Как найти частоту если известна лямбда


Загрузить PDF


Загрузить PDF

Частота (или частота волны) — это число полных колебаний или циклов волны, совершенных в единицу времени. Есть несколько различных способов вычислить частоту в зависимости от данной вам информации.

  1. Изображение с названием Calculate Frequency Step 1

    1

    Формула: f = V / λ[1]

    • где f — частота, V — скорость волны, λ — длина волны.
    • Пример: вычислите частоту звуковой волны, если длина волны равна 322 нм, а скорость звука равна 320 м/сек.
  2. Изображение с названием Calculate Frequency Step 2

    2

    Преобразуйте единицы измерения длины волны в метры (если необходимо). Если длина волны дается в нанометрах, вам нужно конвертировать это значение в метры, разделив его на количество нанометров в одном метре.[2]

    • Обратите внимание, что при работе с очень малыми или очень большими числами лучше записывать их в экспоненциальном формате. В этой статье числа будут даны как в обычном, так и в экспоненциальном формате.
    • Пример: λ = 322 нм
      • 322 нм x (1 м / 10^9 нм) = 3,22 x 10^-7 м = 0,000000322 м
  3. Изображение с названием Calculate Frequency Step 3

    3

    Разделите скорость волны на ее длину. Для вычисления частоты (f) разделите скорость волны (V) на ее длину (λ), выраженную в метрах.[3]

    • Пример: f = V / λ = 320 / 0.000000322 = 993788819,88 = 9,94 x 10^8
  4. Изображение с названием Calculate Frequency Step 4

    4

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример: частота этой волны равна 9,94 х 10^8 Гц.

    Реклама

  1. Изображение с названием Calculate Frequency Step 5

    1

    Формула: f = C / λ. Формула для вычисления частоты волны в вакууме практически идентична формуле для вычисления частоты волны в средах. В вакууме не существует факторов, влияющих на скорость волны, поэтому в формуле используется постоянная величина скорости света, с которой распространяются электромагнитные волны в вакууме.[4]

    • В формуле f — частота, С — скорость света, λ — длина волны.
    • Пример: вычислите частоту электромагнитной волны, если ее длина равна 573 нм.
  2. Изображение с названием Calculate Frequency Step 6

    2

    Преобразуйте единицы измерения длины волны в метры (если необходимо). Если длина волны дается в нанометрах, вам нужно конвертировать это значение в метры, разделив его на количество нанометров в одном метре.

    • Обратите внимание, что при работе с очень малыми или очень большими числами лучше записывать их в экспоненциальном формате. В этой статье числа будут даны как в обычном, так и в экспоненциальном формате.
    • Пример: λ = 573 нм
      • 573 нм х ( 1 м / 10^9 нм) = 5,73 х 10^-7 м = 0,000000573
  3. Изображение с названием Calculate Frequency Step 7

    3

    Разделите скорость света на длину волны. Скорость света является постоянной величиной, которая равна 3,00 х 10^8 м/с. Разделите эту величину на длину волны (в метрах).[5]

    • Пример: f = С / λ = 3,00 х 10^8 / 5,73 х 10^-7 = 5,24 х 10^14
  4. Изображение с названием Calculate Frequency Step 8

    4

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример: частота этой волны равна 5,24 х 10^14 Гц.

    Реклама

  1. Изображение с названием Calculate Frequency Step 9

    1

    Формула: f = 1 / T.[6]
    Частота обратно пропорциональна времени, которое необходимо для совершения одного колебания волны.

    • В формуле f — частота, Т — время, которое необходимо для совершения одного колебания волны.
    • Пример А: вычислите частоту волны, если ей необходимо 0,32 с для совершения одного колебания.
    • Пример B: за 0,57 секунд волна совершает 15 колебаний. Вычислите частоту этой волны.
  2. Изображение с названием Calculate Frequency Step 10

    2

    Разделите число колебаний на время. Если в задаче дано время, затрачиваемое на 1 колебание, то в этом случае просто разделите 1 на время (Т). Если в задаче дано время, затрачиваемое на несколько колебаний, то в этом случае разделите данное количество колебаний (n) на время (Т).[7]

    • Пример А: f = 1 / T = 1 / 0,32 = 3,125
    • Пример B : f = n / T = 15 / 0,57 = 26,316
  3. Изображение с названием Calculate Frequency Step 11

    3

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример А: частота волны равна 3,125 Гц.
    • Пример B: частота волны равна 26,316 Гц.

    Реклама

  1. Изображение с названием Calculate Frequency Step 12

    1

    Формула: f = ω / (2π)[8]

    • где f — частота, ω — угловая частота, π — число Пи (математическая константа).
    • Пример: волна вращается с угловой частотой 7,17 радиан в секунду. Вычислите частоту этой волны.
  2. Изображение с названием Calculate Frequency Step 13

    2

    Умножьте Пи на два.

    • Пример: 2 * π = 2 * 3,14 = 6,28
  3. Изображение с названием Calculate Frequency Step 14

    3

    Разделите угловую частоту (в радианах в секунду) на удвоенное число пи (6,28).[9]

    • Пример: f = ω / (2π) = 7,17 / (2 * 3,14) = 7,17 / 6,28 = 1,14
  4. Изображение с названием Calculate Frequency Step 15

    4

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример: частота волны равна 1,14 Гц.

    Реклама

Что вам понадобится

  • Калькулятор
  • Карандаш
  • Бумага

Об этой статье

Эту страницу просматривали 113 794 раза.

Была ли эта статья полезной?


Download Article


Download Article

Frequency, also called wave frequency, is a measurement of the total number of vibrations or oscillations made within a certain amount of time. There are a few different ways to calculate frequency based on the information you have available to you. Keep reading to learn some of the most common and useful versions.

  1. Image titled Calculate Frequency Step 1

    1

    Learn the formula. The formula for frequency, when given wavelength and the velocity of the wave, is written as: f = V / λ[1]

    • In this formula, f represents frequency, V represents the velocity of the wave, and λ represents the wavelength of the wave.
    • Example: A certain sound wave traveling in the air has a wavelength of 322 nm when the velocity of sound is 320 m/s. What is the frequency of this sound wave?
  2. Image titled Calculate Frequency Step 2

    2

    Convert the wavelength into meters, if necessary. If the wavelength is given in nanometers, you need to convert this value into meters by dividing it by the number of nanometers in a single meter.[2]

    • Note that when working with extremely small numbers or extremely large numbers, it is generally easier to write the values in scientific notation. The values will be shown in and out of their scientific notation forms for this example, but when writing your answer for homework, other schoolwork, or other formal forums, you should stick with scientific notation.
    • Example: λ = 322 nm
      • 322 nm x (1 m / 10^9 nm) = 3.22 x 10^-7 m = 0.000000322 m

    Advertisement

  3. Image titled Calculate Frequency Step 3

    3

    Divide the velocity by the wavelength. Divide the velocity of the wave, V, by the wavelength converted into meters, λ, in order to find the frequency, f.[3]

    • Example: f = V / λ = 320 / 0.000000322 = 993788819.88 = 9.94 x 10^8
  4. Image titled Calculate Frequency Step 4

    4

    Write your answer. After completing the previous step, you will have completed your calculation for the frequency of the wave. Write your answer in Hertz, Hz, which is the unit for frequency.

    • Example: The frequency of this wave is 9.94 x 10^8 Hz.
  5. Advertisement

  1. Image titled Calculate Frequency Step 5

    1

    Learn the formula. The formula for the frequency of a wave in a vacuum is almost identical to that of a wave not in a vacuum. Since there are no outside influences on the velocity of the wave, though, you would use the mathematical constant for the speed of light, which electromagnetic waves would travel at under these conditions. As such, the formula is written as: f = C / λ[4]

    • In this formula, f represents frequency, C represents the velocity or speed of light, and λ represents the wavelength of the wave.
    • Example: A particular wave of electromagnetic radiation has a wavelength of 573 nm when passing through a vacuum. What is the frequency of this electromagnetic wave?
  2. Image titled Calculate Frequency Step 6

    2

    Convert the wavelength into meters, if necessary. When the problem gives you the wavelength in meters, no further action is needed. If, however, the wavelength is given in micrometers, you need to convert this value into meters by dividing it by the number of micrometers in a single meter.

    • Note that when working with extremely small numbers or extremely large numbers, it is generally easier to write the values in scientific notation. The values will be shown in and out of their scientific notation forms for this example, but when writing your answer for homework, other schoolwork, or other formal forums, you should stick with scientific notation.
    • Example: λ = 573 nm
      • 573 nm x (1 m / 10^9 nm) = 5.73 x 10^-7 m = 0.000000573
  3. Image titled Calculate Frequency Step 7

    3

    Divide the speed of light by the wavelength. The speed of light is a constant, so even if the problem does not provide you with a value, the value remains 3.00 x 10^8 m/s. Divide this value by the wavelength converted into meters.[5]

    • Example: f = C / λ = 3.00 x 10^8 / 5.73 x 10^-7 = 5.24 x 10^14
  4. Image titled Calculate Frequency Step 8

    4

    Write your answer. With this, you should have calculated the value of the frequency of the wave. Write your answer in Hertz, Hz, the unit for frequency.

    • Example: The frequency of this wave is 5.24 x 10^14 Hz.
  5. Advertisement

  1. Image titled Calculate Frequency Step 9

    1

    Learn the formula. Frequency and the time taken to finish a single wave oscillation are inversely proportional. As such, the formula for calculating frequency when given the time taken to complete a wave cycle is written as: f = 1 / T

    • In this formula, f represents frequency and T represents the time period or amount of time required to complete a single wave oscillation.
    • Example A: The time for a certain wave to complete a single oscillation is 0.32 seconds. What is the frequency of this wave?
    • Example B: In 0.57 seconds, a certain wave can complete 15 oscillations. What is the frequency of this wave?
  2. Image titled Calculate Frequency Step 10

    2

    Divide the number of oscillations by the time period. Usually, you will be told how long it takes to complete a single oscillation, in which case, you would just divide the number 1 by the time period, T. If given a time period for numerous oscillations, however, you will need to divide the number of oscillations by the overall time period required to complete them.[6]

    • Example A: f = 1 / T = 1 / 0.32 = 3.125
    • Example B: f = 1 / T = 15 / 0.57 = 26.316
  3. Image titled Calculate Frequency Step 11

    3

    Write your answer. This calculation should tell you the frequency of the wave. Write your answer in Hertz, Hz, the unit for frequency.

    • Example A: The frequency of this wave is 3.125 Hz.
    • Example B: The frequency of this wave is 26.316 Hz.
  4. Advertisement

  1. Image titled Calculate Frequency Step 12

    1

    Learn the formula. When told the angular frequency of a wave but not the standard frequency of that same wave, the formula to calculate the standard frequency is written as: f = ω / (2π)[7]

    • In this formula, f represents the frequency of the wave and ω represents the angular frequency. As with any mathematical problem, π stands for pi, a mathematical constant.
    • Example: A particular wave rotates with an angular frequency of 7.17 radians per second. What is the frequency of that wave?
  2. Image titled Calculate Frequency Step 13

    2

    Multiply pi by two. In order to find the denominator of the equation, you need to double the value of pi, 3.14.

    • Example: 2 * π = 2 * 3.14 = 6.28
  3. Image titled Calculate Frequency Step 14

    3

    Divide the angular frequency by the double of pi. Divide the angular frequency of the wave, given in radians per second, by 6.28, the doubled value of pi.[8]

    • Example: f = ω / (2π) = 7.17 / (2 * 3.14) = 7.17 / 6.28 = 1.14
  4. Image titled Calculate Frequency Step 15

    4

    Write your answer. This final bit of calculation should indicate what the frequency of the wave is. Write your answer in Hertz, Hz, the unit for frequency.

    • Example: The frequency of this wave is 1.14 Hz.
  5. Advertisement

Add New Question

  • Question

    What is the frequency if 80 oscillations are completed in 1 second?

    Community Answer

    Frequency is the number of oscillations completed in a second. The answer would be 80 Hertz.

  • Question

    Do atoms have a frequency and, if so, does it mean everything vibrates?

    Donagan

    Atoms have energy. Energy is often characterized as vibration. Vibration possesses frequency. So, yes, everything could be thought of as vibrating at the atomic level.

  • Question

    What’s the definition of frequency?

    Community Answer

    The rate at which a vibration occurs that constitutes a wave, either in a material (as in sound waves), or in an electromagnetic field (as in radio waves and light), usually measured per second. The rate at which something occurs or is repeated over a particular period of time or in a given sample.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Thanks for submitting a tip for review!

Things You’ll Need

  • Calculator
  • Pencil
  • Paper

References

About This Article

Article SummaryX

To calculate the frequency of a wave, divide the velocity of the wave by the wavelength. Write your answer in Hertz, or Hz, which is the unit for frequency. If you need to calculate the frequency from the time it takes to complete a wave cycle, or T, the frequency will be the inverse of the time, or 1 divided by T. Display this answer in Hertz as well. Keep reading to learn how to calculate frequency from angular frequency!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,511,586 times.

Did this article help you?

Как вычислить частоту

Частота – физическая величина, отражающая число колебаний в механическом, электромагнитном или ином процессе. Помимо обычной линейной частоты, рассматривают циклическую (угловую) частоту при вращении тел. Нахождение данных величин в различных задачах осуществляется с использованием известных формул, соотношений параметров тел и показателей их движения.

Как вычислить частоту

Инструкция

В начале решения любой задачи приведите все известные величины к единицам, принятым в системе СИ. Линейная частота измеряется в герцах (Гц), циклическая – в радианах за одну секунду.

При решении задачи на распространение волн с известной длиной и скоростью колебаний вычислите их частоту по формуле: F=v/λ, где λ – длина волны (м), v – скорость распространения колебаний в среде (м/с). Если в задаче задан лишь период T (с) совершаемых телом колебаний, частота находится из соотношения: F=1/T (Гц).

Чтобы узнать линейную частоту колебаний F через заданную циклическую в момент вращения тела, используйте следующее выражение: F=ω/(2*π), где ω – циклическая частота (рад/с), π – константа, примерно равная 3,14. Отсюда можно вывести и обратную формулу нахождения циклической частоты по заданному значению линейной: ω=2*π*F.

Допустим задана колебательная система, состоящая из подвешенного груза известной массы M (м) и пружины с определенной жесткостью k (Н/м). Вычислите частоту колебаний груза F, проведя следующие действия. Найдите период колебаний по формуле T=2*π √(M/k), подставьте известные значения и высчитайте период в секундах. По выше приведенной формуле определите частоту колебаний подвешенного тела: F=1/T (Гц).

При решении задач из раздела электродинамики рассматривается электромагнитный колебательный контур. Пусть он состоит из пары параллельно соединенных конденсаторов емкостью С (Ф) и катушки индуктивности L (Гн). Вычислить частоту собственных колебаний можно по формуле: ω = 1/√(L*C) (рад/c).

Если значение силы тока I (А) задано следующим уравнением i = 0,28*sin70*π*t (t – выражено в секундах) и при этом требуется вычислить циклическую ω и линейную частоту F колебаний, выполните следующие действия. В общем виде уравнение синусоидального тока выглядит так: i = Im*sin(ωt+φ0). Следовательно в данном случае известно, что амплитуда колебаний Im = 0,28 А, начальная фаза φ0 равна нулю, угловая (циклическая) частота ω = 70*π рад/c, так как она является в заданном уравнении коэффициентом при t. Отсюда вычислите линейную частоту F = ω/(2*π) = 70*π/(2*π) = 35 Гц.

Видео по теме

Источники:

  • линейная частота

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Обновлено: 22.05.2023

Скорость волны зависит от строения вещества и взаимодействия между её молекулами (атомами). Поэтому в различных средах скорость одной и той же волны будет отличаться.

Длина волны — расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Используется модель, в которой частицы среды заменяют шариками. Для удобства их можно пронумеровать (рис. (1)).

Частицы среды связаны между собой межмолекулярными силами взаимодействия, поэтому волна передаётся от одной частицы к другой.

Отклоним первый шарик от положения равновесия. Силы притяжения передадут движение второму, третьему шарику. Каждый элемент вещества (молекула, атом) повторит движение первой частицы с запаздыванием, которые называют сдвигом фазы. Это запаздывание зависит от расстояния, на котором находится рассматриваемый шарик по отношению к первому шарику.

Предположим, что первый шарик достиг максимального смещения от положения равновесия (рис. (2)). В этот момент четвёртый шарик только начнет движение, следовательно, он отстаёт от первого на (1/4) колебания.

2.jpg

В момент времени, когда смещение четвертого шарика будет наибольшим (рис. (3)), седьмой шарик будет отставать от него на (1/4) колебания. А если рассмотреть отставание седьмого шарика от первого, то оно составляет (1/2) колебания.

3.jpg

4.jpg

Первый и тринадцатый шарик совершают одно колебание, то есть двигаются в одной фазе (рис. (5)). Это значит, что между ними все шарики с первого по двенадцатый проходят полный колебательный процесс или составляют одну волну.

Длина волны – это расстояние между двумя последовательными пиками (гребнями) или впадинами. Самое высокое положение волны называется пиком. Самое нижнее положение волны называется впадиной.

Цикл – это полное колебание, например, кривая между двумя гребнями или двумя впадинами. Максимальное расстояние волны от равновесного положения называется амплитудой.

На рисунке показаны основные параметры волны, используемые в физике:

Параметры волны

Определение и формула длины волн

Волна – это возмущение, распространяющееся от точки, в которой она возникла, в окружающую среду. Такое возмущение переносит энергию без чистого переноса вещества.

Механические волны

Длина представляет собой фактическое расстояние, пройденное волной, которое не всегда совпадает с расстоянием среды, или частиц, в которых распространяется волна. Ее также определяют как пространственный период волнового процесса.

Греческая буква “λ” (лямбда) в физике используется для обозначения длины в уравнениях. Она обратно пропорциональна частоте волны.

Длина волны

Период Т — время завершения полного колебания, единица измерения секунды (с).

Длинная волна соответствует низкой частоте, а короткая – высокой. Длина измеряется в метрах. Количество волн, излучаемых в каждую секунду, называется частотой и обратно пропорционально периоду.

702

У различных длин разная скорость распространения. Например, скорость света в воде равна 3/4 от скорости в вакууме.

Частота волны

Частота f — количество полных колебаний в единицу времени. Измеряется в Герцах (Гц).

При одном полном колебании в секунду f = 1 Гц; при 1000 колебаний в секунду f = 1 килогерц (кГц); 1 млн. колебаний в секунду f = 1 мегагерц (1 МГц).

Зная, что скорость света в вакууме с — 300 000 км/с, или 300 000 000 м/с, то для перевода длины волны в частоту нужно 3 х 10 8 м/с поделить на длину в метрах.

Единицы измерения длины волны λ – нанометры и ангстремы, где нанометр является миллиардной частью метра (1 м = 109 нм) и ангстрем является десятимиллиардной частью метра (1 м = 1010 А), то есть нанометр эквивалентен 10 ангстрем (1 нм = 10 А).

Оптический спектр

Свет, который исходит от Солнца, является электромагнитным излучением, которое движется со скоростью 300 000 км/с, но длина не одинакова для любого фотона, а колеблется между 400 нм и 700 нм. Длина световой волны влияет на цвет.

Белый свет разлагается на спектр различных цветных полос, каждая из которых определяется своей длиной волны. Таким образом, светом с наименьшей длиной является фиолетовый, который составляет около 400 нм, а светом с наибольшей длиной – красный, который составляет около 700 нм.

Таблица показывает длину волны в зависимости от цвета:

Длина и цвет волны

Излучения с длиной меньше фиолетового называются ультрафиолетовым излучением, рентгеновским и гамма-лучами в порядке уменьшения. Излучения больше красного называются инфракрасными, микроволнами и радиоволнами, в порядке возрастания.

Предельная дальность связи зависит от длины. Размеры антенны часто превышают рабочую длину радиоэлектронного средства.

Рисунок показывает длину волн и частоту (нм), исходящих от различных источников:

Длина волн

Примеры расчета длины волны для звуковых, электромагнитных и радиоволн

Задача №1

Скорость звука в воде 1450 м/с. На каком расстоянии находятся ближайшие точки, совершающие колебания в противоположных фазах, если частота колебаний равна 725 Гц?

707

Задача №2

Мимо неподвижного наблюдателя, стоящего на берегу озера, за 6 с. прошло 4 гребня волны. Расстояние между первым и третьим гребнями равно 12 м. Определить период колебания частиц волны, скорость распространения и длину волны.

708

Задача №3

Голосовые связки певца, поющего тенором (высоким мужским голосом), колеблются с частотой от 130 до 520 Гц. Определите максимальную и минимальную длину излучаемой звуковой волны в воздухе. Скорость звука в воздухе 330 м/с.

Буквой λ (лямбда) обозначается длина волны того или иного излучения. Эту величину можно измерить, можно рассчитать теоретически, а если излучение является видимым, то даже определить на глаз.

Как найти лямбду

Чтобы рассчитать длину волны излучения, зная частоту и скорость распространения этого излучения, поделите вторую величину на первую. Если же вместо частоты известен период, умножьте его на скорость распространения излучения. Наконец, если известна циклическая частота излучения, умножьте скорость на 2π, а затем результат поделите на циклическую частоту.
Чтобы результат получился в системе СИ, предварительно переведите в нее же все величины из условия задачи. Затем переведите результат обратно в удобные для вас единицы.

Если излучение является световым, длину его волны в вакууме определите на глаз: красный – от 635 до 690 нм, оранжевый – 590, желтый – от 570 до 580, зеленый – от 510 до 520, синий – от 440 до 480, фиолетовый – от 380 до 400.

Имея специальный прибор – спектрометр, определить длину волны света можно точнее, чем на глаз. Если он является полихроматическим, определить его спектральный состав можно только с помощью этого прибора Для этого направьте световой поток во входное окно прибора. Он пройдет через щель, перпендикулярную призме, а затем и через саму призму, а затем попадет либо на шкалу, либо на линейку датчиков. Во втором случае, обработку результата измерения осуществит электронный блок прибора.

Для нахождения длины волны излучения дециметрового или сантиметрового диапазона подключите антенну к волномеру, после чего начните плавно менять ее размер. Когда он станет равен половине длины волны, показания волномера окажутся максимальными.

Направьте тонкий луч света строго перпендикулярно дифракционной решетке. На экране появится ряд пятен. Измерьте угол между воображаемой линией, продолжающей ход луча после решетки, линией, соединяющей точку входа луча в решетку с первым из пятен. Найдите синус этого угла, а затем умножьте на расстояние между двумя соседними линиями решетки. Получится длина волны, которая будет выражена в тех же единицах, что и расстояние между линиями.

Морские волны — далеко не все примеры волн. И длина волны — это не серферская характеристика, а вполне себе физическая величина. Сегодня разберемся, что такое волна и как ее охарактеризовать.

О чем эта статья:

Волна: продольная и поперечная

Начнем с того, что волна — это распространение колебания в пространстве.

Волны бывают механическими и электромагнитными.

Механические волны — это те волны, колебания которых можно почувствовать физически, потому что они распространяются в упругой среде.

  • Например, звук. Когда звук распространяется внутри какого-либо вещества, мы можем ощутить его прикосновением.

Представьте, что вы стоите на железнодорожных путях. Нет, вы не Анна Каренина, вы — экспериментатор.

Если к вам приближается поезд, вы рано или поздно его услышите. Вернее, услышите, как только звуковая волна со скоростью 𝑣 = 330 м/с достигнет ваших ушей.

Если приложить ухо к рельсу, то это произойдет значительно быстрее, потому что скорость звука в твердом теле больше, чем в воздухе. Кстати, под водой скорость звука больше, чем в воздухе, но меньше, чем в твердых телах.

Если вы когда-нибудь трогали музыкальную колонку, то знаете, что звук чувствуется и на ощупь.

Электромагнитные волны — это те волны, которые мы потрогать не можем.

Для них работают все те же самые законы, просто их скорость значительно больше и равна скорости света c = 3 · 10 8 м/с. И источники у них разные.

Волны также принято делить на продольные и поперечные:

продольные и поперечные волны

Продольные — это те волны, у которых колебание происходит вдоль направления распространения волны.

  • Дрожание окон во время грома или сейсмические волны (землетрясения) — это пример продольных волн.

Поперечные — волны, у которых колебание происходит поперек направления распространения волны.

  • Представьте, что вы запустили волну из людей на стадионе — она будет поперечной.
  • Видимый свет и дрожание гитарной струны — тоже поперечные волны.

На самом деле в ней есть и продольная, и поперечная составляющие, поэтому ее нельзя отнести к конкретному типу.

Длина волны: определение и расчет

Конечно, у любой волны есть характеристики. Одна из таких характеристик — это длина волны.

Еще длиной волны можно назвать расстояние, пройденное волной, за один период колебания.

Период — это время, за которое происходит одно колебание. То есть, если дано время распространения волны и количество колебаний, можно рассчитать период.

Формула периода колебания волны

T = t/N

N — количество колебаний [—]

Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.

Связь со скоростью

Чтобы вывести формулу скорости через длину волны, нужно вспомнить формулу скорости из кинематики — это раздел физики, в котором изучается движение тел без учета внешнего воздействия).

Формула скорости

𝑣 = S/t

Переходя к волнам, можно провести следующие аналогии:

А для скорости даже аналогия не нужна — скорость и в Африке скорость.

Формула скорости волны

𝑣 = λ/T

λ — длина волны [м]

Задачка

Лодка совершает колебания на волнах. За 40 с она совершила 10 колебаний. Какова скорость распространения волны, если расстояние между соседними гребнями волны равно 1 м?

Решение:



    Возьмем формулу скорости:

Резонанс

Если громко говорить в одном помещении с гитарой — можно услышать, как на ней начал играть призрак. На самом деле частота струны совпала с частотой голоса и возник резонанс.

На графике ниже можно увидеть, что на некоторой частоте резко увеличивается амплитуда. Эта частота называется частотой резонанса.

частота резонанса

Частота — это величина, обратная периоду. Она показывает, за какое время происходит одно колебание.

Формула частоты

ν = N/t

N — количество колебаний [—]

В мире существует очень много историй про то, как солдаты шли в ногу по мосту, он впал в резонанс и все провалились. А вот еще одна история про гидрологов — как говорится, из первых уст🙂

Команда гидрологов — специалистов по внутренним водам — работала на Алтае и изучала местную реку. Через реку был протянут веревочный мост, а по центру моста стояла лебедка, которая помогает поднять пробу воды из речки, не спускаясь до нее.

В один из дней экспедиции начался сильный, почти штормовой, ветер. Исследователи работали на мосту, а когда поняли, что находиться на веревочной конструкции в такой сильный ветер небезопасно, начали с него уходить. Как только последний человек из команды сделал шаг с моста на землю, мост вместе с лебедкой разнесло в щепки. Это произошло из-за того, что частота ветра совпала с собственной частотой раскачивающегося моста. Хорошо, что история закончилась именно так.

Любая волна распространяется с некоторой скоростью. Под скоростью волны понимают ско­рость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с.

Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

Длина и скорость волны

,

где v — скорость волны, Т — период колебаний в волне, λ (греческая буква лямбда) — длина волны.

Длина и скорость волны

Формула выражает связь длины волны с ее скоростью и периодом. Учитывая, что пери­од колебаний в волне обратно пропорционален частоте v, т. е. Т = 1/v, можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

Длина и скорость волны

,

Длина и скорость волны

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.

Длина волны — это пространственный период волны. На графике волны (рис. выше) длина волны определяется как расстояние между двумя ближайшими точками гармонической бегущей волны, находящимися в одинаковой фазе колебаний. Это как бы мгновенные фотогра­фии волн в колеблющейся упругой среде в моменты времени t и t + Δt. Ось х совпадает с направле­нием распространения волны, на оси ординат отложены смещения s колеблющихся частиц среды.

Частота колебаний в волне совпадает с частотой колебаний источника, т. к. колебания час­тиц в среде являются вынужденными и не зависят от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

Читайте также:

      

  • Газель некст номер двигателя где находится номер
  •   

  • Как разобрать двигатель ваз 2115 инжектор
  •   

  • Как заводить машину на механике для начинающих с нуля ваз 2107
  •   

  • Geely vision 2008 где находится эбу
  •   

  • Как разобрать дворники шкода октавия

Длина волны – это расстояние между двумя последовательными пиками (гребнями) или впадинами. Самое высокое положение волны называется пиком. Самое нижнее положение волны называется впадиной. 

Цикл – это полное колебание, например, кривая между двумя гребнями или двумя впадинами. Максимальное расстояние волны от равновесного положения называется амплитудой.

На рисунке показаны основные параметры волны, используемые в физике:

Параметры волны

Определение и формула длины волн

Волна – это возмущение, распространяющееся от точки, в которой она возникла, в окружающую среду. Такое возмущение переносит энергию без чистого переноса вещества. 

Механические волны

Длина представляет собой фактическое расстояние, пройденное волной, которое не всегда совпадает с расстоянием среды, или частиц, в которых распространяется волна. Ее также определяют как пространственный период волнового процесса.

Греческая буква “λ” (лямбда) в физике используется для обозначения длины в уравнениях. Она обратно пропорциональна частоте волны.

Длина волны

Период Т — время завершения полного колебания, единица измерения секунды (с).

Длинная волна соответствует низкой частоте, а короткая – высокой. Длина измеряется в метрах. Количество волн, излучаемых в каждую секунду, называется частотой и обратно пропорционально периоду.

702

У различных длин разная скорость распространения. Например, скорость света в воде равна 3/4 от скорости в вакууме.

Пространственный период волны – это расстояние, которое точка с постоянной фазой «пролетает» за интервал времени, соответствующий периоду колебаний.

Частота волны

Частота f — количество полных колебаний в единицу времени. Измеряется в Герцах (Гц).

При одном полном колебании в секунду f = 1 Гц; при 1000 колебаний в секунду f = 1 килогерц (кГц); 1 млн. колебаний в секунду f = 1 мегагерц (1 МГц).

Зная, что скорость света в вакууме с — 300 000 км/с, или 300 000 000 м/с, то для перевода длины волны в частоту нужно 3 х 108 м/с поделить на длину в метрах.

Единицы измерения длины волны λ – нанометры и ангстремы, где нанометр является миллиардной частью метра (1 м = 109 нм) и ангстрем является десятимиллиардной частью метра (1 м = 1010 А), то есть нанометр эквивалентен 10 ангстрем (1 нм = 10 А).

Оптический спектр

Свет, который исходит от Солнца, является электромагнитным излучением, которое движется со скоростью 300 000 км/с, но длина не одинакова для любого фотона, а колеблется между 400 нм и 700 нм. Длина световой волны влияет на цвет.

Белый свет разлагается на спектр различных цветных полос, каждая из которых определяется своей длиной волны. Таким образом, светом с наименьшей длиной является фиолетовый, который составляет около 400 нм, а светом с наибольшей длиной – красный, который составляет около 700 нм.

Таблица показывает длину волны в зависимости от цвета:

Длина и цвет волны

Излучения с длиной меньше фиолетового называются ультрафиолетовым излучением, рентгеновским и гамма-лучами в порядке уменьшения. Излучения больше красного называются инфракрасными, микроволнами и радиоволнами, в порядке возрастания. 

Предельная дальность связи зависит от длины. Размеры антенны часто превышают рабочую длину радиоэлектронного средства.

Рисунок показывает длину волн и частоту (нм), исходящих от различных источников:

Длина волн

Примеры расчета длины волны для звуковых, электромагнитных и радиоволн

Задача №1

Скорость звука в воде 1450 м/с. На каком расстоянии находятся ближайшие точки, совершающие колебания в противоположных фазах, если частота колебаний равна 725 Гц?

707

Задача №2

Мимо неподвижного наблюдателя, стоящего на берегу озера, за 6 с. прошло 4 гребня волны. Расстояние между первым и третьим гребнями равно 12 м. Определить период колебания частиц волны, скорость распространения и длину волны.

708

Задача №3

Голосовые связки певца, поющего тенором (высоким мужским голосом), колеблются с частотой от 130 до 520 Гц. Определите максимальную и минимальную длину излучаемой звуковой волны в воздухе. Скорость звука в воздухе 330 м/с.

708

Добавить комментарий