протокол CAN полностью реализован аппаратно — в виде микросхем- CAN контроллеров или в виде стандартного периферийного устройства в составе микросхемы- микроконтроллера. Все производители современных микроконтроллеров по крайней мере в одном из семейств имеют микроконтроллеры со встроенным периферийным одним или несколькими CAN-контроллерами. Таким образом, сегодня, СAN-контроллер является таким же стандартным периферийным устройством как контроллер SPI, I2C или UART.
Что такое CAN-шина
Для повышения надежности в CAN-шине используется принцип дифференциальной передачи данных, требующий двух проводов, CAN-High (CAN-H) высокий и CAN-Low (CAN-L) низкий уровень напряжения.
Рецессивные и доминантные биты
Для повышения надежности в CAN-шине используется принцип дифференциальной передачи данных, требующий двух проводов, CAN-High (CAN-H) высокий и CAN-Low (CAN-L) низкий уровень напряжения.

screenshot a.d cd.net 2021.11.01 20 41 51

Как это исполнено физически
Физически CAN-шина – система из специального кабеля с разветвителями для подключения электронных блоков и конечных устройств-терминаторов (резисторов).

Используемый кабель

Указания по проверке

  • Проверка напряжения (осциллограф): Для проверки напряжения должна быть подсоединена АКБ и включено зажигание.
  • Измерение сопротивления: При измерении сопротивления необходимо, чтобы измеряемый объект перед измерением был приведен в обесточенное состояние. Для этого отсоединяется аккумуляторная батарея. Подождать 3 минуты пока разрядятся все конденсаторы в системе.

Информация по шине CAN

Шина CAN (Controller Area Network) является последовательной системой шин связи и отличается следующими признаками:

  • распространение сигнала происходит в обоих направлениях.
  • Каждое сообщение принимают все абоненты шины. Каждый абонент шины сам решает, будет ли он использовать сообщение,
  • Дополнительные абоненты шины добавляются простым параллельным включением.
  • Шинная система образует систему с задающим устройством. Каждый абонент шины может быть задающим или исполнительным устройством, в зависимости от того, подключен ли он в качестве передатчика или приемника.
  • В качестве средства передачи используется двухпроводное соединение. Обозначения проводов: низкий уровень CAN и высокий уровень CAN.
  • Как правило, каждый абонент шины может поддерживать связь по шине со всеми другими абонентами шины. Обмен данными по шине регулируется по правилам доступа. Основным отличием между шиной передачи данных K-CAN (кузовная шина CAN), шиной PT-CAN (шина CAN двигателя и трансмиссии) и шиной F-CAN (шина CAN ходовой части)является:
  • K-CAN: скорость передачи данных ок. 100 Кбит/с. Возможен однопроводной режим.
  • PT-CAN: скорость передачи данных ок. 500 Кбит/с. Однопроводной режим не возможен.
  • F-CAN: скорость передачи данных ок. 500 Кбит/с. Однопроводной режим не возможен.

Задающее устройство: задающее устройство является активным партнером по связи, от которого исходит инициатива связи. Задающее устройство имеет приоритет и управляет связью. Оно может посылать пассивному абоненту шины (исполнительному устройству) сообщения по системе шин и после запроса принимать его сообщения.

Исполнительное устройство: исполнительное устройство является пассивным участником связи. Оно получает команду получать и передавать данные.

Система с задающим устройством: в системе с задающим устройством участники связи могут в определенный момент времени брать на себя роль задающего или исполнительного устройства.

Осциллографирование K-CAN, PT-CAN, F-CAN

Для большей ясности, работает ли шина CAN безупречно, необходимо понаблюдать связь по шине. При этом нет необходимости анализировать отдельные биты, а нужно лишь убедиться, что шина CAN работает. Осциллографирование показывает: ”шина CAN очевидно работает без нарушений”.

При измерении с помощью осциллографа напряжения между проводом низкого уровня CAN (или высокого CAN-High) и массой получают прямоугольный сигнал в пределах напряжения :

Низкий уровень CAN относительно массы: U мин = 1 В и U макс = 5 В

Высокий уровень CAN относительно массы: U мин = 0 В и U макс = 4 В

Эти значения являются приблизительными и могут отличаться, в зависимости от нагрузки шины, на величину до 100 мВ.

Настройки осциллографа для измерения на шине K-CAN:

CH1: Щуп 1, ранг 2 В/дел; соединение DC
CH2: Щуп 2, ранг 2 В/дел; соединение DC
Время: 50 мс/дел

Рис. 1: Измерение K-CAN: CH1 низкий уровень CAN, CH2 высокий уровень CAN

При измерении с помощью осциллографа напряжения между проводом низкого уровня CAN (или высокого CAN-High) и массой получают прямоугольный сигнал в пределах напряжения :

Низкий уровень CAN относительно массы: U мин = 1,5 В и U макс = 2,5 В

Высокий уровень CAN относительно массы: U мин = 2,5 В и U макс = 3,5 В

Эти значения являются приблизительными и могут отличаться, в зависимости от нагрузки шины, на величину до 100 мВ.

Настройки осциллографа для измерения на шине PT-CAN (или F-CAN):

CH1: Щуп 1, ранг 1 В/дел; соединение DC
CH2: Щуп 2, ранг 1 В/дел; соединение DC
Время: 10 мс/дел

Рисунок 2: Измерение PT-CAN: CH1 низкий уровень CAN, CH2 высокий уровень CAN

Порядок измерения сопротивления с согласующим сопротивлением K-CAN, PT-CAN и F-CAN

  • Шина CAN должна находиться в обесточенном состоянии
  • Не должны быть подключены другие измерительные приборы (параллельное включение измерительных приборов)
  • Измерение производится между проводами низкого уровня CAN и высокого уровня CAN
  • Фактические значения могут отличаться от заданных значений на несколько Ом.

На шине K-CAN нельзя провести отдельное измерение сопротивления, так как сопротивление изменяется в зависимости от логики включения ЭБУ!

PT‐CAN, F‐CAN

Для предотвращения отражения сигнала два абонента шины CAN (с максимальным удалением в сети PT-CAN) нагружаются сопротивлением 120 Ом. Оба нагрузочных сопротивления включаются параллельно и образуют эквивалентное сопротивление 60 Ом. При отключенном напряжении питания это эквивалентное сопротивление можно измерить между линиями передачи данных. Кроме этого, можно по отдельности измерить отдельные сопротивления.

Указания по измерению с сопротивлением 60 Ом: Отсоединить от шины легкодоступный ЭБУ. Измерить сопротивление на разъеме между проводами CAN низкого и высокого уровней.

Указание!

Не на всех автомобилях имеется согласующее сопротивление на шине CAN Наличие встроенного согласующего сопротивления на подключенном автомобиле можно проверить по соответствующей электрической схеме.

Шина CAN не работает

Если шина передачи данных K-CAN или PT-CAN не работает, то, возможно, имеется КЗ или обрыв провода CAN высокого или низкого уровней. Или неисправен ЭБУ.

Для локализации причины неисправности рекомендуется действовать следующим образом:

  • По очереди отсоединять абонентов шины CAN до тех пор, пока не будет найден блок, являющийся причиной неисправности (= ЭБУ X).
  • Проверить провода к ЭБУ X на отсутствие КЗ или обрыва.
  • При возможности проверить ЭБУ X.
  • Такая последовательность действий приводит к успеху только в том случае, если короткое замыкание имеет проверяемый провод от ЭБУ к шине CAN. Если провод в шине CAN сам имеет короткое замыкание, то нужно проверить жгут проводов.

Оставляем за собой право на опечатки, смысловые ошибки и технические изменения.

Между проводами главной шины V и/или вспомогательных шин CAN может быть короткое замыкание, если сопротивление между контактами 6 (CANH) и 14 (CANL) разъема DLC3 составляет менее 54 Ом.

Короткое замыкание в главной шине CAN

Короткое замыкание во вспомогательной шине CAN

Щиток приборов в сборе

ЭБУ рулевого управления с усилителем

Главный ЭБУ кузова (бортовой ЭБУ сети мультиплексной связи)

Датчик положения рулевого колеса

ЭБУ системы SRS в сборе

ЭБУ системы противоскольжения (блок управления рабочими цилиндрами тормозов в сборе)

Блок управления системой кондиционирования в сборе

ЭБУ сертификации (ЭБУ электронного ключа зажигания в сборе)

ЭБУ предупреждения о недопустимой дистанции

ЭБУ сетевого шлюза

(для моделей с ЭБУ сетевого шлюза)

Дополнительный разъем (ЭБУ буфера шины)

(для моделей без ЭБУ сетевого шлюза)

ЭБУ стояночного тормоза в сборе

Приемник системы навигации в сборе

(для моделей с приемником системы навигации)

Радиоприемник с дисплеем в сборе

(для моделей с радиоприемником с дисплеем)

Разъем распределительного блока шины CAN № 3

Разъем распределительного блока шины CAN № 4

ПРЕДОСТЕРЕЖЕНИЕ / ПРИМЕЧАНИЕ / УКАЗАНИЕ

Перед измерением сопротивления шины CAN, выключите зажигание и оставьте автомобиль в покое на 1 минуту или более, не приводя в действие ключ, любые другие переключатели и не открывая/закрывая двери. После этого, отсоедините провод от отрицательного (-) вывода аккумуляторной батареи и перед измерением сопротивления оставьте автомобиль в покое на 1 минуту или более.

После выключения зажигания следует подождать некоторое время, прежде чем отсоединять провод от отрицательного (-) вывода аккумуляторной батареи. Поэтому, прежде чем приступать к этой работе, обязательно ознакомьтесь с примечанием относительно отсоединения провода от отрицательного (-) вывода аккумуляторной батареи.

Так как порядок проведения диагностики важен для получения корректных результатов, начните поиск неисправностей с раздела «Порядок поиска неисправностей», если выводятся коды DTC, связанные с системой передачей данных CAN.

После ремонта выполните процедуру проверки кодов DTC и убедитесь, что коды DTC не выводятся снова.

Процедура проверки кодов DTC: Включите зажигание (IG), подождите не менее 61 с и затем двигайтесь на автомобиле со скоростью не менее 20 км/час (12 миль в час) в течение не менее 10 минут.

После ремонта выполните проверку шины CAN и убедитесь, что отображаются все ЭБУ и датчики, подсоединенные к системе передачи данных CAN.

Перед заменой главного ЭБУ кузова (бортового ЭБУ сети мультиплексной связи), ECM или ЭБУ сертификации (ЭБУ электронного ключа зажигания в сборе) обратитесь к бюллетеню технического обслуживания.

Управление выключателем зажигания, какими-либо выключателями или дверями приводит к обмену данными между ЭБУ и датчиками по шине CAN. При осуществлении обмена данными сопротивление изменяется.

Если DTC регистрируется при непродолжительном движении на автомобиле даже после удаления кодов DTC, неисправность может возникать вследствие вибрации автомобиля. В подобных случаях необходимо пошевелить разъемы ЭБУ или жгутов проводов во время проверки, чтобы установить причину неисправности.

ПРОВЕРЬТЕ ШИНУ CAN НА КОРОТКОЕ ЗАМЫКАНИЕ (ЩИТОК ПРИБОРОВ)

Отсоедините провод от отрицательного (-) вывода аккумуляторной батареи.

Отсоедините разъем G16 щитка приборов.

Вид спереди разъема со стороны жгута проводов:

(к щитку приборов в сборе)

Измерьте сопротивление в соответствии со значениями, приведенными в таблице ниже.

Номинальное сопротивление
Подключение диагностического прибора Условие Заданные условия
G16-23 (CANH) – G16-22 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 108-132 Ом
Результат
Результат
OK
NG

ЗАМЕНИТЕ ЩИТОК ПРИБОРОВ В СБОРЕ Нажмите здесь Click here

ПРОВЕРЬТЕ ШИНУ CAN НА КОРОТКОЕ ЗАМЫКАНИЕ (ECM)

Подсоедините разъем G16 щитка приборов в сборе.

Отсоедините разъем A53 ECM.

Вид спереди разъема со стороны жгута проводов:

Измерьте сопротивление в соответствии со значениями, приведенными в таблице ниже.

Номинальное сопротивление
Подключение диагностического прибора Условие Заданные условия
A53-13 (CANH) – A53-26 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 108-132 Ом
Результат
Результат
OK
NG

ЗАМЕНИТЕ ECM Нажмите здесь Click here

ПРОВЕРЬТЕ ШИНЫ CAN НА КОРОТКОЕ ЗАМЫКАНИЕ (РАЗЪЕМ РАСПРЕДЕЛИТЕЛЬНОГО БЛОКА ШИНЫ CAN № 4)

Подсоедините разъем A53 ECM.

Отсоедините разъем G98 распределительного блока шины CAN № 4.

Вид спереди разъема со стороны жгута проводов:

(к разъему распределительного блока шины CAN № 4)

*b к разъему № 3 распределительного блока шины CAN *c К щитку приборов в сборе *d к ЭБУ сертификации (ЭБУ электронного ключа зажигания в сборе) *e К блоку управления системой кондиционирования *f к ЭБУ предупреждения о недопустимой дистанции *g

К ЭБУ сетевого шлюза

(для моделей с ЭБУ сетевого шлюза)

к дополнительному разъему (ЭБУ буфера шины)

(для моделей без ЭБУ сетевого шлюза)

Измерьте сопротивление в соответствии со значениями, приведенными в таблице ниже.

Номинальное сопротивление Подключение диагностического прибора Условие Заданные условия Куда подсоединить G98-1 (CANH) – G98-11 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 108 – 132 Ом Разъем распределительного блока шины CAN № 3 G98-2 (CANH) – G98-12 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 108 – 132 Ом Щиток приборов в сборе G98-3 (CANH) – G98-13 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более ЭБУ сертификации (ЭБУ электронного ключа зажигания в сборе) G98-5 (CANH) – G98-15 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более Блок управления системой кондиционирования в сборе G98-6 (CANH) – G98-16 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более ЭБУ предупреждения о недопустимой дистанции G98-7 (CANH) – G98-17 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более ЭБУ сетевого шлюза*1 G98-7 (CANH) – G98-17 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи

200 Ом или более*3

1 МОм или более*4

Дополнительный разъем (ЭБУ буфера шины)*2

Результат
Результат Следующий шаг
OK А
NG (главная шина распределительного блока шины CAN № 3) B
NG (отводная линия ЭБУ или датчика) C
NG (главная шина щитка приборов) D

ЗАМЕНИТЕ РАЗЪЕМ РАСПРЕДЕЛИТЕЛЬНОГО БЛОКА ШИНЫ CAN № 4

ПЕРЕЙДИТЕ К ШАГУ 5 Click here

ОТРЕМОНТИРУЙТЕ ИЛИ ЗАМЕНИТЕ ЛИНИИ ГЛАВНОЙ ШИНЫ CAN ИЛИ РАЗЪЕМ (ЩИТОК ПРИБОРОВ – РАЗЪЕМ РАСПРЕДЕЛИТЕЛЬНОГО БЛОКА ШИНЫ CAN № 4)

ПРОВЕРЬТЕ ШИНЫ CAN НА КОРОТКОЕ ЗАМЫКАНИЕ (РАЗЪЕМ РАСПРЕДЕЛИТЕЛЬНОГО БЛОКА ШИНЫ CAN № 3)

Отсоедините разъем G97 распределительного блока шины CAN № 3.

Вид спереди разъема со стороны жгута проводов:

(к разъему распределительного блока шины CAN № 3)

*b К DLC3 *c к датчику положения рулевого колеса *d К ECM *e К главному ЭБУ кузова (бортовому ЭБУ сети мультиплексной связи) *f К ЭБУ системы SRS в сборе *g К ЭБУ стояночного тормоза в сборе *h к ЭБУ системы противоскольжения (блоку управления рабочими цилиндрами тормозов) *i к разъему № 4 распределительного блока шины CAN *j

К приемнику системы навигации в сборе

(для моделей с приемником системы навигации)

к радиоприемнику с дисплеем в сборе

(для моделей с радиоприемником с дисплеем)

*l к ЭБУ рулевого управления с усилителем в сборе

Измерьте сопротивление в соответствии со значениями, приведенными в таблице ниже.

Номинальное сопротивление
Подключение диагностического прибора Условие Заданные условия Куда подсоединить
G97-1 (CANH) – G97-11 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 1 МОм или более DLC3
G97-2 (CANH) – G97-12 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более Датчик положения рулевого колеса
G97-3 (CANH) – G97-13 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 108 – 132 Ом ECM
G97-4 (CANH) – G97-14 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более Главный ЭБУ кузова (бортовой ЭБУ сети мультиплексной связи)
G97-5 (CANH) – G97-15 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более ЭБУ системы SRS в сборе
G97-6 (CANH) – G97-16 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более ЭБУ стояночного тормоза в сборе
G97-7 (CANH) – G97-17 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более ЭБУ системы противоскольжения (блок управления рабочими цилиндрами тормозов в сборе)
G97-8 (CANH) – G97-18 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 1 МОм или более Разъем распределительного блока шины CAN № 4
G97-9 (CANH) – G97-19 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более Приемник системы навигации в сборе*1
G97-9 (CANH) – G97-19 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более Радиоприемник с дисплеем в сборе*2
G97-10 (CANH) – G97-20 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 200 Ом или более ЭБУ рулевого управления с усилителем
Результат
Результат Следующий шаг
OK А
NG (главная шина распределительного блока шины CAN № 4) B
NG (отводная линия ЭБУ или датчика) C
NG (вспомогательная шина DLC3) D
NG (главная шина ECM) E

ЗАМЕНИТЕ РАЗЪЕМ РАСПРЕДЕЛИТЕЛЬНОГО БЛОКА ШИНЫ CAN № 3

ОТРЕМОНТИРУЙТЕ ИЛИ ЗАМЕНИТЕ ГЛАВНУЮ ШИНУ CAN ИЛИ РАЗЪЕМ (РАЗЪЕМ РАСПРЕДЕЛИТЕЛЬНОГО БЛОКА ШИНЫ CAN № 4 – РАЗЪЕМ РАСПРЕДЕЛИТЕЛЬНОГО БЛОКА ШИНЫ CAN № 3)

ОТРЕМОНТИРУЙТЕ ИЛИ ЗАМЕНИТЕ ВСПОМОГАТЕЛЬНЫЕ ШИНЫ CAN, ПОДКЛЮЧЕННЫЕ К DLC3

ОТРЕМОНТИРУЙТЕ ИЛИ ЗАМЕНИТЕ ЛИНИИ ГЛАВНОЙ ШИНЫ CAN ИЛИ РАЗЪЕМ (ECM – РАЗЪЕМ РАСПРЕДЕЛИТЕЛЬНОГО БЛОКА CAN № 3)

ПРОВЕРЬТЕ ШИНУ CAN НА КОРОТКОЕ ЗАМЫКАНИЕ (ЭБУ, ДАТЧИК)

Подсоедините все жгуты проводов.

Отсоедините разъем, содержащий контакты CANH и CANL, от ЭБУ (или датчика), к которому подсоединена замкнутая накоротко вспомогательная шина.

Измерьте сопротивление в соответствии со значениями, приведенными в таблице ниже.

Номинальное сопротивление
Подключение диагностического прибора Условие Заданные условия
G9-6 (CANH) – G9-14 (CANL) Провод отсоединен от отрицательного (-) вывода аккумуляторной батареи 54 – 69 Ом

Если при отсоединении разъема от ЭБУ (или датчика) сопротивление стало нормальным (54–69 Ом), возможно короткое замыкание в ЭБУ (или датчике).

Результат
Результат
OK
NG

ЗАМЕНИТЕ СООТВЕТСТВУЮЩИЙ ЭБУ ИЛИ ДАТЧИК

ОТРЕМОНТИРУЙТЕ ИЛИ ЗАМЕНИТЕ ВСПОМОГАТЕЛЬНУЮ ШИНУ ИЛИ РАЗЪЕМ СООТВЕТСТВУЮЩЕГО ЭБУ ИЛИ ДАТЧИКА

2.3 Шина CAN/Расположение блоков управления Toyota

Блоки управления CAN CLASS B (салон)

1

Комбинация приборов (Ki)

2

SAM/SRB

3

Airbag DCCAM

4

Климатическая система

5

Дверной БУ передний левый (TSG VL)

6

Дверной БУ передний правый (TSG VR)

7

Дверной БУ задний левый (TSG HL)

8

Дверной БУ задний правый (TSG HR)

9

Потолочная блок-панель упр-я (DBE)

10

Электронный замок зажигания (EZS)

11, 12

БУ рулевой колонки (MRM) Центральный интерфейс (ZGW)

13

Парктроник (PTS)

14

БУ прицепного устройства (AAG)

23

COMAND или Audio 20/Audio 50

Блоки управления CAN CLASS C (моторный отсек)

1

Комбинация приборов (Ki)

10

Электронный замок зажигания (EZS)

11

БУ рулевой колонки (MRM)

12

Центральный интерфейс (ZGW)

15

БУ вариатора (CVT)

16

Программа стабилизации движения (ESP)

17

Электрическое рулевое управление (EPS)

18

БУ дизеля (CRA)

19

БУ бензиновым двигателем (SIM 266)

20

Электронный модуль селектора АКП (EWM)

MOST-BUS

21

CD-Чейнджер

22

Универсальный интерфейс телефона (UHI)

23

COMAND или Audio 20/Audio 50

24

Звуковой усилитель

Другие шины данных

4, 10

Климатическая система Электронный замок зажигания (EZS)

25

Верхняя блок-панель упр-я (OBF)

26

Блокировка рулевой колонки (ELV)

27

Динамическое регулирование дальности освещения (DLWR)

11

БУ рулевой колонки (MRM)

Месторасположение

1 В передней панели слева, за рулем

2 В ногах пассажира под ковром

3 Средняя консоль перед рычагом стояночного тормоза

4 В средней консоли

5 Под обшивкой передней левой двери

6 Под обшивкой передней правой двери

7 Под обшивкой задней левой двери

8 Под обшивкой задней правой двери

9 На потолке над внутрисалонным зеркалом

10 В передней панели справа около руля

11 На рулевой колонке непосредственно под рулем

12 В ногах водителя на передней стойке

13 В багажнике на арке колеса слева

14 В багажнике на арке колеса справа

15 Интегрирован в вариатор (CVT)

16 Под усилителем тормозов в гидроблоке

17 В электроблоке на зубчатой рейке рулевого редуктора

18 В моторном отсеке на моторном щите справа

19 На корпусе воздушного фильтра двигателя

20 На туннеле карданного вала

21 В вещевом ящике

22 Под обивкой заднего канала со стороны водителя

23 В средней консоли

24 В багажнике справа

25 В средней консоли

26 На рулевой колонке

27 Снизу соответствующей блок-фары

N93 Центральный интерфейс

На типе 169 устанавливается блок центрального
интерфейса (ZGW). Назначением этого блока является управление обменом
данными между шинами CAN. Одновременно он выполняет диагностику
различных блоков управления подключенных к шинам CAN.

Расположение БУ ZGW:

Центральный интерфейс (N93) находится на передней стойке в ногах у водителя.

2.3 Шина CAN/Расположение блоков управления Toyota

Функции блока управления Центрального интерфейса ZGW (N93)

2.3 Шина CAN/Расположение блоков управления Toyota

CAN Распределитель потенциалов

X30/4 Штекерный разъем распределителя потенциалов (CAN) справа

Расположен в ногах пассажира под вещевым ящиком справа от блока SAM (N10)

2.3 Шина CAN/Расположение блоков управления Toyota

X63/4 Штекерное соединение адаптера шины CAN, 2-полюсное

Штекерное соединение находится в ногах пассажира на передней стойке

2.3 Шина CAN/Расположение блоков управления Toyota

X30/7 Штекерный разъем распределителя потенциалов (CAN)

Расположен в ногах пассажира под вещевым ящиком слева от блока SAM (N10)

2.3 Шина CAN/Расположение блоков управления Toyota

Распределитель потенциалов CAN является соединением между шинами CAN

Диагностический разъем X11/4, как и ранее, расположен в ногах у водителя.

2.3 Шина CAN/Расположение блоков управления Toyota

На чтение 21 мин Просмотров 20.1к. Опубликовано 20.10.2022
Обновлено 20.10.2022

Из этой статьи вы узнаете, что такое CAN-шина, почему она появилась. Разберемся с блоками управления в автомобиле и с тем, как они общаются между собой. Расскажем, какие контроллеры соединяются быстрой CAN-шиной, а какие — медленной.

Узнаете, как устроена CAN-шина на физическом и цифровом уровне, из каких данных состоит сообщение, как происходит арбитраж трафика. Какая максимальная длина кабеля и скорость передачи информации, как реализована защита от помех.

CAN-шина. Просто и понятно

Если интересует какой-то конкретный вопрос, пользуйтесь оглавлением.

Что такое CAN-шина?

Автомобиль подобен человеческому организму. Сеть контроллеров (шина CAN) это как нервная система у человека.

В свою очередь, «узлы» или «электронные блоки управления» (ЭБУ) подобны частям тела. Они соединены между собой через CAN-шину.

CAN-шина. Просто и понятно

Шина CAN представляет собой витую пару проводов. С ее помощью все блоки управления в автомобиле соединены в единую информационную сеть.

Причины появления CAN-шины

Когда вы нажимаете выключатель в своем доме, чтобы включить свет, электричество проходит через выключатель к лампам.

Автомобили раньше использовали такое же подключение. С тех пор как в 1915 году Генри Форду пришла идея добавить в свои автомобили фары и электрический сигнал, электричество поступало от аккумулятора через выключатели к фарам и другим устройствам.

К 1960-м годам в каждом автомобиле были тысячи тяжелых проводов.

CAN-шина. Просто и понятно

После нефтяного эмбарго 1970-х годов на автопроизводителей оказывалось все большее давление с целью повышения эффективности использования топлива. Поэтому они начали искать способы уменьшить вес выпускаемых автомобилей.

К началу 1980-х годов в автомобилях было все больше и больше электронных блоков управления. Сначала электронное управление получили самые важные системы, такие как системы управления двигателем, трансмиссией и тормозной системой. Но со временем электронное управление распространилось и на второстепенные либо периферийные системы, такие как климат-контроль, блоки комфорта и прочие.

В скором времени такое положение дел привело к тому, что производители столкнулись тремя проблемами:

Такие компании, как Bosch, искали тип шинной коммуникационной системы, которая могла бы использоваться в качестве системы связи между несколькими ЭБУ и системами автомобиля.

Они искали на рынке, но не могли найти именно то, что было нужно, поэтому они начали разработку «Controller Area Network» в партнерстве с Mercedes-Benz, Intel, а также несколькими университетами Германии.

Краткая история шины CAN

В 1986 году компания Bosch представила стандарт CAN на конгрессе SAE в Детройте. Год спустя корпорация Intel начала поставки первых микросхем контроллеров CAN, и автомобильный мир изменился навсегда.

  • До CAN: автомобильные ЭБУ использовали сложную проводку «точка-точка».
  • 1986: Компания Bosch разработала протокол CAN.
  • 1991: Bosch опубликовала CAN 2.0 (CAN 2.0A: 11 бит, 2.0B: 29 бит).
  • 1993: CAN принят в качестве международного стандарта (ISO 11898).
  • 2003: ISO 11898 становится серией стандартов.
  • 2012: Bosch выпустила CAN FD 1.0 (передачи данных на двух скоростях).
  • 2015: Протокол CAN FD стандартизирован (ISO 11898-1).
  • 2016: Физический уровень CAN для скоростей передачи данных до 5 Мбит/с стандартизирован в ISO 11898-2.

Теперь, например, достаточно одного датчика температуры, который подключен к блоку управления двигателем. ЭБУ опрашивает датчик температуры для себя и отправляет эту информацию в виде сообщения в информационную шину данных для других блоков.

CAN-шина. Просто и понятно

При таком подходе уменьшается количество проводов, нет дублирования датчиков. Появляется возможность ввода/вывода информации из электронных блоков управления, что позволяет диагностировать сложные системы с множеством электронных блоков управления.

Сегодня CAN является стандартом в автомобилях (легковых, грузовых, автобусах, тракторах, …), кораблях, самолетах, электромобилях и многом другом.

Что такое ЭБУ?

В автомобиле ЭБУ могут быть, например, блок управления двигателем, подушками безопасности, аудиосистемой и т. д.

В современном автомобиле может быть до 70 ЭБУ — и каждый из них может иметь информацию, которой необходимо поделиться с другими участниками сети.

CAN-шина. Просто и понятно

Именно здесь на помощь приходит CAN-шина. Она позволяет каждому блоку управления общаться со всеми другими ЭБУ без сложной специальной проводки.

В частности, блок управления может передавать данные с датчиков по шине CAN. Переданные данные принимаются всеми другими контроллерами в сети CAN, после чего каждый ЭБУ может проверить данные и решить, принимать их или игнорировать.

Физический уровень шины CAN

Физический уровень CAN описан в стандарте ISO 11898 и регламентирует способ передачи данных. В случае с CAN-шиной это два провода витой пары. При этом CAN-шина вполне может работать и по одному проводу, а витая пара прежде всего используется для защиты от помех.

Однопроводная схема

Для того чтобы лучше понять как данные передаются по двухпроводной CAN-шине, давайте сначала рассмотрим как данные передаются по однопроводной схеме, которой, например, является K-линия.

Итак, есть один провод, с его помощью соединены блоки управления. Этот провод внутри блока соединен с 12 вольтами через резистор 5 килоом. Таким образом напряжение на проводе становится по умолчанию 12 В.

CAN-шина. Просто и понятно

Каждый из подключенных блоков может стягивать это напряжение на массу, меняя его с 12 на 0 вольт. Таким образом, получаются прямоугольные импульсы на шине данных. Они могут принимать всего два уровня напряжения — 0 и 12 вольт.

Присвоим низкому уровню в ноль вольт логический ноль, а уровню 12 вольт — логическую единицу. Зададим тактовый сигнал шины, то есть обозначим сколько раз секунду блоки будут опрашивать шину и соответственно сколько времени будет длиться один бит.

CAN-шина. Просто и понятно

То есть наименьшая часть цифровой информации вид может принимать только два значения 0 или 1. Таким образом, мы получили физическую возможность отправлять и принимать двоичные данные между блоками управления.

Витая пара. Как работает CAN high-speed

В CAN-шине тот же принцип, только сигнал считывается как разница между напряжениями проводов CAN-high и CAN-low, которые образуют витую пару.

CAN-шина. Просто и понятно
CAN-шина. Просто и понятно

Чтобы понять, как именно это происходит, давайте рассмотрим как могут меняться уровни напряжения на этих проводах.

По умолчанию на проводе CAN-high, как и на проводе CAN-low, напряжение соответствует величине в 2,5 В. При этом разница напряжений между проводами составляет 0 В. Такое состояние can-шины называется рецессивным (recessive) и интерпретируется как логическая единица.

Существует и второе состояние шины, при котором напряжение на проводе CAN-high будет 3,5 вольт, а на проводе CAN-low — 1,5 В. Разница напряжений между проводами составит 2 вольта. Это состояние называется доминантным (dominant) и соответствует логическому нулю.

CAN-шина. Просто и понятно

Логическая 1 (рецессивное состояние):

  • 2,5 вольта на проводе CAN_H;
  • 2,5 вольта на проводе CAN_L;
  • дифференциальное напряжение 0 вольт.

Логический 0 (доминантное состояние):

  • 3,5 вольта на проводе CAN_H;
  • 1,5 вольта на проводе CAN_L;
  • дифференциальное напряжение 2 вольта.

Так работает высокоскоростная шина CAN high speed. Она описана в стандарте ISO 11898-2.

Работа CAN low speed

Устройство низкоскоростной шины CAN low speed описано в стандарте ISO 11898-3. Для нее уровни напряжения такие.

CAN-шина. Просто и понятно

Логическая 1 (рецессивное состояние):

  • 0 вольт на проводе CAN_H;
  • 5 вольт на проводе CAN_L;
  • дифференциальное напряжение 5 вольт.

Логический 0 (доминантное состояние):

  • 3,6 вольта на проводе CAN_H;
  • 1,4 вольта на проводе CAN_L;
  • дифференциальное напряжение 2,2 вольта.

Защита от помех

Ведь и на одном проводе все работало, так зачем усложнять?

CAN-шиной объединены самые ответственные блоки управления автомобиля. От качества этой связи напрямую зависит безопасность движения. В связи с этим CAN-шине предъявляются высокие требования к надежности и безотказности.

Дело в том, что многие компоненты автомобиля являются источниками электромагнитных помех. Особенно система зажигания.

Использование витой пары позволяет в значительной степени решить эту проблему. Давайте посмотрим, как это происходит.

CAN-шина. Просто и понятно

Представьте себе, что витая пара CAN-шины попадает в зону действия электромагнитной помехи. В медном проводе индуцируется напряжение, которое плюсуется или отнимается от напряжения, уже существующего на этом проводе.

CAN-шина. Просто и понятно

Предположим, что на проводе CAN-high в рецессивном состоянии напряжение было 2,5 В. Помеха увеличила его на 1,1 В. Соответственно мы получили напряжение в 3,6 В, которое могло быть интерпретировано уже как доминантное состояние.

Но CAN-шина устойчива к таким помехам, потому что сигналом является не просто изменение уровня напряжения на одном из проводов, а именно изменение разницы между напряжениями на этих проводах. А разница как раз не изменилась из-за применения витой пары.

CAN-шина. Просто и понятно

Таким образом, на проводе CAN_L напряжение поднимется на те же 1,1 В. А разница напряжений как была 2,5 — 2,5 = 0 В, так и осталась 3,6 — 3,6 = 0 В. Действие помехи на шину в доминантном состоянии аналогично.

Зачем нужен трансивер

Название Transceiver произошло от двух слов receiver (приемник) и transmitter (передатчик). Переводится как приемопередатчик.

Трансиверы обрабатывают дифференциальный сигнал, принимают и передают информацию. Трансивер связывает провода витой пары (CAN_H и CAN_L) с линиями Tx и Rx микропроцессора, который не умеет напрямую работать с CAN-шиной.

По линии Tx микропроцессор отправляет информацию в шину данных, а по линии Rx он считывает информацию.

CAN-шина. Просто и понятно

В трансивере находится схемотехника, которая формирует разные уровни напряжения на проводах CAN_H и CAN_L для доминантного и рецессивного состояния шины.

Трансивер обычно устанавливается внутри электронного блока управления и представляет собой специализированную микросхему.

Оконечные сопротивления

Это еще одна часть физического уровня CAN-шины. Оконечные сопротивления используются для борьбы с отраженным сигналом так называемым эхом.

CAN-шина. Просто и понятно

Отраженный сигнал препятствует нормальной передаче данных. Причем, чем больше будет длина проводов шины и чем выше будет скорость передачи данных, тем значительней будет проявляться этот негативный эффект.

Правильно подобранные конечные нагрузочные сопротивления компенсируют отраженный сигнал. Обычно это два резистора по 120 ом внутри блока управления. Они подключены к противоположным концам шины. Таким образом, сопротивление между проводами can-шины составляет около 60 ом.

У разных автопроизводителей величина оконечных сопротивлений может отличаться.

Где применяется CAN high speed, а где CAN low speed

HS-CAN и LS-CAN отличаются скоростью передачи данных и уровнями рабочих напряжений. Быстрый CAN применяется для связи блоков управления двигателя, автоматической коробки передач, тормозов, рулевого управления, подушек безопасности, полного привода, пневмоподвески и других важных систем, от которых напрямую зависит безопасность движения.

CAN-шина. Просто и понятно

Медленный CAN используется для менее важных систем, таких как климат-контроль, системы комфорта, наружное освещение, электропривод сидений и т. п. в зависимости от комплектации автомобиля.

CAN-шина. Просто и понятно

Особенностью медленного CAN является возможность сохранять работоспособность в однопроводном режиме, если второй провод витой пары поврежден.

Высокоскоростной и низкоскоростной CAN автопроизводители могут называть по-своему, а также пользоваться любой из доступных скоростей передачи данных.

Межсетевой шлюз (CAN gateway)

Часто есть необходимость передавать информацию от блока управления, подключенного к быстрой CAN-шине, к блоку, подключенному к медленной CAN-шине, и наоборот. Например, блоку управления климатом нужно знать температуру двигателя.

Так как напрямую разные CAN-шины не соединить, для этих целей используется межсетевой шлюз (CAN gateway). К нему подключаются шины с разными скоростями. Это могут быть не только CAN-шины, но и другие шины, присутствующие в автомобиле, к примеру, FlexRay или Ethernet.

CAN-шина. Просто и понятно

Часто в CAN gateway хранится информация об автомобиле, VIN номер и комплектация. Именно из него сканеры получают информацию при автоопределении автомобиля.

Сам межсетевой интерфейс может быть выполнен как отдельным блоком, так и встроен в другие блоки. Обычно это приборная панель, электронный замок зажигания или блок управления бортовой сети (Body Control Module — BCM).

CAN-шина. Просто и понятно
Межсетевой шлюз CAN

Мы разобрались физическим уровнем CAN-шины. Теперь вы знаете, как напряжение на витой паре становится единицами и нолями, как биты передаются от одного блока управления к другому.

Канальный уровень CAN-шины (передача данных)

CAN является широковещательной шиной последовательной передачи данных. То есть данные отправляются по очереди бит за битом и при этом между узлами сети реализован один общий эфир, когда каждый слышит каждого.

Блоки управления, как и диагностический сканер, выступают узлами в сети CAN-шины. Но для того, чтобы все это заработало мало просто подавать в шину единицы и ноли. Нужно определить, какой узел будет говорить, какой слушать, каков будет формат сообщения, кому это сообщение адресовано и как будет подтверждаться правильность приема.

Эту задачу решает канальный уровень (data link layer), описанный в стандарте ISO 11898-1. Каждый узел может отправлять и принимать информацию кадр за кадром.

Существует четыре типа сообщений-кадров:

  • Кадр данных (data frame). Передает информацию одному или нескольким узлам-приемникам.
  • Кадр удаленного запроса (remote frame). Запрашивает данные у других узлов.
  • Кадр ошибки (error frame). Сообщает об ошибках.
  • Кадр перегрузки (overload frame). Сообщает о состоянии перегрузки.

Из чего состоит кадр CAN-шины

Рассмотрим структуру самого распространенного кадра Data frame.

CAN-шина. Просто и понятно

SOF. Начало кадра

Первый бит кадра (SOF — Start Of Frame) всегда доминантный логический ноль. Он выводит шину из состояния холостого хода и начинает передачу данных.

Арбитражное поле

Дальше следует арбитражное поле. Оно используется для того, чтобы определить, какой из узлов получит доступ к вещанию по шине. Ведь передача данных последовательная, бит за битом, кадр за кадром. Соответственно узлам приходится ждать своей очереди для отправки сообщения в шину, но при этом слушают шину они постоянно.

Зачем нужен арбитраж CAN-шины

Арбитраж сообщений это процесс, в котором два или более CAN-контроллеров договариваются о том, кто должен использовать шину.

Любой узел может начать передачу данных, когда обнаружит незанятую шину. Это может привести к тому, что два или более контроллеров начнут передачу сообщения почти одновременно.

Нет такого блока, который будет вещать всегда первым. Первым всегда будет передавать информацию тот блок, чьё сообщение имеет наивысший приоритет. И как раз этот спор и решается в арбитражном поле. Разберемся как именно.

Как происходит арбитраж CAN-шины и что такое идентификатор

Представим, что есть три узла, которые одновременно хотят получить доступ к CAN-шине. После бита «Start Of Frame» каждый из этих блоков начинает отправлять биты идентификаторов в шину данных.

CAN-шина. Просто и понятно

Идентификатор присвоен каждому сообщению и определяет его приоритет, то есть определяет, какое сообщение более важное и должно быть отправлено в первую очередь.

Все узлы одновременно, бит за битом, начинают отправлять идентификаторы кадров в шину данных. В это же время все узлы также и считывают каждый новый появившийся бит на шине.

CAN-шина. Просто и понятно

Пока отправляемые биты у всех блоков совпадают, все идет без изменений. Но рано или поздно случается конфликт, когда разные узлы одновременно отправят разные биты. И вот тут самое время вспомнить, что доминантный бит (логический 0) перебивает рецессивный бит (логическую 1) в конфликтных ситуациях. Это реализовано аппаратно в схемотехнике трансивера.

Это условие приводит к тому, что узел, у которого рецессивный бит (логическая единица) проигрывает арбитраж тому узлу, у которого оказался доминантный бит (логический ноль).

Проиграв арбитраж, блок утрачивает доступ к шине и ждет в режиме «только чтение» следующего арбитража. При этом остальные блоки продолжают арбитраж. Но при каждом очередном конфликте один из них отсеивается. И так до тех пор, пока не останется всего один блок, чье сообщение оказалось самым приоритетным и выиграло арбитраж.

Выигравшему блоку принадлежит право отправить сообщение в шину, а потому именно он будет продолжать начатый кадр.

Важным условием успешного битового арбитража является то, что никакие два узла не могут передавать одно и то же поле арбитража. Из этого правила есть одно исключение: если сообщение не содержит данных, то любой узел может передать это сообщение.

Поскольку шина является проводной, а доминирующий бит логически равен 0, следует, что в арбитраже победит сообщение с численно наименьшим Арбитражным полем.

11-bit и 29-bit идентификаторы

11 бит дают возможность использовать только 2048 идентификаторов, то есть 2048 параметров Этого иногда бывает недостаточно. В этом случае используется 29-битый ID. Таким образом, появляется возможность использовать миллионы идентификаторов.

CAN-шина. Просто и понятно

Кадр с расширенным 29-битным идентификатором (CAN 2.0B) идентичен кадру с 11-битным идентификатором (CAN 2.0A), за исключением более длинного идентификатора. Он используется, например, в протоколе J1939 для большегрузных автомобилей.

Что произойдет, если узел будет один на шине и попытается передать сообщение?

Блок, конечно, выиграет арбитраж и с радостью продолжит передачу сообщения. Но когда придет время подтверждения… ни один узел не пошлет доминирующий бит подтверждения ACK (о нем ниже).

Передатчик почувствует ошибку ACK, пошлет флаг ошибки, увеличит свой счетчик ошибок передачи на 8 и начнет повторную передачу. Это произойдет 16 раз. Затем передатчик перейдет в режим пассивной передачи ошибок.

По специальному правилу алгоритма ограничения ошибок, счетчик ошибок передачи не увеличивается, если узел пассивен и ошибка является ошибкой ACK. Таким образом, узел будет продолжать передачу вечно, по крайней мере, до тех пор, пока кто-то не подтвердит сообщение.

RTR. Запрос на удаленную передачу.

Следующий бит Remote Transmission Request (RTR). Это бит запроса. Он определяет какого типа будет сообщение:

  • Dataframe, когда вещающий блок сообщает информацию или
  • Remote frame, когда передающий блок запрашивает информацию.

Поле Control

Дальше следует поле Control, в котором первый бит ID extension. Если в нем будет логический ноль, то будет использоваться стандартный 11-битный идентификатор, а если логическая единица, то расширенный 29-битный.

CAN-шина. Просто и понятно

Каждый идентификатор это какой-то параметр. Например, обороты двигателя, температура, состояние замка зажигания, угол поворота руля, скорость автомобиля, запрос на включение кондиционера и так далее.

Биты DL3 — DL0 в поле Control используется для определения заранее количества байтов, которые будут передаваться в следующем поле Data. Чтобы не передавать лишние биты и сократить время фрейма, тем самым увеличив скорость передачи данных. По этой же причине по-умолчанию используется 11-битный идентификатор, чтобы без надобности не тратить время на лишние 18 бит.

Поле Data

В поле Data находится самая полезная информация, которую нужно передать. Обороты, скорость, нагрузка и т. п.

CAN-шина. Просто и понятно

Ради передачи этой информации и строится весь фрейм. Это поле может составлять от 1 до 8 байт, то есть от 8 до 64 бит.

CRC. Контрольная сумма

Следующее поле это контрольная сумма CRC (Cyclic Redundancy Check). Представляет собой значение, вычисленное по определенной формуле, на основе битов из предыдущих полей.

CAN-шина. Просто и понятно

То есть все эти биты обрабатываются определенным алгоритмам в блоке-отправителе. Результат этой отработки записывается в поле контрольной суммы кадра.

После этого уже блок-получатель повторно вычисляет контрольную сумму CRC таким же алгоритмом, но уже на базе полученной информации.

Если каждый из битов был распознан правильно, то контрольная сумма у блока-получателя будет такой же, как и у блока-отправителя. В этом случае данные считаются переданными без ошибок.

Если же контрольная сумма не сходится, распознается ошибка передачи данных и полученная информация игнорируется.

ACK. Бит подтверждения

Следующим идет бит подтверждения ACK (Acknowledge). Узел-отправитель выставляет в нем рецессивное состояние, но узел-получатель перебивает его доминантным в случае успешного приема, тем самым подтверждая передачу сообщения.

CAN-шина. Просто и понятно

Отправитель проверяет наличие бита подтверждения и повторно передает сообщение, если подтверждение не было обнаружено.

Наличие бита подтверждения на шине не означает, что любой из предполагаемых адресатов получил сообщение. Единственное, что мы знаем, это то, что один или несколько узлов на шине приняли его правильно.

EOF. Конец кадра

Дальше идут 7 бит поля End of Frame (EOF). Это конец кадра, после которого кадр завершается и шина снова переходит состояние холостого хода.

CAN-шина. Просто и понятно

И так до тех пор, пока один или несколько блоков снова не начнут отправлять сообщения.

Адресация и идентификация сообщений CAN-шины

Стоит еще раз отметить, что в CAN-сообщениях нет явного адреса. Каждый узел принимает весь трафик на шине. Используя аппаратные фильтры и программное обеспечение, он определяет, является ли сообщение «интересным» или нет.

Фактически, в CAN не существует понятия адреса сообщения. Вместо этого, содержимое сообщений идентифицируется по ID, который присутствует в кадре. Считается, что сообщения CAN имеют «адрес содержимого».

Обычный адрес сообщения будет выглядеть так: «Вот сообщение для узла N». Сообщение с адресом содержимого выглядит так: «Вот сообщение, содержащее данные с меткой N». Разница между этими двумя понятиями небольшая, но существенная.

Содержимое поля арбитража, согласно стандарту, используется для определения приоритета сообщения на шине. Все контроллеры CAN также используют все поле арбитража (некоторые используют только часть) в качестве ключа в процессе аппаратной фильтрации.

Стандарт не говорит, что поле арбитража должно использоваться в качестве идентификатора сообщения. Тем не менее это очень распространенное использование.

Что такое CAN FD (Flexible Data Rate CAN)?

С расширением функциональности автомобиля возрастает и нагрузка на CAN-шину. CAN FD (Flexible Data Rate) была разработана как шина CAN «следующего поколения».

CAN-шина. Просто и понятно

Стандартная длина каждого сообщения была увеличена в 8 раз — с 8 до 64 байт, а максимальная скорость передачи данных была аналогично увеличена с 1 Мбит/с до 8 Мбит/с. Одним словом, CAN FD повышает скорость и эффективность. Поэтому она используется в современных автомобилях.

CAN FD обратно совместим и поддерживает протокол CAN 2.0, а также специальные протоколы, такие как SAE J1939.

CAN FD по сути является расширением оригинального стандарта CAN, как указано в ISO 11898-1, и полностью совместим с классическими CAN-шинами.

Отличия CAN FD от обычной CAN-шины

  • CAN FD работает одновременно на двух скоростях. Поле арбитража или заголовок кадра передается со стандартной скоростью, например 500 кбит/с. А поле данных передается на скорости в несколько раз выше, вплоть до 8 Мбит/с.
  • Размер сообщения увеличен до 64 байт. В обычной CAN-шине — максимум 8 байт.
  • Контроллер CAN FD способен принимать обычные CAN сообщения, а стандартный CAN узел не может принимать кадры формата CAN FD.
  • Для шины CAN FD нужны специальные микросхемы-трансиверы с повышенным быстродействием.
CAN-шина. Просто и понятно

В настоящее время CAN FD используется в высокопроизводительных автомобилях, но по мере развития ЭБУ и снижения стоимости аппаратного обеспечения CAN FD, это лишь вопрос времени, когда CAN FD появится практически во всех автомобилях.

Будущее шины CAN

В будущем протокол шины CAN будет оставаться актуальным, хотя на него будут влиять основные тенденции:

  • Потребность во все более расширяющихся функциях автомобиля.
  • Рост облачных вычислений.
  • Развитие Интернета вещей (Internet of Things — IoT).
  • Развитие самоуправляемых автомобилей (без водителя).

В частности, рост числа подключенных автомобилей V2X и облачных вычислений приведет к быстрому росту автомобильной телематики и IoT CAN-регистраторов.

В свою очередь, перевод сети шины CAN в режим «онлайн» также подвергает автомобили рискам безопасности и может потребовать перехода на новые протоколы CAN, такие, как CAN FD.

Максимальная скорость CAN-шины

Максимальная скорость шины CAN, согласно стандарту, составляет 1 Мбит/с. Тем не менее некоторые CAN-контроллеры могут работать и с более высокими скоростями.

Медленный CAN low speed (ISO 11898-3) может работать на скорости до 125 кбит/с.

Однопроводной CAN может работать со скоростью около 50 кбит/с в стандартном режиме, а в специальном высокоскоростном режиме, используемом, например, для программирования ЭБУ, — до 100 кбит/с.

Максимальная длина кабеля в CAN-шине

При скорости 1 Мбит/с максимальная длина кабеля может составлять около 40 метров. Это связано с тем, что схема арбитража требует, чтобы волновой фронт сигнала успел распространиться до самого удаленного узла и обратно. Другими словами, длина кабеля ограничена скоростью света.

Другие максимальные длины кабелей (значения приблизительны):

  • 100 метров при скорости 500 кбит/с;
  • 200 метров — при 250 кбит/с;
  • 500 метров — при 125 кбит/с;
  • 6 километров — при 10 кбит/с.

Если для обеспечения гальванической развязки используются оптопары, максимальная длина шины соответственно уменьшается.

Добавить комментарий