Как найти частное решение разностного уравнения

Решения разностных уравнений

Разностные уравнения для чайников

На этой странице мы рассмотрим примеры решения типовых задач, встречающихся в курсе дифференциальных и разностных уравнений, а именно нахождение общего или частного решения линейного разностного уравнения с постоянными коэффициентами. Чаще всего в контрольных встречаются уравнения второго или третьего порядка:

$$
a_0 y(x) + a_1 y(x+1) + a_2 y(x+2)=f(x), \ a_0 y(x) + a_1 y(x+1) + a_2 y(x+2)+ a_3 y(x+3)=f(x).
$$

Здесь $a_i$ – постоянные коэффициенты, $f(x)$ – правая часть (неоднородность уравнения), $y(x)$ – искомая неизвестная функция.

Решение разностных уравнений практически полностью аналогично решению линейных дифференциальных уравнений с постоянными коэффициентами (см. тут примеры): ищется решение однородного уравнения через составление характеристического уравнения, и частное решение неоднородного уравнения по виду правой части.

Лучшее спасибо – порекомендовать эту страницу

Примеры решений разностных уравнений

Задача 1. Решить разностное уравнение: $y(x+2)-4y(x+1)+4y(x)=2^x$

Задача 2. Найти общее решение линейного разностного неоднородного уравнения второго порядка с постоянными коэффициентами.

$$ y(i+2)-4y(i+1)-12y(i)=6cdot 6^i.$$

Задача 3. Решить разностное уравнение третьего порядка

$$ y(x+3)-16y(x+2)+83y(x+1)-140y(x)=0, quad y(0)=3, y(1)=18, y(2)=120. $$

Задача 4. Найти частное решение однородного разностного уравнения:

$$ y(x+3)-6y(x+2)+11y(x+1)-6y(x)=0, quad y(0)=0, y(1)=2, y(2)=8. $$

Помощь с разностными уравнениями

Если вам нужна помощь с решением задач и контрольных по дифференциальным и разностным уравнениям (и другим разделам математического анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей, оформление производится в Word, срок от 1 дня.

Поможем с решением задач и уравнений

Дополнительная информация

  • Задачи по дифференциальным уравнениям с решениями
  • Онлайн-помощь на контрольной
  • Почему МатБюро?

Решения разностных уравнений

Разностные уравнения для чайников

На этой странице мы рассмотрим примеры решения типовых задач, встречающихся в курсе дифференциальных и разностных уравнений, а именно нахождение общего или частного решения линейного разностного уравнения с постоянными коэффициентами. Чаще всего в контрольных встречаются уравнения второго или третьего порядка:

$$ a_0 y(x) + a_1 y(x+1) + a_2 y(x+2)=f(x), \ a_0 y(x) + a_1 y(x+1) + a_2 y(x+2)+ a_3 y(x+3)=f(x). $$

Здесь $a_i$ – постоянные коэффициенты, $f(x)$ – правая часть (неоднородность уравнения), $y(x)$ – искомая неизвестная функция.

Решение разностных уравнений практически полностью аналогично решению линейных дифференциальных уравнений с постоянными коэффициентами (см. тут примеры): ищется решение однородного уравнения через составление характеристического уравнения, и частное решение неоднородного уравнения по виду правой части.

Примеры решений разностных уравнений

Задача 1. Решить разностное уравнение: $y(x+2)-4y(x+1)+4y(x)=2^x$

Задача 2. Найти общее решение линейного разностного неоднородного уравнения второго порядка с постоянными коэффициентами.

Задача 3. Решить разностное уравнение третьего порядка

$$ y(x+3)-16y(x+2)+83y(x+1)-140y(x)=0, quad y(0)=3, y(1)=18, y(2)=120. $$

Задача 4. Найти частное решение однородного разностного уравнения:

Помощь с разностными уравнениями

Если вам нужна помощь с решением задач и контрольных по дифференциальным и разностным уравнениям (и другим разделам математического анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Пример частного решения линейного дифференциального уравнения

Рассмотрим тоже самое уравнение, но решим методом вариации произвольной постоянной.
Для нахождения производных C’i составляем систему уравнений:
C’1·e -3x ·cos(2x)+C’2·e -3x ·sin(2x)=0
C’1(-2·e -3x ·sin(2x)-3·cos(2x)·e -3x ) + C’2(-3·e -3x ·sin(2x)+2·cos(2x)·e -3x ) = 8*exp(-x)
Выразим C’1 из первого уравнения:
C’1 = -c2·sin(2x)/(cos(2x))
и подставим во второе. В итоге получаем:
C’1 = -4·e 2x ·sin(2x)
C’2 = 4·cos(2x)·e 2x
Интегрируем полученные функции C’i:
C1 = -e 2x ·sin(2x)+cos(2x)·e 2x + C * 1
C2 = e 2x ·sin(2x)+cos(2x)·e 2x + C * 2
Записываем полученные выражения в виде:
C1 = (-e 2x ·sin(2x)+cos(2x)·e 2x )·cos(2x)·e -3x + C * 1e -3x ·cos(2x)
C2 = (e 2x ·sin(2x)+cos(2x)·e 2x )·e -3x ·sin(2x) + C * 2e -3x ·sin(2x)
или
C1 = -cos(2x)·e -x ·sin(2x)+cos 2 (2x)·e -x + C * 1e -3x ·cos(2x)
C2 = cos(2x)·e -x ·sin(2x)+sin 2 (2x)·e -x + C * 2e -3x ·sin(2x)
y = C1 + C2
Таким образом, общее решение дифференциального уравнения имеет вид:

Пример . y″ + 5y’ + 6 = 12cos(2x)
Cоставляем характеристическое уравнение дифференциального уравнения: r 2 +5 r + 6 = 0
Находим дискриминант: D = 5 2 – 4·1·6 = 1


Корни характеристического уравнения: r1 = -2, r2 = -3. Следовательно, фундаментальную систему решений составляют функции: y1 = e -2x , y2 = e -3x
Общее решение однородного уравнения имеет вид: y =C1·e -2x +C2·e -3x
Найдем частное решение при условии:y(0) = 1, y'(0) = 3
Поскольку y(0) = c1+c2, то получаем первое уравнение:
c1+c2 = 1
Находим первую производную: y’ = -3·c2·e -3·x -2·c1·e -2·x
Поскольку y'(0) = -3·c2-2·c2, то получаем второе уравнение:
-3·c2-2·c2 = 3
В итоге получаем систему из двух уравнений:
c1+c2 = 1
-3·c2-2·c2 = 3
которую решаем или методом обратной матрицы или методом исключения переменных.
c1 = 6, c2 = -5
Тогда частное решение при заданных начальных условиях можно записать в виде: y =6·e -2x -5·e -3x
Рассмотрим правую часть: f(x) = 12·cos(2·x)
Уравнение имеет частное решение вида: y * = Acos(2x) + Bsin(2x)
Вычисляем производные: y’ = -2·A·sin(2x)+2·B·cos(2x); y″ = -4·A·cos(2x)-4·B·sin(2x)
которые подставляем в исходное дифференциальное уравнение: y″ + 5y’ + 6y = (-4·A·cos(2x)-4·B·sin(2x)) + 5(-2·A·sin(2x)+2·B·cos(2x)) + 6(Acos(2x) + Bsin(2x)) = 12·cos(2·x) или -10·A·sin(2x)+2·A·cos(2x)+2·B·sin(2x)+10·B·cos(2x) = 12·cos(2·x)
Приравнивая коэффициенты при одинаковых степенях х, получаем систему линейных уравнений:
-10A + 2B = 0
2A + 10B = 12
СЛАУ решаем методом Крамера:
A = 3 /13;B = 15 /13;
Частное решение имеет вид:
y * = 3 /13cos(2x) + 15 /13sin(2x)
Таким образом, общее решение дифференциального уравнения имеет вид:

Пример 2 . y’’ + y = cos(x)
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами. Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:

r 2 + 1 = 0
D = 0 2 – 4·1·1 = -4

Корни характеристического уравнения:
(комплексные корни):
r1 = i, r2 = -i
Следовательно, фундаментальную систему решений составляют функции:
y1 = e 0 x cos(x) = cos(x)
y2 = e 0 x sin(x) = sin(x)

Общее решение однородного уравнения имеет вид: y =C1·cos(x)+C2·sin(x)

Рассмотрим правую часть: f(x) = cos(x)

Найдем частное решение. Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = e αx (P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) – некоторые полиномы
имеет частное решение
y(x) = x k e αx (R(x)cos(βx) + S(x)sin(βx))
где k – кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) – полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 0, Q(x) = 0, α = 0, β = 1.
Следовательно, число α + βi = 0 + 1i является корнем характеристического уравнения кратности k = 1(r1).

Уравнение имеет частное решение вида:
y * = x (Acos(x) + Bsin(x))
Вычисляем производные:
y’ = sin(x)(B-A·x)+cos(x)(A+B·x)
y″ = cos(x)(2·B-A·x)-sin(x)(2·A+B·x)
которые подставляем в исходное дифференциальное уравнение:
y″ + y = (cos(x)(2·B-A·x)-sin(x)(2·A+B·x)) + (x (Acos(x) + Bsin(x))) = cos(x)
или
2·B·cos(x)-2·A·sin(x) = cos(x)
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
2B = 1
-2A = 0
Следовательно:
A = 0; B = 1 /2;
Частное решение имеет вид: y * = x (0cos(x) + ½ sin(x)) = ½ x sin(x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Разностные уравнения

Содержание:

Разностные уравнения

Понятие разницы и разностного уравнения

Если для значений переменной x1, x2, x3, . функция f (x) принимает значения f (x1), f (x2), f (x3) . , то приращения функции составляют f (x2) – f (x1), f (x3) – f (x2), .

Приращение функции при переходе от значения xi к значению xi+1 будем обозначать: В частности можно взять в качестве значения независимых переменных x и x + 1 . Разность Δf (x) = f (x + 1) – f (x) называется первой разностью или разностью первого порядка. Она может рассматриваться в свою очередь как функция от x, а потому и для нее можно определить разницу:

Введем обозначения ΔΔf (x) = Δ 2 f (x), тогда Δ 2 f (x) = f (x + 2) – 2 f (x + 1) + f (x) и называется разностью второго порядка.

Аналогично можно найти разности третьего, четвертого и т. д. порядков.

Определим разности некоторых важнейших функций.

1) Если f (x) = С, где С — постоянная величина, то
Δf (x) = f (x + 1) – f (x) = С – С = 0.

Понятно, что и все разности следующих порядков будут также равняться нулю.

2) Если f (x) = ax + b, то
Δf = Δf (x + 1) – f (x) = a (x + 1) + b – ax – b = a.

Разница первого порядка линейной функции равна постоянной, а все остальные будут равны нулю.

3) Если f (x) = ax 2 + bx + c, то

Поскольку разница первого порядка является линейной функцией, то разница второго порядка — постоянная, а все последующие разности равны нулю.

4) Если f (x) = a x , то

В экономических исследованиях часто встречаются задачи, в которых время t является независимой переменной, а зависимая переменная определяется для времени t, t + 1, t + 2 и т. д.

Обозначим yt — значение функции y в момент времени t; yt+1 — значение функции в момент, сдвинутый на одну единицу, например, на следующий час, на следующую неделю и т. д., yt+2 — значение функции y в момент, сдвинутый на две единицы и т. д.

Очевидно, что

Откуда:

За разность второго порядка, имеем или
поэтому

Аналогично можно доказать, что

Итак, любую функцию

можно представить в виде: (7.50)
и наоборот.

Определение. Уравнение
(7.51)
называется разностным уравнением n-го порядка.

Решить разностное уравнение n-го порядка — это значит найти такую ​​функцию yt, которая превращает уравнение (7.50) или (7.51) в тождество.

Решение, в котором есть произвольная постоянная, называется общим; решение, в котором постоянная отсутствует, называется частным.

Определение. Уравнение
(7.52)
где a0, a1, . an — постоянные числа, называется неоднородным разностным
уравнением n-го порядка с постоянными коэффициентами.

Если в уравнении (7.52) f (t) = 0, то уравнение называется однородным разностным уравнением n-го порядка с постоянными коэффициентами:
(7.53)

Уравнение есть однородное разностное уравнение первого порядка с постоянными коэффициентами a и b, а уравнение неоднородное разностное уравнение второго порядка с постоянными коэффициентами a, b, c.

ТЕОРЕМА 1. Если решениями однородного разностного уравнения (7.53) является y1 (t) и y2 (t), то его решением будет также функция y1 (t) + y2 (t).

ТЕОРЕМА 2. Если y (t) является решением однородного разностного уравнения (7.53), то его решением будет также функция Ay (t), где А — произвольная постоянная.

ТЕОРЕМА 3. Если y (t) — частное решение неоднородного уравнения (7.52) и y (t, A1, A2, . An) — общее решение однородного уравнения (7.53), то общим решением неоднородного разностного уравнения будет функция: y (t) + y (t, A1, A2, . An).

Эти теоремы схожи с теоремами для дифференциальных уравнений, которые были приведены нами в предыдущем разделе.

Разностные уравнения первого порядка с постоянными коэффициентами

Рассмотрим неоднородное разностное уравнение
(7.54)

Соответствующее ему однородное уравнение будет:
(7.55)

Возьмем функцию и убедимся, что она будет решением уравнения (7.55). Поскольку , тогда . Подставим yt и yt-1 в уравнение (7.55):
Итак, является решением уравнения (7.55).

По теореме (2) общее решение однородного разностного уравнения (7.55) является функция , где А — произвольная постоянная.

Пусть — частное решение неоднородного разностного уравнения (7.54). По теореме (3) общим решением неоднородного разностного уравнения (7.54) будет функция

Частное решение найти нетрудно, если f (t) = α, где α — некоторая постоянная. На самом деле, если где u — постоянная. Подставим в уравнение (7.54), имеем: u – au = α, откуда
Итак, общее решение уравнения (7.54) запишем в виде: .

Разностные уравнения второго порядка с постоянными коэффициентами

Пусть задано неоднородное разностное уравнение второго порядка с постоянными коэффициентами:
(7.56)
и соответствующее ему однородное уравнение
(7.57)

Убедимся, что функция будет решением уравнения (7.58). Подставим в уравнение (7.57) (λ ≠ 0), получим Поскольку λ ≠ 0, то поделим на λ t-2 , имеем λ 2 + aλ + b = 0 (7.58)

Это уравнение называется характеристическим уравнением для уравнения (7.57).

Здесь могут иметь место следующие три случая:

1. D = a 2 – 4b > 0, тогда уравнение (7.58) будет иметь два действительных различных корня.
Общее решение уравнения (7.57) запишется в виде:

а общее решение неоднородного уравнения (7.56) запишется так:

2. D = a 2 – 4b = 0, тогда и и

В этом случае однородное уравнение (7.57) примет вид:
(7.59)
Тогда

Легко убедиться, что решением уравнения (7.59) является также функция
Поэтому общим решением уравнения (7.59) является функция а общим решением неоднородного уравнения (7.56) функция

3. D = a 2 – 4b 2 – 5λ + 6 = 0 будет иметь действительные разные корни (D = 25 – 24 = 1 > 0), λ1 =2, λ2 = 3.
Общим решением однородного уравнения является функция

Далее положим, что yt = y — частное решение неоднородного уравнения, тогда

Таким образом, общим решением неоднородного уравнения является функция Постоянные A1 и A2 определим из начальных условий: y0 = 5, y1 = 9. Тогда для t = 0 и t = 1 соответственно будем иметь:

Решим эту систему уравнений относительно A1 и A2:

Откуда

Итак, — общее решение заданного в условии разностного уравнения.

Примеры применения разностных уравнений в экономических задачах

Пример 1. Пусть некоторая сумма средств выдается под сложный процент p, то к концу t-го года ее размер будет составлять:
Это однородное разностное уравнение первого порядка. Его решением будет функция , где A — некоторая постоянная, которую можно найти из начальных условий.

Если положить y0 = F , то A = F, откуда

Это известная формула величины фонда F, который выдается под сложный процент.

Пример 2. Пусть величина предложения сельскохозяйственной продукции в t-м году есть функция цены прошлого года а спрос на эту продукцию есть функция цены в этом году. Следовательно, спрос: а предложение

Цена равновесия для данной продукции определяется равенством:
а это разностное уравнение первого порядка.

Положим, что функция спроса определяется формулой а функция предложения — формулой

Цена равновесия запишется: то есть Решением этого уравнения является функция Постоянная A определяется из начальных условий, для t = 0 цена составляет p0.

Тогда p0 = A и решением уравнения является функция
Если начальная цена p0 = 0, то pt = 0 для всех значений t.

Следовательно, цена не подлежит изменению.

Вообще говоря, функция предложения — возрастающая, а потому b > 0; а функция спроса — убывающая, и поэтому a

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

[spoiler title=”источники:”]

http://math.semestr.ru/math/example-differential.php

http://natalibrilenova.ru/raznostnyie-uravneniya/

[/spoiler]

Содержание:

  1. Разностные уравнения
  2. Разностные уравнения первого порядка с постоянными коэффициентами
  3. Разностные уравнения второго порядка с постоянными коэффициентами

Разностные уравнения

Понятие разницы и разностного уравнения

Если для значений переменной x1, x2, x3, …  функция f (x) принимает значения  f (x1), f (x2), f (x3) … , то приращения функции составляют f (x2) – f (x1),  f (x3) – f (x2), …  

Приращение функции при переходе от значения  xi  к значению xi+1   будем обозначать: Разностные уравнения  В частности можно взять в качестве значения независимых переменных  x  и  x + 1 . Разность  Δf (x) = f (x + 1) – f (x)  называется первой разностью или разностью первого порядка. Она может рассматриваться в свою очередь как функция от x, а потому и для нее можно определить разницу:
Разностные уравнения
Разностные уравнения

Введем обозначения ΔΔf (x) = Δ2 f (x), тогда  Δ2 f (x) = f (x + 2) – 2 f (x + 1) + f (x)  и называется разностью второго порядка.

Аналогично можно найти разности третьего, четвертого и т. д. порядков.

Определим разности некоторых важнейших функций.

1) Если f (x) = С, где С — постоянная величина, то
Δf (x) = f (x + 1) – f (x) = С – С = 0.

Понятно, что и все разности следующих порядков будут также равняться нулю.

2) Если f (x) = ax + b, то
Δf = Δf (x + 1) – f (x) = a (x + 1) + b – ax – b = a.

Разница первого порядка линейной функции равна постоянной, а все остальные будут равны нулю.

3) Если f (x) = ax2 + bx + c, то
Разностные уравнения
Разностные уравнения

Поскольку разница первого порядка является линейной функцией, то разница второго порядка — постоянная, а все последующие разности равны нулю.

4) Если f (x) = ax, то
Разностные уравнения
В экономических исследованиях часто встречаются задачи, в которых время t является независимой переменной, а зависимая переменная определяется для времени t, t + 1, t + 2 и т. д.

Обозначим yt — значение функции y в момент времени t;  yt+1 — значение функции в момент, сдвинутый на одну единицу, например, на следующий час, на следующую неделю и т. д., yt+2 — значение функции y в момент, сдвинутый на две единицы и т. д.

Очевидно, что
Разностные уравнения

Откуда: Разностные уравнения

За разность второго порядка, имеем Разностные уравнения  или  Разностные уравнения
поэтому   Разностные уравнения

Аналогично можно доказать, что
Разностные уравнения

Итак, любую функцию
Разностные уравнения
можно представить в виде:  Разностные уравнения                                  (7.50)
и наоборот.

Определение. Уравнение
Разностные уравнения                                                                                           (7.51)
называется разностным уравнением n-го порядка.

Решить разностное уравнение n-го порядка — это значит найти такую ​​функцию yt, которая превращает уравнение (7.50) или (7.51) в тождество.

Решение, в котором есть произвольная постоянная, называется общим; решение, в котором постоянная отсутствует, называется частным.

Определение. Уравнение
Разностные уравнения                                                               (7.52)
где  a0, a1, …, an — постоянные числа, называется неоднородным разностным
уравнением n-го порядка с постоянными коэффициентами.

Если в уравнении (7.52) f (t) = 0, то уравнение называется однородным разностным уравнением n-го порядка с постоянными коэффициентами:
Разностные уравнения                                                     (7.53)

Уравнение  Разностные уравнения  есть однородное разностное уравнение первого порядка с постоянными коэффициентами a и b, а уравнение Разностные уравнениянеоднородное разностное уравнение второго порядка с постоянными коэффициентами a, b, c.

ТЕОРЕМА 1. Если решениями однородного разностного уравнения (7.53) является y1 (t) и y2 (t), то его решением будет также функция  y1 (t)y2 (t).

ТЕОРЕМА 2. Если y (t) является решением однородного разностного уравнения (7.53), то его решением будет также функция Ay (t), где А — произвольная постоянная.

ТЕОРЕМА 3. Если y (t) — частное решение неоднородного уравнения (7.52) и y (t, A1, A2, …, An) — общее решение однородного уравнения (7.53), то общим решением неоднородного разностного уравнения будет функция: y (t) + y (t, A1, A2, …, An)

Эти теоремы схожи с теоремами для дифференциальных уравнений, которые были приведены нами в предыдущем разделе.

Разностные уравнения первого порядка с постоянными коэффициентами

Рассмотрим неоднородное разностное уравнение
Разностные уравнения                                                                                         (7.54)

Соответствующее ему однородное уравнение будет:
Разностные уравнения                                                                                                  (7.55)

Возьмем функцию Разностные уравнения и убедимся, что она будет решением уравнения (7.55). Поскольку Разностные уравнения,  тогда Разностные уравнения.  Подставим  yt и yt-1  в уравнение (7.55): Разностные уравнения
Итак,  Разностные уравнения является решением уравнения (7.55).

По теореме (2) общее решение однородного разностного уравнения (7.55) является функция  Разностные уравнения , где А — произвольная постоянная.

Пусть Разностные уравнения — частное решение неоднородного разностного уравнения (7.54). По теореме (3) общим решением неоднородного разностного уравнения (7.54) будет функция
Разностные уравнения
Частное решение найти нетрудно, если f (t) = α, где α — некоторая постоянная. На самом деле, если Разностные уравнения где u — постоянная. Подставим в уравнение (7.54), имеем: u – au = α, откуда  Разностные уравнения
Итак, общее решение уравнения (7.54) запишем в виде: Разностные уравнения .

Разностные уравнения второго порядка с постоянными коэффициентами

Пусть задано неоднородное разностное уравнение второго порядка с постоянными коэффициентами:
Разностные уравнения                                                                               (7.56)
и соответствующее ему однородное уравнение
Разностные уравнения                                                                                      (7.57)

Убедимся, что функция  Разностные уравнения будет решением уравнения (7.58). Подставим в уравнение (7.57) Разностные уравнения (λ ≠ 0), получим Разностные уравнения  Поскольку λ ≠ 0, то поделим на λt-2, имеем       λ2 + aλ + b = 0                                                                                            (7.58)

Это уравнение называется характеристическим уравнением для уравнения (7.57).

Здесь могут иметь место следующие три случая:

1. D = a2 – 4b > 0, тогда уравнение (7.58) будет иметь два действительных различных корня.
Общее решение уравнения (7.57) запишется в виде:
Разностные уравнения
а общее решение неоднородного уравнения (7.56) запишется так:
Разностные уравнения

2. D = a2 – 4b = 0, тогда Разностные уравнения   и   Разностные уравнения   и   Разностные уравнения

В этом случае однородное уравнение (7.57) примет вид:
Разностные уравнения                                                                        (7.59)
Тогда
Разностные уравнения
Разностные уравнения

Легко убедиться, что решением уравнения (7.59) является также функция
Разностные уравнения Поэтому общим решением уравнения (7.59) является функция Разностные уравнения а общим решением неоднородного уравнения (7.56) функция
Разностные уравнения

3. D = a2 – 4b < 0, тогда характеристическое уравнение (7.58) имеет два комплексных сопряженных корня:
Разностные уравнения

Обозначим Разностные уравнения тогда общим решением однородного уравнения (7.57) будет функция Разностные уравнения  а неоднородного уравнения (7.56) — функция Разностные уравнения

Пример 1. Решить разностное уравнение:
Разностные уравнения

Решение. Запишем соответствующее ему однородное уравнение:
Разностные уравнения
Характеристическое уравнение  λ2 – 5λ + 6 = 0  будет иметь действительные разные корни (D = 25 – 24 = 1 > 0) λ1 =2,  λ2 = 3.
Общим решением однородного уравнения является функция
Разностные уравнения
Далее положим, что yt = y — частное решение неоднородного уравнения, тогда
Разностные уравнения
Таким образом, общим решением неоднородного уравнения является функция Разностные уравнения Постоянные  A1 и A2 определим из начальных условий: y0 = 5, y1 = 9. Тогда для t = 0 и t = 1 соответственно будем иметь:
Разностные уравнения
Решим эту систему уравнений относительно A1 и A2:
Разностные уравнения

Откуда  Разностные уравнения

Итак, Разностные уравнения —  общее решение заданного в условии разностного уравнения.

Примеры применения разностных уравнений в экономических задачах

Пример 1. Пусть некоторая сумма средств выдается под сложный процент p, то к концу t-го года ее размер будет составлять:
Разностные уравнения   Это однородное разностное уравнение первого порядка. Его решением будет функция  Разностные уравнения ,  где A — некоторая постоянная, которую можно найти из начальных условий.

Если положить y0 = F , то A = F, откуда  Разностные уравнения

Это известная формула величины фонда F, который выдается под сложный процент.

Пример 2. Пусть величина предложения сельскохозяйственной продукции в t-м году есть функция цены прошлого года  Разностные уравнения  а спрос на эту продукцию есть функция цены в этом году. Следовательно, спрос: Разностные уравнения  а предложение Разностные уравнения

Цена равновесия для данной продукции определяется равенством:
Разностные уравнения а это разностное уравнение первого порядка.

Положим, что функция спроса определяется формулой  Разностные уравнения а функция предложения — формулой Разностные уравнения

Цена равновесия запишется: Разностные уравнения то есть Разностные уравнения Решением этого уравнения является функция  Разностные уравнения  Постоянная A определяется из начальных условий, для t = 0 цена составляет p0.

Тогда p0 = A  и решением уравнения является функция  Разностные уравнения
Если начальная цена p0 = 0, то pt = 0 для всех значений t.

Следовательно, цена не подлежит изменению.

Вообще говоря, функция предложения — возрастающая, а потому b > 0; а функция спроса — убывающая, и поэтому a < 0. Откуда Разностные уравнения Знак выраженияРазностные уравнения зависит от номера года t, следовательно, цена колеблется.

Здесь имеют место три случая:

1) Если  Разностные уравнения  то Разностные уравнения   и соответственно Разностные уравнения
Тогда говорят, что колебания цены сдерживается.

2) Если  Разностные уравнения то последовательные колебания цены составляют Разностные уравнения
В этом случае говорят, что колебания цены периодические.

3) Если Разностные уравнения то  Разностные уравнения и   pt  бесконечно растет.
Говорят, что колебания цены растет.

Лекции:

  • Случайная вероятность
  • Эквивалентные бесконечно малые функции. Сравнение бесконечно больших функций
  • Решение определённых интегралов
  • Параллельные прямые
  • Кривизна и кручение пространственной кривой. Формулы Френе
  • Пределы в математике
  • Дифференциал функции
  • Объемы подобных фигур
  • Алгебра логики
  • Эластичность функции

В
общем случае линейное разностное
уравнение порядка M
с постоянными коэффициентами имеет вид

,
(8.16)

где
описывают конкретную систему, причем.

8.2.3.1. Решение разностных уравнений методом прямой подстановки

Уравнение
(8.16) записано в виде, удобном для решения
методом прямой
подстановки
.
Имея набор начальных условий (например,

дляi=-1,
-2, …, –
M)
и входную последовательность
по формуле (8.16)т можно непосредственно
вычислить выходную последовательностьдля.

Пример.

Дана
последовательность

Разностное
уравнение имеет вид

(8.17)

с
начальными условиями.

Данное
уравнение можно решить подстановкой,
что дает:

8.2.3.2. Решение разностных уравнений в
явном виде

Хотя
решение разностного уравнения
подстановкой
и целесообразно
в некоторых случаях, значительно полезнее
получить решения в явном
виде.

Основная
идея сводится к получению двух решений
разностного уравнения: однородного
и частного.

Однородное
уравнение получается путем подстановки
нулей вместо всех членов, содержащих
элементы входной последовательности
и определение отклика при нулевой
входной последовательности.

Частное
решение
получается из подбора вида последовательности
навыходе
при заданной входной
последовательности
.
Для определения произвольных постоянных
однородного решения используются
начальные условия.

Пример.

Решить
уравнение (8.17) этим методом.

Однородное
уравнение имеет вид

(8.18)

Известно,
что характеристическими
решениями однородных уравнений,
соответствующих линейным разностным
уравнениям с постоянными коэффициентами,
является решение вида
.
Поэтому, подставляя вместов (8.18),получим

Отсюда
однородное решение имеет вид

.
(8.19)

Частное
решение, соответствующее входной
последовательности
,
попробуем найти в виде

.
(8.20)

Из
уравнения (8.16) получаем

.

Поскольку
коэффициенты при равных степенях
в левой и правой частях уравнения должны
совпадать, то из получаемой системы
(трех уравнений) находим три искомых
коэффициента:.

Таким
образом, общее решение имеет вид:

,
(8.21)

В этом выражении
коэффициент
находится из начального условия.

Тогда
из (8.21) получим


(8.22)

Проверка
решения (8.22) при
показывает полное совпадение с приведенным
выше прямым решением.

Преимущество
решения (8.22) заключается в том, что оно
позволяет весьма просто определить
для любого конкретного.

8.2.3.3. Схемы реализации цифровых систем

Важное
значение разностных уравнений состоит
в том, что они непосредственно определяют
способ
построения цифровой системы.

Так,
разностное уравнение первого
порядка
самого общего вида

(8.23)

можно
реализовать с помощью схемы

Блок
“задержки” осуществляет задержку
сигнала на один отсчет.

Разностное
уравнение второго
порядка самого общего вида

(8.24)

может
быть реализовано при помощи схемы,
приведенной на рисунке 8.4.

Системы
первого и второго порядка могут быть
использованы при реализации систем
более высокого поряджка, т.к. последние
могут быть представлены в виде
последовательного или параллельного
соединения систем первого и второго
порядка.

8.2.4. Z – преобразование

Одним
из методов представления последовательностей
является Z-преобразование.

Для
последовательности
,
заданной при всех,Z-преобразование
определяется следующим степенным
рядом

.
(8.25)

где

– комплексная переменная.

8.2.4. 1. Последовательности конечной
длины

Если
отлична от нуля только в интервале,
гдеконечны, то
сходится в– плоскости везде, за исключением, может
быть, точкиили.

Линейную
систему с постоянными параметрами,
импульсная характеристика которой
является последовательностью конечной
длины, называют системой с конечной
импульсной характеристикой, или, что
то же самое, КИХ-фильтром.

Типичная
импульсная характеристикаконечной длины изображена на рисунке
8.5.

Системой
(фильтром) с бесконечной импульсной
характеристикой (БИХ) называется
система (фильтр), длина импульсной
характеристики которой не ограничена
слева
или справаили с обеих сторон.

8.2.4. 2. Примеры Z-преобразования.

  1. Найти
    Z-преобразование
    единичного импульса.

Решение.

Так
как
при любых,
кроме,
при котором,
то согласно (8.25) имеем

.
(8.26)

  1. Найти
    Z-преобразование
    единичного
    скачка
    .

Так
как
везде, кроме,
где,
то из (8.25) получим

.
(8.27)

Бесконечный
ряд сходится при
,
т.к.имеет единственную особую точку.

(Примечание.
Результат (8.27) вытекает из формулы суммы
геометрической прогрессии

).

  1. Найти
    Z-преобразование
    комплексной
    экспоненты.

.
(8.28)

сходится при
,
т.к. единственной особой точкой является.

  1. Найти
    Z-преобразование
    простой экспоненциальной
    последовательности.

В
этом случае
приипри.

Тогда
согласно (8.25) получаем

.
(8.29)

сходится при
,
т.к. единственной особой точкой является.

8.2.4. 3. Свойства Z
– преобразования

Линейность.

Z
– преобразование линейно.

Пусть

z
преобразования
последовательностей
.

Тогда
справедливо

.
(8.30)

Задержка.

Если
,

то

. (8.31)

Это
свойство полезно при переходе от
представления линейной системы с
постоянными переменными к представлению
ее z
преобразованием
и наоборот.

Пример.

Пусть
имеется разностное уравнение

.

Представим
его в виде z
преобразования

или

,

где

Свертка
последовательностей

Пусть

входные и выходные последовательности
дискретной линейной системы с постоянными
параметрами,– импульсная характеристика системы,– их соответствующиеz
– преобразования.

Тогда
имеет место

,
(8.32)

или

Как
следует из рассмотрения (8.32), операция
свертки последовательностей сводится
к перемножению их z
– преобразований.

8.2.4.4. Решение разностных уравнений
с применением одностороннего
z
– преобразования

Разностные
уравнения обычно определены при
и имеют набор начальных условий.

Разностное
уравнение
первого
порядка

,
(8.33)

начальное
условие
.

Пусть
на вход поступает последовательность

.

Чтобы
найти одностороннее z
– преобразование, умножим обе части
равенства (8.33) на
и просуммируем отдо

.

Из
свойства задержки

.

Отсюда

.

Поскольку

,

то

.

Разложив
второе слагаемое на простые дроби,
получим

.

Обратное
z
– преобразование дает последовательность
– решение разностного уравнения

Соседние файлы в папке НОВИКОВ_2013-14

  • #
  • #
  • #
  • #
  • #
  • #

Как решать дифференциальные уравнения

СОДЕРЖАНИЕ ТЕКУЩЕЙ СТАТЬИ

  1. Основные понятия и определения
    1. Определения
    2. Типы уравнений
    3. Алгоритм решения
  2. Дифференциальные уравнения первого порядка
    1. ДУ с разделяющимися переменными
    2. Однородные ДУ
    3. Линейные неоднородные ДУ
    4. ДУ Бернулли
    5. ДУ в полных дифференциалах
  3. Дифференциальные уравнения второго порядка
    1. ДУ допускающие понижение порядка
    2. Линейные однородные ДУ с постоянными коэффицентами
    3. Линейные неоднородные ДУ с постоянными коэффициентами
    4. Метод Лагранжа

Введите уравнение

Условия к задаче (необязательно)

Пример 1 Пример 2 Правила ввода

Дифференциальные уравнения бывают обыкновенными и в частных производных. В этой статье мы будем говорить об обыкновенных уравнениях и о том, как их решать.

Основные понятия и определения

Определения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие функцию $y(x)$ только от одной неизвестной переменной (например, $x$).

Рассмотрим это на следующих практических примерах. $$ y’ = xy $$ $$ y” = 1 $$

Итак, в первом диффуре присутствует независимая переменная $x$, неизвестная функция $y(x)$ и производная этой функции $y'(x)$. А во втором случае нет $x, y(x),y'(x)$, а есть только вторая производная функции $y”(x)$. Значит, для того, чтобы уравнение называлось дифференциальным необязательно иметь $y(x)$ и $x$, а должно быть производная $y(x)$ любого порядка.

Порядок дифференциального уравнения – это порядок старшей производной неизвестной функции $y(x)$ в уравнении.

В первом случае максимальная производная первого порядка, значит, и само ДУ первого порядка. А во втором случае уравнение имеет вторую производную $y”(x)$, поэтому это ДУ второго порядка. 

Общее решение дифференциального уравнения – это семейство функций $y = f(x,C)$, при подстановке которых в заданное исходное уравнение мы получаем равенство левой и правой части. Здесь $C$ произвольная константа. Процесс нахождения таких решений называется интегрированием дифференциального уравнения.

Частное решение дифференциального уравнения – это решение, полученное из общего решения, путем нахождения константы $C$ из дополнительных условий в задаче.

Типы уравнений

  1. ДУ первого порядка
    с разделяющимися переменными
    однородные
    линейные неоднородные
    уравнение Бернулли
  2. ДУ второго порядка
    уравнения допускающие понижение порядка
    однородные с постоянными коэффициентами
    неоднородные с постоянными коэффициентами 

Алгоритм решения

  1. По старшей производной функции $y(x)$ определить порядок ДУ
  2. Зная порядок, определить тип уравнения
  3. Узнав тип, подобрать подходящий метод решения
  4. Используя метод, найти общее решение
  5. Получить частное решение из общего путем вычисления неизвестной $C$

В некоторых случаях для решения дифференциальных уравнений удобно переписать производные в таком виде (например, это нужно для ДУ с разделяющимися переменными). $$y’ = frac{dy}{dx}$$

ОБЯЗАТЕЛЬНО! Чтобы успешно решать дифференциальные уравнения необходимо уметь находить интегралы. Поэтому, если вы забыли данную тему, то её нужно вспомнить!

Пример 1
Дана функция $y = Ce^{frac{x^2}{2}} $. Проверить является ли функция решением дифференциального уравнения $y’ = xy$
Решение

Для того, чтобы проверить является ли функция решением нужно подставить её в исходное ДУ. Найдем производную функции. $$y’ = (Ce^{frac{x^2}{2}})’ = Ce^{frac{x^2}{2}} cdot (frac{x^2}{2})’ = Ce^{frac{x^2}{2}} cdot x = Cxe^{frac{x^2}{2}}$$

Теперь подставим $y’$ и $y$ в исходное уравнение.

$$ Cxe^{frac{x^2}{2}} = x Ce^{frac{x^2}{2}} $$

Получили равенство левой и правой части, значит, функция $y = Ce^{frac{x^2}{2}} $ является общим решением ДУ.

Ответ
$$y = Ce^{frac{x^2}{2}} $$

Дифференциальные уравнения первого порядка

ДУ с разделяющимися переменными

Уравнения такого типа имеют следующий вид: $$ f_1(x)g_1(y)dy = f_2(x)g_2(y)dx$$ Общее решение такого ДУ нужно находить путем разделения переменных с иксами и с игреками: $$int frac{g_1(y)}{g_2(y)}dy = int frac{f_2(x)}{f_1(x)}dx$$

СОВЕТ: Если не удается определить тип диффура первого порядка, то рекомендуем мысленно попытаться разделить переменные иксы от игреков. Возможно перед вами хитрое дифференциальное уравнение с разделяющимися переменными.

Алгоритм нахождения общего решения:

  1. Переписываем производные через $y’ = frac{dy}{dx}$
  2. Разделяем все $y$ в левую часть уравнения, а все $x$ в правую
  3. Интегрируем обе части уравнения
Пример 2
Найти общее решение дифференциального уравнения первого порядка с разделяющимися переменными $y’ = xy$
Решение

Видим, что в условии задачи присутствует производная от неизвестной функции $y(x)$ первого порядка. Значит, перед нами диффур 1-го порядка.  Забегая вперед скажем, что данный диффур из задачи является дифференциальным уравнением с разделяющимися переменными. Что это означает? Это означает, что можно в уравнении перенести всё что содержит $y$ в левую часть равенства, а то, что содержит $x$ перенести в правую часть. То есть разделить “игрики” от “иксов” по разные стороны. Но прежде, чем это делать стоит переписать производную таким образом: $$y’ = frac{dy}{dx}$$

После замены производной игрека исходное уравнение приобретает такой формат:

$$frac{dy}{dx} = xy$$

Теперь, как сказали ранее, начинаем отделять игрики от иксов по разные стороны. Для этого обе части уравнения необходимо умножить на $dx$, а ещё разделить на $y$.

$$ frac{dy}{y} = xdx $$

Теперь необходимо проинтегрировать обе части уравнения, чтобы получить функцию $y$. Для этого навешиваем значок интеграла на обе части уравнения.

$$ int frac{dy}{y} = int xdx $$

Вспоминаем, что левый интеграл равен натуральному логарифму, а правый интеграл $frac{x^2}{2}$. А так как интеграл неопределенный, то необходимо прибавить константу $C$.

$$ ln|y| = frac{x^2}{2} + C $$

Теперь необходимо вытащить $y$ для того, чтобы записать окончательный ответ в виде общего решения. Для этого вспоминаем, что игрик в $ln|y| = x$ равен $y = e^x$. Поэтому продолжая решать наше уравнение получаем.

$$ y = e^{frac{x^2}{2} + C} $$

Далее вспоминаем свойство степеней $a^{x+y} = a^x cdot a^y$. Таким образом делаем преобразования нашего уравнения.
$$ y = e^{frac{x^2}{2}} cdot e^C $$

Так как $e^C$ это константа, то её можно переписать следующим видом $e^C = C$. И после этого получаем окончательный ответ исходного уравнения, называемый общим решением.

$$ y = Ce^{frac{x^2}{2}} $$

Ответ
$$ y = Ce^{frac{x^2}{2}} $$
Пример 3
Найти частное решение дифференциального уравнения первого порядка с разделяющимися переменными $y’ = frac{2x}{1+x^2}$, если $y(0) = 0$.
Решение

Начнем решать с того, что представим производную в исходном уравнении в виде $y’ = frac{dy}{dx}$:

$$ frac{dy}{dx} = frac{2x}{1+x^2} $$

Теперь разделяем переменные иксы от игреков по разные стороны равенства путем умножения обеих частей уравнения на $dx$:

$$ dy = frac{2x}{1+x^2} dx $$

Навешиваем знак интеграла на левую и правую часть, а затем решаем интегралы:

$$ int dy = int frac{2x}{1+x^2} dx $$

$$ y =  int frac{2x}{1+x^2} dx $$

Замечаем, что $(1+x^2)’ = 2x$. Поэтому $2x$ можно занести под знак дифференциала, чтобы решить интеграл:

$$ y = int frac{d(1+x^2)}{1+x^2} = ln (1+x^2) + C $$

Получили общее решение $y = ln (1+x^2) + C$. В условии задачи просят найти частное решение при условии $y(0) = 0$. Это означает, что нужно из последного условия найти константу $C$. Из $y(0) = 0$ видно, что $x = 0$, а $y = 0$. Подставляем их в общее решение дифференциального уравнения и вычисляем $C$:

$$ln(1+0^2)+C = 0$$ $$ln 1+C = 0$$ $$0 + C = 0$$ $$C=0$$

Теперь заменив в общем решении $C$ на ноль, получаем частное решение:

$$y = ln(1+x^2)$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$y = ln(1+x^2)$$

Однородные ДУ

Чтобы проверить является ли предложенное уравнение однородным нужно заменить $x$ и $y$ на $lambda x$ и $lambda y$. Производную $y’$ заменять не нужно. Если все $lambda$ после элементарных преобразований удастся уничтожить, то перед вами однородное дифференциальное уравнение первого порядка.

Решается по следующему алгоритму:

  1. Проверить уравнение на однородность с помощью $lambda$
  2. Привести уравнение к виду $y’ = f(frac{y}{x})$
  3. Выполнить замену $frac{y}{x} = t$ и $y’ = t’x+t$
  4. Решить уравнение методом разделяющихся переменных
Пример 4
Найти общее решение дифференциального уравнения первого порядка $$y’ = frac{y}{x} – 1$$
Решение

Так как разделить переменные не получается, то проверим уравнение на однородность. Для этого вместо $x$ и $y$ выполним подстановку $lambda x$ и $lambda y$:

$$y’ = frac{lambda y}{lambda x} – 1$$

Выполняем сокращение $lambda$ в числителе и знаменателе:

$$y’ = frac{y}{x} – 1$$

После сокращения все $lambda$ уничтожились, значит перед нами однородное дифференциальное уравнение первого порядка. Решим его с помощью замены $frac{y}{x} = t$ и $y’ = t’x + t$:

$$ t’x + t = t – 1$$

Переносим $t$ в одну сторону и тем самым уничтожаем его:

$$ t’x = -1 $$

Теперь это ДУ с разделяющимися переменными. Запишем его в привычном для него виде: $$ frac{dt}{dx} x = -1 $$

Разделим переменные домножением на $dx$ и делением на $x$ обеих частей равенства:

$$dt = -frac{dx}{x}$$

Интегрируем обе части:

$$int dt = – int frac{dx}{x}$$

$$t = -ln|x|+C$$

Выполняем назад замену $t = frac{y}{x}$:

$$frac{y}{x} = -ln|x|+C$$

Умножаем обе части на $x$, чтобы получить окончательный ответ общего решения:

$$y = -xln|x| +Cx$$

Ответ
$$y = -xln|x| +Cx$$
Пример 5
Решить дифференциальное уравнение первого порядка $xy+y^2=(2x^2+xy)y’$
Решение

Сперва проверим уравнение на однородность. Подставляем $lambda$ вместо $x$ и $y$.

$$lambda x cdot lambda y + (lambda y)^2 = (2 (lambda x)^2 + lambda xcdot lambda y)y’$$

После вынесения $lambda$ слева и справа за скобки получаем $$ lambda^2(xy+y^2) = lambda^2(2x^2+xy)y’,$$ где все $lambda$ сокращаются. А это подтвержает однородность уравнения.

Перед тем, как выполнить замену $t = frac{y}{x}$ нужно привести исходное уравнение к виду $y = f(frac{y}{x})$. Для этого разделим левую и правую часть равенства на $x^2$: $$frac{y}{x}+frac{y^2}{x^2} = (2+frac{y}{x})y’.$$

Теперь производим замену $t = frac{y}{x}$ и $y’ = t’x+t$ в преобразованном уравнении: $$t+t^2=(2+t)(t’x+t).$$ Раскрываем скобки и сокращаем одинаковые слагаемые $$t+t^2 = 2t’x+2t+t’xt+t^2$$ $$2t’x+t’xt=-t.$$

Далее в полученном уравнении разделяем переменные $t$ и $x$ по разные стороны знака равенства. Для этого выносим за скобку $t’x$ $$t’x(2+t)=-t.$$ Делим на $t$ обе части уравнения $$t’xfrac{2+t}{t}=-1.$$ Представляем производную $t’ = frac{dt}{dx}$ и переносим $dx$ и $x$ в правую часть равенства $$frac{2+t}{t}dt = -frac{dx}{x}.$$

Интегрируем обе части уравнения $$int frac{2+t}{t}dt = – int frac{dx}{x}$$ $$int frac{2}{t}dt+int dt = -int frac{dx}{x}$$ $$2ln|t|+t = -ln|x|+C.$$

Выполняем обратную замену $t = frac{y}{x}$: $$2ln|frac{y}{x}|+frac{y}{x}=-ln|x|+C.$$ Упрощаем полученное равенство с помощью элементарных преобразований и свойств натурального логарифма $$2ln|y|-2ln|x|+frac{y}{x} = -ln|x|+C$$ $$2ln|y|+frac{y}{x}=ln|x|+C$$ $$2ln|y|+frac{y}{x}=ln|x|+ln|C|$$ $$2ln|y|+frac{y}{x}=ln|Cx|$$ $$ln y^2+frac{y}{x}=ln|Cx|$$ $$ln y^2 = ln|Cx|-frac{y}{x}$$ $$y^2 = Cxe^frac{-y}{x}.$$

Привели решение к такому виду через $y^2$. Это называется общим интегралом дифференциального уравнения. Ответ в таком виде остается в таком формате.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$y^2 = Cxe^frac{-y}{x}$$

Линейные неоднородные ДУ

Линейное неоднородное дифференциальное уравнение 1-го порядка имеет следующий вид $$y’+p(x)y=q(x).$$

Для его решения существует два способа: метод Бернулли и вариация произвольной постоянной. В первом методе нужно сделать замену на произведение двух функций $y = uv$, а во втором способе необходимо найти неизвестную функцию $C(x)$. 

Алгоритм метода Бернулли:

  1. Выполняем замену $y=uv$ и $y’ = u’v+uv’$
  2. Находим функции $u(x)$ и $v(x)$ с помощью решения системы двух уравнений
  3. Подставляем найденные $u(x)$ и $v(x)$ в уравнение $y=uv$, чтобы получить ответ

Алгоритм метода вариации произвольной постоянной:

  1. Решаем исходное уравнение в качестве однородного методом разделяющихся переменных
  2. В полученном общем решении заменяем константу $C$ на функцию $C(x)$
  3. Подставляем общее решение и его производную в исходное уравнение, чтобы найти $C(x)$
  4. Полученное $C(x)$ подставляем в общее решение однородного уравнения и записываем ответ
Пример 6
Найти частное решение дифференциального уравнения первого порядка методом Бернулли $xy’-2y=2x^4$, если $y(1)=0$.
Решение

Приводим уравнение к виду $y’+p(x)y=q(x)$ путем деления на $x$ обеих частей равенства $$y’-2frac{y}{x}=2x^3.$$

Делаем замену в полученном уравнении на $y=uv$ и $y’=u’v+uv’$ $$u’v+uv’-2frac{uv}{x}=2x^3.$$Выносим за скобку $u$, чтобы в дальнейшем составить систему уравнений: $$u’v+u(v’-2frac{v}{x})=2x^3.$$

Теперь приравниваем к нулю выражение в скобках и составляем систему уравнений $$begin{cases} v’ – 2frac{v}{x} = 0 \ u’v = 2x^3 end{cases},$$ в которой начнем сначала решать первое уравнение для нахождения функции $v(x)$. Разделяем в нём переменные $$begin{cases} frac{dv}{dx} = 2frac{v}{x} \ u’v = 2x^3 end{cases} Leftrightarrow begin{cases} frac{dv}{v} = 2frac{dx}{x} \ u’v = 2x^3 end{cases}.$$

Интегрируем первое уравнение в системе, чтобы получить функцию $v(x)$ $$begin{cases} ln|v| = 2ln|x| \ u’v = 2x^3 end{cases} Leftrightarrow begin{cases} v = x^2 \ u’v = 2x^3 end{cases}.$$

Теперь, зная, чему равно $v$ подставляем его во второе уравнение $$begin{cases} v=x^2 \ u’x^2 = 2x^3 end{cases} Leftrightarrow begin{cases} v=x^2 \ u = x^2+C end{cases}.$$

Записываем общее решение дифференциального уравнения $$y = uv Rightarrow y = x^4+Cx^2.$$

В условии задачи требуется найти частное решение из условия $y(1)=0$. Подставим в найденное общее решение $x=1$ и $y=0$, чтобы вычислить $C$ $$1^4+Ccdot 1^2 = 0 Rightarrow C = -1. $$

С учётом, что $C=-1$ записываем частное решение дифференциального уравнения $$y = x^4 – x^2.$$

Ответ
$$y = x^4 – x^2$$
Пример 7
Найти общее решение дифференциального уравнения первого порядка $y’sin x-ycos x = 1$ методом вариации произвольной постоянной $C$.
Решение

Перепишем уравнение в виде $$ y’ – y frac{cos x}{sin x} = frac{1}{sin x} .$$ Теперь записываем однородное дифференциальное уравнение $$y’ – y frac{cos x}{sin x} = 0,$$ решим его методом разделяющихся переменных: $$frac{dy}{dx} = y frac{cos x}{sin x}$$ $$int frac{dy}{y} = int frac{cos x}{sin x} dx.$$

Слева получается натуральный логарифм, а справа заносим косинус под знак дифференциала, чтобы получить логарифм синуса: $$ln|y| = ln|sin x| + C$$ $$y = Csin x.$$

Теперь заменяем константу $C$ на функцию $C(x)$ в полученном решении и находим производную $$y = C(x)sin x Rightarrow y’ = C'(x)sin x+ C(x)cos x.$$

Подставляем $y$ и $y’$ в неоднородное уравнение и решаем его относительно $C(x)$: $$C'(x)sin x+ C(x)cos x – C(x)sin x frac{cos x}{sin x} = frac{1}{sin x}$$ $$C'(x)sin x = frac{1}{sin x}$$ $$C'(x) = frac{1}{sin^2 x}.$$

В последнем уравнении можно разделить переменные, что и делаем, а затем интегрируем: $$ d(C(x)) = int frac{dx}{sin^2 x}$$ $$C(x) = -ctg x + C.$$

Берем решение $y = C(x)sin x$ и подставляем в него найденное $C(x) = -ctg x + C$ $$y = (-ctg x + C) sin x = Csin x – cos x.$$ Таким образом получили общее решение дифференциального уравнения $y = Csin x – cos x$.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$y = Csin x – cos x$$

ДУ Бернулли

Дифференциальное уравнение Бернулли имеет следующий вид $$y’ + g(x)y = f(x)y^alpha qquad (alpha neq 0), (alpha neq 1).$$

Алгоритм решения: 

  1. Выполняем подстановку $y = z^frac{1}{1-alpha}$
  2. После подстановки получаем линейное уравнение $z’+p(x)z=q(x)$
  3. Решив линейное уравнение делаем обратную замену $z = y^{1-alpha}$
Пример 8
Найти общее решение дифференциального уравнения первого порядка $y’+y=xy^2$.
Решение

Это уравнение Бернулли. Видим, что $alpha = 2$. Значит делаем замену на $y = z^frac{1}{1-alpha} = z^{-1}$. Отсюда $y’ = -frac{1}{z^2} cdot z’$. После подстановки в исходное уравнение имеем $$ -frac{z’}{z^2}+frac{1}{z}=frac{x}{z^2}.$$

Умножаем обе части равенства на $(-z^2)$, чтобы привести уравнение к линейному ДУ $$z’-z=-x, $$ которое можно решить методом Бернулли, либо вариацией произвольной постоянной. Выберем первый способ.

Применяем подстановку $y=uv$ и $y’=u’v+uv’$ для последнего уравнения $$u’v+uv’-uv=-x.$$ Выносим за скобку $u$, чтобы затем построить систему уравнений для нахождения функций $u(x)$ и $v(x)$ $$u’v+u(v’-v) = -x.$$ Приравниваем к нулю скобку и получаем систему $$begin{cases} v’-v = 0 \ u’v = -x end{cases}.$$

Начинаем решать её с первого уравнения. Разделяем в нем переменные и затем интегрируем $$begin{cases} int frac{dv}{v} = int dx \ u’v = -x end{cases} Leftrightarrow begin{cases} ln|v| = x \ u’v = -x end{cases} Leftrightarrow begin{cases} v = e^x \ u’v = -x end{cases}. $$

Зная, что $v = e^x$ подставляем его во второе уравнение системы и решаем $$begin{cases} v = e^x \ u’ = -frac{x}{e^x} end{cases} Leftrightarrow begin{cases} v = e^x \ u = int (-x)e^{-x} dx end{cases}.$$

Для взятия интеграла воспользуемся методом интегрирования по частям $$u = int (-x)e^{-x} dx = begin{vmatrix} u = -x & du = -dx \ dv = e^{-x}dx & v = -e^{-x} end{vmatrix} = xe^{-x} – int e^{-x} dx = xe^{-x} +e^{-x} + C$$

Итак, получаем, что $$z = uv Rightarrow z = (xe^{-x} + e^{-x}+C) e^x = Ce^x +x + 1. $$ Вспоминаем, что была ещё одна замена в самом начале решения задачи $y = z^{-1}$, поэтому общее решение выглядит следующим образом $$y = frac{1}{Ce^x + x + 1}.$$

Ответ
$$y = frac{1}{Ce^x + x + 1}$$

ДУ в полных дифференциалах

Дифференциальные уравнения в полных дифференциалах имеют следующий вид $$P(x,y) dx + Q(x,y) dy = 0, $$ при выполнении условия $frac{partial P}{partial y} = frac{partial Q}{partial x} $.

Алгоритм решения заключается в том, чтобы найти функцию $U(x,y)=C$, полный дифференциал которой, есть исходное ДУ:

  1. Проверяем условие, подтверждающее, что перед нами ДУ в полных дифференциалах
  2. Получаем $U(x,y)$ интегрируя функцию $P(x,y)$ по переменной $x$. В результате этого появится неизвестная функция $varphi(y)$ 
  3. Дифференцируем $U(x,y)$ по $y$ и приравниваем к $Q(x,y)$, чтобы найти $varphi(y)$
Пример 9
Найти общий интеграл $U(x,y)=C$ дифференциального уравнения $$(2x+5y)dx+(5x+3y^2)dy=0.$$
Решение

Убедимся, что данное уравнение в полных дифференциалах. Для этого проверим условие $frac{partial P}{partial y} = frac{partial Q}{partial x} $. Находим производные $$ P’_y = (2x+5y)’_y = 5, Q’_x = (5x+3y^2)’_x = 5, $$ и видим, что условие выполняется $P’_y=P’_x=5$.

Находим функцию $U(x,y)$ беря интеграл по $x$ от функции $P(x,y)$ $$U(x,y) = int (2x+5y) dx = x^2 + 5yx + varphi(y).$$

Далее необходимо продифференцировать найденную $U(x,y)$ по $y$ $$U’_y = 5x + varphi'(y).$$

 Осталось найти неизвестную функцию $varphi(y)$ приравняв $U’_y$ к $Q(x,y)$: $$5x + varphi'(y) = 5x+3y^2$$ $$varphi'(y) = 3y^2$$ $$varphi(y) = int 3y^2 dy = y^3 + C.$$

Теперь зная чему равна $varphi(y)$ подставляем её в $U(x,y)$ $$U(x,y)=x^2+5xy+y^3+C.$$

Записываем ответ в таком виде $$x^2+5xy+y^3 = C.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$x^2+5xy+y^3 = C.$$

Дифференциальные уравнения второго порядка

ДУ допускающие понижение порядка

Дифференциальные уравнения, допускающие понижение порядка бывают двух видов:

  1. Без функции $y$: $F(x,y’,y”)=0$
  2. Без переменной $x$: $F(y,y’,y”)=0$

Для решения таких диффуров в первом случае делаем замену $y’ = p(x)$, а во втором $y’ = p(y)$.

Пример 10
Найти частное решение дифференциального уравнения второго порядка $xy”+y’=0$ при условиях $y(1) = 0$ и $y'(1)=1$.
Решение

Видим, что данный дифур попадает под первый случай, когда отсутствует в уравнении $y$, а есть только его производные. Значит, делаем замену $y’ = p(x)$ $$xp’+p=0.$$

Данное уравнение имеет разделяющиеся переменные. Начнем с того, что перепишем уравнение через $p’ = frac{dp}{dx}$ $$xfrac{dp}{dx} = -p.$$ Разделяем переменные налево и направо от знака равенства и затем интегрируем: $$ frac{dp}{p} = -frac{dx}{x}$$ $$ int frac{dp}{p} = -int frac{dx}{x}$$ $$ln|p| = -ln|x|+C_1.$$ Теперь избавимся от логарифмов, чтобы получить $p$: $$p = e^{-ln|x| + C_1}$$ $$p = frac{C_1}{x}.$$

Вспоминаем про ранее выполненную замену $$y’ = p(x) = frac{C_1}{x}.$$ Интегрируем для того, чтобы найти $y$ $$y = int frac{C_1}{x} dx = C_1 ln|x| + C_2.$$

Таким образом, общее решение дифференциального уравнения $$y = C_1 ln|x| + C_2.$$

Займемся поиском частного решения. Для этого используем два дополнительных равенства из условия задачи: $$y(1) = 0 Rightarrow C_1 ln|1| + C_2 = 0 Rightarrow C_2 = 0$$ $$y'(1)=1 Rightarrow frac{C_1}{1} = 1 Rightarrow C_1 = 1.$$

Записываем частное решение дифференциального уравнения $$y = ln|x|.$$

Ответ
$$y = ln|x|$$
Пример 11
Найти частное решение дифференциального уравнения второго порядка $$yy”+y’^2 = 1, qquad y(0) = 1, y'(0) = 1.$$
Решение

Видим, что в диффуре отсутствует в явном виде переменная $x$, поэтому необходимо сделать замену $y’ = p(y)$ и отсюда $y” = p'(y)cdot y’ = p'(y)p$.

Делаем замену и получаем уравнение $$yp'(y)p + p^2 = 1,$$ которое решим методом разделения переменных: $$ypfrac{dp}{dy} = 1-p^2$$ $$frac{p}{1-p^2}dp = frac{1}{y}dy.$$ Далее по плану необходимо проинтегрировать обе части уравнения, чтобы получить $p$ $$int frac{p}{1-p^2}dp = int frac{1}{y}dy.$$

В первом интеграле заносим под знак дифференциала $1-p^2$, чтобы получился натуральный логарифм, а во втором, используя таблицу интегрирования можно сразу записать ответ: $$-frac{1}{2} int frac{d(1-p^2)}{1-p^2} = ln|y| + C $$ $$-frac{1}{2} ln|1-p^2| = ln|y| + C.$$ 

Необходимо избавиться от логарифмов. Умножим обе части равенства на $(-2)$, а затем занесем эту двойку над икреком: $$ln|1-p^2| = -2ln|y|+C$$ $$ln|1-p^2| = ln frac{1}{y^2} + C.$$

Итак, теперь убирая логарифмы получаем: $$1-p^2 = C frac{1}{y^2}$$ $$p^2 = 1 – Cfrac{1}{y^2}$$ $$(y’)^2 = 1 – Cfrac{1}{y^2}.$$

Теперь найдем значение константы $C$ благодаря дополнительным условиям задачи $y = 1$ и $y’ = 1$. Подставляем их в последнее уравнение $$1^2 = 1 – Cfrac{1}{1^2} Rightarrow C = 0.$$

Зная теперь, что $C=0$ подставляем его в уравнение $(y’)^2 = 1 – Cfrac{1}{y^2}$: $$(y’)^2 = 1$$ $$y’ = pm 1.$$ Из условия помним, что $y’ = 1 > 0$, значит, берем только решение $y’ = 1$ и продолжаем его решать интегрированием $$y = int 1 dx = x + C.$$

Осталось найти снова постоянную $C$ теперь уже из условия $y(0) = 1$ $$y(0) = 0 + C = 1 Rightarrow C = 1.$$ Вот теперь можно записать ответ в виде частного решения, которое требовалось найти по условию данной задачи $$y = x + 1.$$

Ответ
$$y = x + 1$$

Линейные однородные ДУ с постоянными коэффицентами

Линейность дифференциального уравнения заключается в том, что в уравнение входит неизвестная функция $y(x)$ и её производные только в первой степени, между собой не перемножаясь. Однородность определяется тем, что уравнение не содержит свободного члена. То есть он равен нулю.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами выглядит следующим образом $$y”+py’+qy = 0.$$ Чтобы его решить необходимо составить характиристический многочлен и найти его корни. Для этого нужно заменить $y$ на $lambda$, степень которых будет соответствовать порядку производной $$y” Rightarrow lambda^2, qquad y’ Rightarrow lambda, qquad y Rightarrow 1.$$

В зависимости от получившихся корней имеем общее решение в различных видах:

  1. Действительные корни $lambda_1 neq lambda_2$, тогда $y = C_1e^{lambda_1 x}+C_2e^{lambda_2 x}$
  2. Действительные корни $lambda_1 = lambda_2$, тогда $y = C_1e^{lambda_1 x}+C_2xe^{lambda_1 x}$
  3. Комплексные корни $lambda_{1,2} = alphapmbeta i$, тогда $y = C_1e^{alpha x}cos beta x + C_2e^{alpha x}sin beta x$.
Пример 12
Найти общее решение дифференциального уравнения второго порядка $y”+y’-2y = 0$.
Решение

Первым делом составляем характеристический многочлен. Заменяем $y$ на $lambda$ со степенями соответствующими порядку производной $y$ $$lambda^2 + lambda -2 = 0.$$

Обратите внимание, что $y$ имеет производную нулевого порядка, поэтому он заменяется на $lambda^0 = 1$. Итак, перед нами квадратное уравнение, начинаем решать: $$lambda_{1,2} = frac{-1pm sqrt{1^2-4cdot 1 cdot (-2)}}{2cdot 1} = frac{-1pm 3}{2}$$ $$lambda_1 = -2, qquad lambda_2 = 1.$$

Так как получили отличающиеся действительные корни, то общее решение записывается следующим образом $$y = C_1 e^{-2x} + C_2 e^{x}.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$y = C_1 e^{-2x} + C_2 e^{x}$$

Линейные неоднородные ДУ с постоянными коэффициентами

Линейное неоднородное ДУ с постоянными коэффициентами отличается от предыдущего типа уравнений наличием правой части от знака равенства $$y”+py’+q = f(x).$$

Общее решение такого диффура складывается из двух частей: общего решения однородного уравнения и частного решения неоднородного уравнения $$y_text{о.н.} = y_text{о.о.} + y_text{ч.н.}.$$

Частное решение неоднородного уравнения $y_text{ч.н.}$ подбирается исходя из вида правой части дифференциального уравнения. Затем в нём неизвестные постоянные находятся методом неопределенных коэффициентов.

Правая часть Корни характеристического многочлена Вид частного решения
1 $$P_n (x)$$ Число 0 не является корнем характеристического уравнения. $$tilde{P_n}(x)$$
Число 0 – корень характеристического уравнения кратности $S$. $$x^s tilde{P_n}(x)$$
2 $$P_n (x) e^{alpha x}$$ Число $alpha$ не является корнем характеристического уравнения. $$tilde{P_n} (x) e^{alpha x}$$
Число $alpha$ является корнем характеристического уравнения кратности $S$. $$x^s tilde{P_n} (x) e^{alpha x}$$
3 $$P_n (x) cos beta x + Q_m (x) sin beta x$$ Число $pm ibeta$ не является корнем характеристического уравнения. $$tilde {P_n} cos beta x + tilde{Q_m} sin beta x$$
Число $pm ibeta$ является корнем характеристического уравнения кратности $S$. $$x^s (tilde {P_n} cos beta x + tilde{Q_m} sin beta x)$$
4 $$e^{alpha x}[P_n (x) cos beta x + Q_m (x) sin beta x]$$ Число $alpha pm ibeta$ не является корнем характеристического уравнения. $$e^{alpha x}[P_n (x) cos beta x + Q_m (x) sin beta x]$$
Число $alpha pm ibeta$ является корнем характеристического уравнения. $$x^s e^{alpha x}[P_n (x) cos beta x + Q_m (x) sin beta x]$$
Пример 13
Найти общее решение дифференциального уравнения второго порядка $y”+y = 4xcos x$.
Решение

Сначала находим общее решение однородного уравнения $$y” + y = 0.$$ Строим характеристический многочлен $$lambda^2 + 1 = 0,$$ и находим его корни $$lambda_{1,2}=pm i.$$ Записываем получившееся общее решение однородного уравнения $$y_text{о.о.} = C_1 cos x + C_2 sin x.$$

Теперь необходимо подобрать частное решение неоднородного уравнения. Для этого смотрим на правую часть исходного уравнения и видим, что здесь многочлен первой степени умножается на косинус. Значит, необходимо выбрать из таблицы 3й случай. Причем корень характеристического уравнения совпадает с аргументом косинуса. Это значит, что требуется домножение на $x$ $$y_text{ч.н.} = x[(Ax+B)cos x + (Cx+D)sin x].$$Упростим последнее равенство и найдем от него вторую производную: $$y_text{ч.н.} = (Ax^2+Bx)cos x + (Cx^2 + Dx) sin x$$ $$y’_text{ч.н.} = (2Ax+B)cos x-(Ax^2+Bx)sin x + (2Cx+D)sin x + (Cx^2 + Dx) cos x.$$

Упростим $y’_text{ч.н}$ для удобства нахождения второй производной $$y’_text{ч.н.} = (2Ax+B+Cx^2+Dx)cos x + (2Cx+D-Ax^2-Bx)sin x.$$ Теперь можно найти вторую производную $$y”_text{ч.н.} = (2A+2Cx+D)cos x-(2Ax+B+Cx^2+Dx)sin x + (2C-2Ax-B)sin x + (2Cx+D-Ax^2-Bx)cos x.$$ Упрощаем последнее выражение $$y”_text{ч.н.} = (2A+4Cx+2D-Ax^2-Bx)cos x + (2C-4Ax-2B-Cx^2-Dx)sin x.$$

Подставляем найденные $y_text{ч.н.}$ и $y”_text{ч.н.}$ в исходный диффур из “дано” задачи $$(2A+4Cx+2D-Ax^2-Bx)cos x + (2C-4Ax-2B-Cx^2-Dx)sin x + (Ax^2+Bx)cos x + (Cx^2 + Dx) sin x = 4xcos x.$$ Упрощаем его $$(2A+4Cx+2D)cos x + (2C-4Ax-2B)sin x = 4xcos x.$$ Теперь подгоняем левую часть под правую, так чтобы можно было применить метод неопределенных коэффициентов и найти неизвестные $A,B,C,D$ $$(2A+2D)cos x+4Cxcos x + (2C-2B)sin x+(-4Ax)sin x = 4xcos x.$$ Смотрим на левую и правую часть и составляем систему $$begin{cases} 2A+2D = 0 \ 4C=4 \ 2C-2B=0 \ -4A = 0 end{cases} Leftrightarrow begin{cases} D=0 \ C= 1 \ B=1 \ A = 0end{cases}.$$

Подставляем полученные коэффициенты в частное решение неоднородного уравнения $$y_text{ч.н.} = xcos x + x^2sin x.$$ Теперь вспоминая, что $y_text{о.н.} = y_text{о.о.} + y_text{ч.н.}$ можем записать окончательный ответ $$y_text{о.н.} = C_1 cos x + C_2 sin x + xcos x + x^2sin x.$$

Ответ
$$y = C_1 cos x + C_2 sin x + xcos x + x^2sin x$$
Пример 14
Найти общее решение дифференциального уравнения второго порядка $y”+y’=5x+2e^x$.
Решение

Сначала найдем общее решение однородного дифференциального уравнения $$y”+y’=5x+2e^x.$$

Составляем характеристический многочлен однородного уравнения и находим его корни: $$lambda^2 + lambda = 0$$ $$lambda(lambda + 1) = 0$$ $$lambda_1 = 0, qquad lambda_2=-1.$$ Теперь можно записать общее решение $$y_text{о.о.} = C_1 + C_2e^{-x}.$$

Далее необходимо по правой части исходного неоднородного уравнения найти его частное решение путем подбора, используя данные таблицы. Первое слагаемое есть многочлен первой степени. И так как один из корней характеристического уравнения является нулем кратности 1, то решение ищем в виде $y = (Ax+B)x$. Второе слагаемое представляет собой произведение многочлена нулевой степени на экспоненту. Так как аргумент экспоненты не совпадает с одним из корней характеристического многочлена, то подбор будем делать в виде $y = Ce^x$. В итоге правую часть будем искать в виде суммы $$y_text{ч.н.} = (Ax+B)x+Ce^x.$$

Находим первую и вторую производную последней функции: $$y’ = 2Ax+B+Ce^x$$ $$y”=2A+Ce^x.$$ Подставляем полученные производные $y’$ и $y”$ в исходное дифференциальное уравнение: $$2A+Ce^x+2Ax+B+Ce^x = 5x+2e^x$$ $$2Ax+B+2A+2Ce^x=5x+2e^x.$$

Далее необходимо, используя метод неопределенных коэффициентов, найти значения $A,B,C$ составив систему уравнений $$begin{cases} 2A=5 \ 2C=2 \ B+2A = 0 end{cases} Leftrightarrow begin{cases} A=frac{5}{2} \ C=1 \ B=-5 end{cases}.$$

Подставляем найденные коэффициенты и получаем частное решение неоднородного уравнения $$y_text{ч.н.} = (frac{5}{2}x-5)x + e^x = frac{5}{2}x^2 – 5x + e^x.$$

Таким образом теперь можно записать общее решение неоднородного диффура $$y_text{о.н.} = y_text{о.о.} + y_text{ч.н.}=C_1 + C_2e^{-x} + frac{5}{2}x^2 – 5x + e^x.$$

Ответ
$$y = C_1 + C_2e^{-x} + frac{5}{2}x^2 – 5x + e^x$$

Метод Лагранжа

Данный метод позволяет решать линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами даже в тех, случаях, когда правая часть уравнения не подходит под табличный вид. В этом случае целесообразно применить данный метод решения.

  1. Находим общее решение однородного уравнения $y = C_1 y_1(x) + C_2 y_2(x)$
  2. Варьируем постоянные $C_1$ и $C_2$ на функции $C_1(x)$ и $C_2(x)$
  3. Решаем систему методом Крамера $begin{cases} C_1 ‘(x) y_1 (x) + C_2 ‘(x) y_2 (x) = 0 \ C_1 ‘(x) y_1 ‘(x) + C_2 ‘(x) y_2 ‘(x) = f(x) end{cases} $
  4. Получаем $C_1(x)$ и $C_2(x).$
Пример 15
Найти частное решение дифференциального уравнения $$y”-2y’+y=frac{e^x}{x}, text{ при } y(1)=e, y'(1)=3e.$$
Решение

Так как правая часть диффура не подходит под табличный формат, то не получится подбирать частное решение по правой части как делали это в предыдущем примере. Воспользуется методом Лагранжа или как его еще называют вариация произвольной постоянной. Для начала найдем общее решение однородного уравнения $$y”-2y’+y=0.$$

Составляем характеристический многочлен и находим его корни: $$lambda^2-2lambda+1=0$$ $$(lambda-1)^2 = 0 Rightarrow lambda = 1 text{ с кратностью 2}.$$ Так как корень кратный, то общее решение однородного уравнения записывается следующим образом $$y = C_1 e^x + C_2 xe^x.$$

Теперь необходимо варьировать постоянные $C_1$ и $C_2$ на соответствующие функции $C_1 (x)$ и $C_2 (x)$. Теперь получившееся решение следует записать в виде $y = C_1 (x) e^x + C_2 (x) xe^x$. Здесь заметим, что $y_1 = e^x$ и $y_2 = xe^x$. Это нужно для дальнейшего хода решения, а именно построения системы уравнений.

Составляем систему уравнений и решаем её методом Крамера $$begin{cases} C_1 ‘(x) e^x+C_2 ‘(x) xe^x = 0 \C_1 ‘(x) e^x + C_2 ‘(x) (e^x+xe^x) = frac{e^x}{x} end{cases}.$$ Находим главный определитель системы $$Delta = begin{vmatrix} e^x & xe^x \ e^x & e^x+xe^x end{vmatrix} = e^x(e^x+xe^x)-xe^{2x} = e^{2x}.$$ Вычисляем дополнительные определители: $$Delta_1 = begin{vmatrix} 0 & xe^x \ frac{e^x}{x} & e^x + xe^x end{vmatrix} = -xe^x frac{e^x}{x} = e^{2x}$$ $$Delta_2 = begin{vmatrix} e^x & 0 \ e^x & frac{e^x}{x} end{vmatrix} = e^x frac{e^x}{x} = frac{e^{2x}}{x}.$$

Итак, получаем решение системы уравнений $$C_1 ‘(x) = frac{Delta_1}{Delta} = frac{e^{2x}}{e^{2x}} = 1, qquad C_2 ‘(x) = frac{Delta_2}{Delta} = frac{e^{2x}}{x} frac{1}{e^{2x}} = frac{1}{x}.$$ Далее интегрируем полученные решения, чтобы избавиться от производной: $$C_1(x) = int 1 dx = x+tilde{C_1}$$ $$C_2(x)=int frac{dx}{x}=ln|x|+tilde{C_2}.$$

Подставляем полученные $C_1(x)$ и $C_2(x)$ в общее решение однородного уравнения и записываем общее решение неоднородного дифференциального уравнения $$y = (x+tilde{C_1}) e^x + (ln|x|+tilde{C_2}) xe^x.$$ По условию нам требуется найти частное решение при условиях $y(1)=e$ и $y'(1)=3e$. Поэтому находим сначала производную $$y’=e^x+(x+tilde{C_1})e^x+e^x+(ln|x|+tilde{C_2})(e^x+xe^x), $$ раскрываем скобки $$y’ = 2e^x+xe^x+tilde{C_1}e^x+e^xln|x|+xe^xln|x|+tilde{C_2}e^x+tilde{C_2}xe^x,$$ а затем составляем систему уравнений $$begin{cases} y'(1)=3e+tilde{C_1}e+2tilde{C_2}e = 3e \ y(1) = e+tilde{C_1}e + tilde{C_2}e = e end{cases} Rightarrow begin{cases} tilde{C_1}+2tilde{C_2}=0 \ tilde{C_1}+tilde{C_2}=0 end{cases} Rightarrow begin{cases} tilde{C_2} = 0 \ tilde{C_1}=0 end{cases}.$$

Теперь можно записать частное решение к задаче $$y = xe^x + xln|x|e^x = xe^x(1+ln|x|).$$

Ответ
$$y = xe^x(1+ln|x|)$$

Добавить комментарий