Как найти частоту фотона формулы

Фотон

Фотон — это частица света или квант света; частица с которой можно делать расчёты.

Фотоны всегда находятся в движении и в вакууме движутся с постоянной скоростью 2,998 x 10^8 м/с (это называется скоростью света и обозначается буквой c).

В марте 1905 года Эйнштейн создал квантовую теорию света, это была идея о том, что свет существует в виде крошечных частиц, которые он назвал фотонами.

Позже в том же году была расширена специальная теория относительности, в которой Эйнштейн доказал, что энергия (E) и материя (масса – m) связаны, и это соотношение стало самым знаменитым в физике: E=mc²; (напомним: c — скорость света).

Формулы фотона

Эти формулы являются наиболее важными.

Формула энергии кванта/фотона (формула Планка или Энергия кванта)

Энергия — это постоянная Планка, умноженная на частоту колебаний

Формула энергии кванта/фотона формула Планка или Энергия кванта E=h.v

E = h×v

Где:

  • E — энергия фотона/кванта (в Дж – джоуль),
  • h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
  • ν — частота колебаний света (в Гц – герц).

Масса фотона

Масса фотона формула m = hv/c² = h/cλ

m = hv/c² = h/cλ

Где:

  • m — масса фотона (в кг),
  • h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
  • ν — частота колебаний света (в Гц – герц),
  • c = 3.10^8 (это скорость света в м/с),
  • λ — длина световой волны (в метрах).

Примечание:

Фотоны всегда движутся со скоростью света. В состоянии покоя фотоны не существуют (т.е. можно сказать, что масса покоя равна нулю).

Формула массы фотона (m = h/cλ) была выведена из формулы эквивалентности массы и энергии (E = mc²), при этом было использовано также равенство с энергией Кванта (E = h×v).

Импульс фотона

Импульс фотона формула p=hv/c=h/λ

p = hv/c = h/λ

Где:

  • p — импульс фотона (в Н•с – ньютон-секунда),
  • h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
  • ν — частота колебаний света (в Гц – герц),
  • c = 3.10^8 (это скорость света в м/с),
  • λ — длина световой волны (в метрах).

Длина волны света, период и частота

Это ещё одно соотношение, которое может быть полезным в расчётах.

Длина волны света, период и частота λ = cT = c/v

λ = cT = c/v

Где:

  • λ — длина световой волны (в метрах),
  • c = 3.10^8 (это скорость света в м/с),
  • T — период световых колебаний (в секундах),
  • ν — частота колебаний света (в Гц – герц).

Пример решения задачи с данными формулами

Определите энергию фотонов красного (λк = 0,76 мкм) света.

Известно:

λк = 0,76 мкм = 0,76 × 10^(–6) м

Решение:

Формула энергии фотонов: E = h×v

Где:

h — постоянная Планка,

v — частота света; из равенства λ = c/v выходит, что v = с/λ.

Таким образом, составляем равенство:

E = h × (с/λ) = hc / λ

Вспоминаем другие данные:

c = 3.10^8 (это скорость света в м/с)

h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду)

E = hc / λ = ((6,6.10^(–34) Дж.с) × (3.10^8 м/с)) / (0,76 × 10^(–6) м) = 2,6 × 10^(–19) Дж

Фотон является волной?

Фотон является одновременно частицей и волной. Согласно квантовой теории света Эйнштейна, энергия фотонов (E) равняется их частоте колебаний (v), умноженной на постоянную Планка (h); т.е. эта формула выглядит так: E = h×v.

Так он доказал, что:

  • свет — это поток фотонов,
  • энергия этих фотонов — это высота их частоты колебаний,
  • интенсивность света соответствует количеству фотонов.

Таким образом, учёный объяснил, что поток фотонов действует и как волна, и как частица.

Узнайте также про:

  • Нейтрино
  • Теорию относительности
  • Магнитную индукцию
  • Полимер
  • Теорию струн

Название фотон происходит от греческого слова φῶς, которое означает «свет». Фотон — это элементарная частица, которая несет квант (т.е. одну порцию) энергии электромагнитного излучения. Энергия фотона точно определена и зависит от частоты электромагнитной волны.

Изучение свойств электромагнитных волн на рубеже 19 и 20 веков принесло множество наблюдений, которые не могли быть объяснены на основе волновой теории Максвелла. Среди дилемм физиков того времени был спектр излучения тепловых источников света (например, классической лампочки), явление излучения черного тела, внешний фотоэлектрический эффект, то есть эмиссия электронов из металлов под воздействием падающего электромагнитного излучения. Эти явления невозможно объяснить, рассматривая электромагнитное излучение как волну.

Свет как волна и как пучок фотонов

Рис. 1. Свет как волна и как пучок фотонов

Волновое описание света, утвердившееся в науке того времени и подтвержденное рядом экспериментов и теорий, должно было столкнуться с наблюдениями, показывающими, что свет ведет себя не только как волна, но и как совокупность частиц. Макс Планк, объясняя спектральное распределение излучения черного тела, ввел понятие порции энергии, которую он назвал квантом. Эта концепция была развита Альбертом Эйнштейном, когда он заявил, что, например, электромагнитная волна состоит из частиц (так называемых квантов) света.

Определение.

Фотон ( γ ) — это частица, несущая порцию энергии (квант энергии) электромагнитного излучения. Название было предложено американским физиком-химиком Гилбертом Ньютоном Льюисом. Она должна была описывать фотон как частицу, переносящую энергию излучения. По мнению ученого, фотон должен был поглощаться и испускаться материей.

Фотоны ( γ ) являются элементарными частицами. Они не имеют массы покоя и всегда движутся со скоростью света. Согласно текущему состоянию знаний, квантовая механика предлагает наилучшую модель, объясняющую фотоны. Это справедливо для всех элементарных частиц. Поэтому они демонстрируют дуализм волна-частица. Это означает, что они обладают свойствами волн и частиц.

Что такое фотон?

Свет — это диапазон электромагнитного спектра, который вы можете воспринимать невооруженным глазом. Иногда слово «свет» также используется для описания электромагнитных волн с большей длиной волны, например, инфракрасного света, или с меньшей длиной волны, например, ультрафиолетового света. Этот свет описывается в квантовой физике как поток квантовых объектов. Эти квантовые объекты — фотоны.

Фотоны ( γ ) являются частицами-носителями электромагнитного взаимодействия. Таким образом, они представляют свет, а также все другие электромагнитные волны и переносят электромагнитную силу. Квантовая электродинамика описывает фотон как так называемый бозон, элементарную частицу, свойства которой четко отличают ее от свойств электрона или подобных частиц. В большинстве случаев бозоны всегда являются также частицами-носителями сил, таких как электромагнитные, сильные и слабые силы.

Квантовая электродинамика — это область квантовой механики, которая адаптирует классическую электродинамику к современной квантовой механике. Одно из его важнейших свойств — отсутствие массы. Более того, его энергия, а также импульс пропорциональны его частоте.

Свойства фотона

Фотоны — это безмассовые, электрически нейтральные и стабильные элементарные частицы. Фотон является частицей-носителем электромагнитного взаимодействия и не подчиняется принципу Паули.

Электрический заряд 0, нейтральный
Масса покоя 0 кг
Спин 1
Взаимодействие электромагнитный
гравитация
Скорость движения Скорость света c = 299 792 458 м / с

Масса и скорость фотонов

Согласно современному уровню знаний, фотон должен быть безмассовым. Если бы у него была масса, фотоны не двигались бы со скоростью света (c). Это означало бы, что скорость света перестала бы быть скоростью света, а стала бы теоретическим пределом скорости, которую объект может достичь в пространстве-времени. Кроме того, скорость фотона будет зависеть от его частоты, и многие законы природы, такие как закон Кулона, получат дополнительные факторы. Тогда многие современные устройства будут работать по-другому или вообще не будут работать.

Вывод: экспериментально доказано, что фотон не имеет массы.

Скорость света в вакууме является универсальной константой, равной точно = 299 792 458 м/с. Не странно ли, что, в отличие от других констант, здесь нет многочисленных десятичных цифр, которые мы обычно округляем в зависимости от приближения, которого хотим добиться? Точное значение скорости света просто выводится из определения метра, принятого в 1983 году. Согласно этому определению, 1 метр — это расстояние, которое свет проходит в вакууме за 1/299 792 458 с.

В астрономии используется другая единица длины, не входящая в систему СИ, связанная со скоростью света. Это световой год, определяемый как расстояние, проходимое светом за один год. При определении светового года используется юлианский год, продолжительность которого составляет 365,25 дня. Аналогично можно использовать такие единицы измерения длины, как световая секунда, световая минута и т.д.

Скорость фотонов в вакууме не зависит от частоты электромагнитного излучения. Она одинакова для всех диапазонов излучения — от гамма-излучения до радиоволн. Одним из доказательств является наблюдение за вспышками звезд. Радиоволны и свет, излучаемые во время вспышки звезды, достигают Земли одновременно. Их скорость равна в пределах 10-7.

Фотон в вакууме всегда движется с постоянной скоростью для каждого наблюдателя. Если объект, движущийся со скоростью v = 0,9c, испускает фотон в направлении, совпадающем с направлением его скорости (см. рисунок 2), то фотон будет удаляться от него со скоростью света c. Но для неподвижного наблюдателя скорость фотона также будет равна скорости света с.

Этот факт, не согласующийся с нашим повседневным опытом, является фундаментальным предположением специальной теории относительности Альберта Эйнштейна. Почему это кажется нам странным и противоречит нашему опыту? Просто в повседневной жизни мы не сталкиваемся со скоростями, сравнимыми со скоростью света. Такие скорости достижимы для тел с очень малой массой. Эксперименты с частицами, такими как электроны, протоны или атомные ядра, ускоренные в ускорителях до скоростей, близких к скорости света, подтверждают постоянство скорости света в любой системе отсчета.

Фотон посланный ракетой

Рис. 2. Фотон, испущенный ракетой, летящей со скоростью v = 0,9c, движется со скоростью c, как относительно ракеты, так и относительно неподвижного наблюдателя

Энергия фотона

Фотоны движутся в вакууме со скоростью света c. Поэтому для определения его энергии нужна теория относительности. Это следует из релятивистской взаимосвязи между массой, энергией и импульсом.

E2 = p2 * c2 + m2 * c4

В этой формуле E означает энергию, p — импульс, m — массу, а c — скорость света. Если задать m = 0, то получится следующая взаимосвязь между импульсом и энергией E = p * c.

Поскольку фотон является квантом, то можно выразить его скорость и, следовательно, импульс через его частоту или длину волны. Это дает вам взаимосвязь между частотой и энергией: E = ħ * ω = h * f = h * c / λ .

В этой формуле f — частота фотона, ω = 2 * π * f — его угловая частота, h — обычная постоянная Планка, ħ = h / 2 * π — приведённая постоянная Планка и λ — длина волны фотона.

Энергия фотонов

Рис. 3. Фотоны фиолетового света имеют самую высокую энергию, а фотоны красного света — самую низкую. [источник: 彭家杰 [CC BY 2.5], через Wikimedia Commons].

Постоянная Планка, входящая в формулу, является физической константой, характерной для микромира. В соответствии с решением Генеральной конференции по мерам и весам (CGPM) от 16 ноября 2018 года, её величина определяется точно, т.е. без погрешности, и составляет: h = 6,62607015⋅10−34 кг·м2·с−1 (Дж·с).

Единицей энергии фотона является джоуль (Дж), но очень часто используется альтернативная единица — электронвольт (эВ). Один электрон-вольт — это энергия, полученная электроном, ускоренным напряжением в 1 вольт (В). Для перевода 1 эВ в джоули достаточно умножить величину элементарного заряда e, т.е. 1,602 * 10-19 Кл, на один вольт, то есть 1 эВ = 1,602 * 10-19 Дж.

Поэтому постоянная Планка может быть выражена в эВ. Она составляет 4,135 667 669 …. * 10-15 эВ * с (для расчётов часто используют округленное значение h = 4,14 * 10-15 эВ * с ).

Насколько велика энергия фотона? Определим, например, энергию фотонов, испускаемых гелий-неоновой лазерной указкой с длиной волны 633 нм.

E = 6,62607015⋅10−34 * 3 * 108 / 633*10-9 ≈ 3,14 * 10-19 Дж .

Это значение можно хранить в гораздо более удобной форме в электронвольтах: E = 3,14 * 10-19 / 1,602 * 10-19 ≈ 1,96 эВ .

Типичные энергии в макромире — например, кинетическая энергия мяча, брошенного с высоты 1 м, непосредственно перед ударом об асфальт — порядка 1 Дж, то есть порядка 1019 эВ. Энергии фотонов значительно меньше. Давайте сравним 1 Дж с энергией процесса, характерного для микромира, например, с энергией, выделяемой при полном сгорании одной молекулы метана в кислороде. Энергия сгорания метана составляет 891,6 кДж/моль, что после деления на постоянную Авогадра, составляет: E = ( 891,6 кДж/моль ) /  ( 6,02214076⋅1023 моль−1 ) = 14,8 * 10-19 Дж = 9,2 эВ .

Полученное значение, как видно, того же порядка, что и энергия фотона, испускаемого гелий-неоновым лазером.

Следует помнить, что энергия фотонов зависит от частоты электромагнитного излучения, которая может принимать значения от единиц кГц для радиоволн до порядка 1024 Гц для гамма-излучения. Поэтому энергия фотонов может составлять от 10-12 эВ до 109 эВ.

Фотоны, принадлежащие к различным областям электромагнитного спектра, имеют энергию, отличающуюся друг от друга даже на несколько порядков.

Импульс фотона

Как уже упоминалось, теория относительности связывает импульс с энергией. Это важно для фотона, поскольку он движется со скоростью света, т.е. релятивистски.

Зная, что E = h * c / λ , и p = ħ * k , где k = 2 * π / λ — угловое волновое число, в итоге получаем: p = ħ * k = h * f / c = h / λ .

Возникновение фотона

Фотоны создаются различными способами. Наиболее распространенным способом наблюдения генерации фотонов является переход электронов в другие энергетические состояния. Это происходит, например, когда электрон в электронной оболочке атома переходит на более высокий уровень. Этот уровень нестабилен, и электрон через некоторое время возвращается обратно в исходное состояние.

Однако, на высоком уровне было больше энергии, чем на исходном. Эта избыточная энергия излучается в виде фотона. Но фотоны также могут испускаться в виде гамма-излучения во время ядерных переходов или реакций аннигиляции в частицах-античастицах. С помощью правильных измерительных приборов можно обнаружить присутствие таких фотонов.

Запутанные фотоны

Фотоны могут быть запутаны относительно их поляризации или направления полета. Поляризация дает вам информацию о направлении колебаний электромагнитной волны. Это означает, что если вы измеряете поляризацию одной из этих частиц, вы знаете поляризацию другой.

В случае направленного излучения, т.е. излучения, возникающего при встрече античастиц и частиц, образуются запутанные фотоны. Эти два фотона запутаны в своем направлении и поляризации. В медицине это свойство используется в позитронно-эмиссионной томографии (ПЭТ).

Применение фотонов

Фотоны используются во многих областях. Одним из самых распространенных и наиболее важных применений является лазер.

Одиночные фотоны могут быть обнаружены различными методами. Одним из старейших методов является использование фотоумножителя. При этом используется фотоэлектрический эффект. Фотон с достаточной энергией попадает на металлическую пластину. Там он выбивает электрон из связи, что запускает каскадный эффект.

Фотонный фотоэффект

Рис. 4. Внешний фотоэффект. В фотоэлектрическом явлении свет проявляет корпускулярную природу — фотон выбивает одиночный электрон из металла.

Список использованной литературы

  1. Кудрявцев П. С. Курс истории физики. — 2-е изд. — М.: Просвещение, 1982. — 448 с.
  2. Физика микромира : маленькая энциклопедия / Гл. ред. Д. В. Ширков. — М.: Советская энциклопедия, 1980. — 528 с. — 50 000 экз.
  3. Генденштейн Лев Элевич, Дик Юрий Иванович, физика 11 класс

Фотон

Фотон — это частица света или квант света; частица с которой можно делать расчёты.

Фотоны всегда находятся в движении и в вакууме движутся с постоянной скоростью 2,998 x 10^8 м/с (это называется скоростью света и обозначается буквой c).

В марте 1905 года Эйнштейн создал квантовую теорию света, это была идея о том, что свет существует в виде крошечных частиц, которые он назвал фотонами.

Позже в том же году была расширена специальная теория относительности, в которой Эйнштейн доказал, что энергия (E) и материя (масса – m) связаны, и это соотношение стало самым знаменитым в физике: E=mc²; (напомним: c — скорость света).

Формулы фотона

Эти формулы являются наиболее важными.

Формула энергии кванта/фотона (формула Планка или Энергия кванта)

Энергия — это постоянная Планка, умноженная на частоту колебаний

Формула энергии кванта/фотона формула Планка или Энергия кванта E=h.v

Где:

  • E — энергия фотона/кванта (в Дж – джоуль),
  • h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
  • ν — частота колебаний света (в Гц – герц).

Масса фотона

Масса фотона формула m = hv/c² = h/cλ

Где:

  • m — масса фотона (в кг),
  • h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
  • ν — частота колебаний света (в Гц – герц),
  • c = 3.10^8 (это скорость света в м/с),
  • λ — длина световой волны (в метрах).

Фотоны всегда движутся со скоростью света. В состоянии покоя фотоны не существуют (т.е. можно сказать, что масса покоя равна нулю).

Формула массы фотона (m = h/cλ) была выведена из формулы эквивалентности массы и энергии (E = mc²), при этом было использовано также равенство с энергией Кванта (E = h×v).

Импульс фотона

Импульс фотона формула p=hv/c=h/λ

Где:

  • p — импульс фотона (в Н•с – ньютон-секунда),
  • h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
  • ν — частота колебаний света (в Гц – герц),
  • c = 3.10^8 (это скорость света в м/с),
  • λ — длина световой волны (в метрах).

Длина волны света, период и частота

Это ещё одно соотношение, которое может быть полезным в расчётах.

Длина волны света, период и частота λ = cT = c/v

Где:

  • λ — длина световой волны (в метрах),
  • c = 3.10^8 (это скорость света в м/с),
  • T — период световых колебаний (в секундах),
  • ν — частота колебаний света (в Гц – герц).

Пример решения задачи с данными формулами

Определите энергию фотонов красного (λк = 0,76 мкм) света.

λк = 0,76 мкм = 0,76 × 10^(–6) м

Формула энергии фотонов: E = h×v

h — постоянная Планка,

v — частота света; из равенства λ = c/v выходит, что v = с/λ.

Таким образом, составляем равенство:

E = h × (с/λ) = hc / λ

Вспоминаем другие данные:

c = 3.10^8 (это скорость света в м/с)

h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду)

E = hc / λ = ((6,6.10^(–34) Дж.с) × (3.10^8 м/с)) / (0,76 × 10^(–6) м) = 2,6 × 10^(–19) Дж

Фотон является волной?

Фотон является одновременно частицей и волной. Согласно квантовой теории света Эйнштейна, энергия фотонов (E) равняется их частоте колебаний (v), умноженной на постоянную Планка (h); т.е. эта формула выглядит так: E = h×v.

Так он доказал, что:

  • свет — это поток фотонов,
  • энергия этих фотонов — это высота их частоты колебаний,
  • интенсивность света соответствует количеству фотонов.

Таким образом, учёный объяснил, что поток фотонов действует и как волна, и как частица.

Видимый свет: свойства, диапазон, спектр, источники

Видимый свет – это видимая часть электромагнитного излучения, т.е. видимое излучение, воспринимаемое сетчаткой человеческого глаза.

Видимый свет – единственный тип электромагнитных волн, известный людям с незапамятных времен, хотя его природа была неизвестна до 1860-х годов. Люди были очарованы оптическими явлениями, такими как радуга, видимая на фотографии. На протяжении веков спорили о том, имеет ли свет конечную скорость или распространяется мгновенно.

Из этой статьи вы узнаете, как стала понятна природа света и почему мы видим мир в цветах.

В 1861 году Джеймс Максвелл опубликовал уравнения, в которых доказал, что электричество и магнетизм являются двумя видами одного и того же явления – электромагнетизма. Уравнения Максвелла не только связно объяснили все электрические и магнитные явления, но и предсказали существование электромагнитных волн, распространяющихся со скоростью света c = 3 * 10 8 м / с. Естественным выводом было предположить, что свет – это электромагнитная волна.

Свойства

Электромагнитная волна характеризуется:

  • частотой ν, которая представляет собой число полных циклов изменения магнитного или электрического поля в секунду, выраженное в герцах (Гц), 1 Гц = 1 с -1 .
  • длиной волны λ, которая является расстоянием между ближайшими точками, где электрическое или магнитное поле находится в одной и той же фазе цикла.

Эти величины связаны между собой: чем выше частота, тем короче длина волны: ν = c / λ , где где c – скорость света.

Диапазон.

Видимый свет охватывает очень узкий диапазон в спектре электромагнитных волн, от 380 до 780 нм. Излучение меньшей длины волны является ультрафиолетовым, а излучение большей длины волны – инфракрасным.

Поэтому мы видим только очень ограниченную часть электромагнитного спектра, для остальной части электромагнитного спектра у нас нет сенсорных клеток, и мы вынуждены прибегать к техническим средствам. Часто информация, которую мы регистрируем с помощью технических средств, таких как инфракрасные камеры, затем “переводится” в цвета, которые мы видим.

Спектр

Человеческий глаз воспринимает свет разной длины волны как впечатление различных цветов (рис. 1).

  • фиолетовый от 380 нм до 436 нм;
  • синий от 436 нм до 495 нм;
  • зеленый от 495 нм до 566 нм;
  • желтый, от 566 нм до 589 нм;
  • оранжевый 589 нм – 627 нм;
  • красный от 627 нм до 780 нм.

Белый свет – это смесь всех цветов. Вы можете увидеть это, разложив свет в призме или посмотрев на радугу, которая возникает в результате дисперсии белого света на капельках воды в облаках.

Как получается, что мы видим мир в красках? Когда белый свет падает на тело, часть излучения поглощается, а часть отражается от его поверхности. Если тело поглощает свет от красного до зеленого и отражает синий и фиолетовый свет, то при рассмотрении в белом свете оно будет иметь оттенок синего или фиолетового, в зависимости от соотношения этих цветов в отраженном свете.

Видимый свет лишь слегка поглощается как атмосферой Земли, так и водой. Эта особенность чрезвычайно важна для жизни на Земле. Ему мы обязаны не только способностью видеть окружающее нас пространство, но и самим происхождением жизни на Земле. Жизнь не могла бы существовать без фотосинтеза, для которого необходим свет.

Свет имеет волновую природу, т.е. он подвержен различным физическим явлениям, характерным для волн, таким как дифракция или интерференция. Но в то же время он имеет корпускулярную природу – он состоит из фотонов, элементарных частиц с нулевым зарядом и массой покоя. Отсутствие массы покоя означает, что фотон не существует в состоянии покоя, он может двигаться только со скоростью света.

Энергия фотона прямо пропорциональна частоте волны и обратно пропорциональна длине электромагнитной волны:

E = h * ν = ( h * c ) / λ, где

где ν – частота волны, λ – длина волны, c = 3 * 10 8 – скорость света, h – постоянная Планка, h = 6,63*10- 34 Дж*с = 4,14*10 -15 эВ·c.

Смешивая вместе красные, синие и зеленые лучи света, можно получить любой цвет. Смешивание света равной интенсивности этих трех цветов дает белый свет (рис. 2). Изменяя пропорцию каждого цвета, можно получить другой цвет. Явление создания новых цветов путем наложения лучей видимого света разной длины называется аддитивным синтезом.

Аддитивный синтез цвета

Рис. 2. Аддитивный синтез цвета

Чувствительность человеческого глаза к цветам обусловлена наличием в сетчатке трех типов фоторецепторов, называемых колбочками. Каждый тип колбочек чувствителен к разным цветам света: красному, зеленому и синему. В зависимости от соотношения этих трех цветов, регистрируемых колбочками, в мозге формируется впечатление о полученном цвете.

Центр области видимого света находится на длине волны около 555 нм, что соответствует желто-зеленому цвету. К свету этого цвета чувствительность глаза наиболее высока. Кривая чувствительности глаза стремится к нулю как на длинноволновой, так и на коротковолновой стороне (рис. 3).

Чувствительность глаз к свету разной длины волны

Рис. 3. Чувствительность глаз к свету разной длины волны

Все современные мониторы, телевизоры, цифровые камеры и подобные устройства работают по принципу аддитивного смешивания цветов. Комбинируя цвета RGB (красный, зеленый, синий) в любом количестве комбинаций, можно получить широкий спектр производных цветов на экране.

Источники.

Источником видимого света может быть пламя свечи, газ в люминесцентной лампе или зажженная лампочка, а также отражающий солнечный свет объект.

Спектр частот света или спектр волн света?

Прежде чем читать и разбираться с этой статьёй, необходимо ознакомиться со статьёй ”Что такое волна?“.
http://samlib.ru/n/nikolaew_s_a/chtotakoewolna.shtml
Эта статья Ссылки находятся внизу в разделе РЕЦЕНЗИИ

А теперь давайте разбираться, что такое частотный спектр света и как в данном вопросе нас специально дурачат? В астрономии от светящегося объекта наблюдатель принимает спектр частот. Вот пример. Солнечный луч света – это множество цветных линий, которые мы наблюдаем как радугу. Каждая тоненькая линия – это монохроматическая частота (одна частота). Каждую монохроматическую частоту приносят частицы фотоны, обладающие этой одной частотой. Вы заметили, что наблюдать можно только линии частот (радуга), а наблюдать длину волны невозможно потому, что её у фотонов просто нет. Фотоны – это частицы, а у частиц волн нет. Частицы могут только совершать колебания. А это не одно и тоже. У фотонов нет также и характеристики длина волны. У фотонов речь может идти только о частотах или спектрах частот.
Необходимо понимать, что эффект зрения основан на частотах, которые переносятся частицами фотонами и которые колеблются, а не волнуются.
Но везде, где речь заходит о частотах света или спектрах частот, то обязательно сразу в качестве единиц измерения применяют единицы длины волны.
Например. Для человека видимый спектр: от 380нм — фиолетовый цвет до 760нм — красный цвет. Вне этого диапазона наше зрение не видит. Но задумайтесь, ведь глаза видят частоты в виде монохроматических частот, либо смеси частот в виде спектра. А никаких длин волн глаза не видят.
Вот ещё пример. Везде, где графики со спектрами частот, размерность должна быть в Гц. Однако Вас везде обманывают и специально вместо частот всегда пишут размерность длины волны, которой на самом деле у фотонов нет. Например, график солнечного спектра частот, а по оси абсцисс пишут размерность длин волн. Кроме того, одна из главных характеристик солнечного спектра специально называется максимальная длина волны (л) излучения (формула Вина л = b/T) вместо максимальной частоты излучения.
ПРИМЕЧАНИЕ. Назовите прибор, который измеряет длину волны? Таких приборов нет, даже для акустических измерений. В акустике и электромеханике измеряется только частота. Затем все обязаны по акустической формуле V=лv рассчитать длину волны и для акустики и для электромеханики, где V — скорость звука, а л — длина волны. Применение формулы С=лv для излучения, где C — скорость света. Это обман и просто невежественно. Сжимается только акустическая волна V=лv. Фотон – это частица с поперечными колебаниями, и сжать фотон невозможно.
Фотон – частица света. Характеристиками фотонов являются: масса, частота, амплитуда и инерция (энергия).
На рисунке изображена спектральная кривая солнечного излучения. Рисунок взят из справочника. Во всех остальных справочниках и учебниках то же самое. Вы нигде не найдёте рисунок спектра с единицами измерения частоты в Гц, везде по оси абсцисс будут единицы измерения в единицах длины.

Этот обман нужен для того, чтобы подтверждались математические теории Эйнштейна, в которых свет (фотоны) является волной. И, чтобы Вы не забывали, везде Вас обманывают. Где только можно. Везде, где излучение упоминание о частотах будет исключено. Например, микроволновка и так далее.
ПРИМЕЧАНИЕ. На всех графиках, где изображаются частотные спектры, в данном случае, частотный спектр Солнца, по оси абсцисс пишут вместо частот размерность длины волны, которой на самом деле у фотонов нет. Это делается всегда и везде (с 1905 года, года вы-хода в свет СТО Эйнштейна) и специально, чтобы этим подтверждались математические теории Эйнштейна, в которых свет (фотоны) является волной. А свет не волна и пересчитывать всегда частоту в длину волны по акустической формуле С=лv просто обман. Спектр частотный, а не волновой. Спектр частот, но не волн.
Посмотрите на частоты видимого света от 750 ТГц (380нм) до 385 ТГц (760нм). Некоторые видят их впервые потому, что негласно их писать запрещено. Зато в единицах длины все помнят. Как это делается. В утверждённой программе образования можно писать только длины волн и это обязательно для всех. Подумайте, нужна Вам такая утверждённая про-грамма образования?
Не разрешайте себя зомбировать утверждённой программой образования, думайте о том, что Вас заставляют заучивать. Там очень много ошибочного, специально для Вас под-сунутого.
Об ошибках в физике здесь более 100 статей
http://samlib.ru/n/nikolaew_s_a/

Документы по борьбе с инакомыслием в науке.
1. Постановление ЦК ВКП(б) от 25.01.1931г.
Запрещение рассмотрения проблем физических взаимодействий на механической, ма-териалистической основе.
2. Специальное постановление ЦК ВКП(б) от 1934г.
О дискуссии о релятивизме.
Жертвами этого постановления стали Н.А.Козырев и Н.П.Бронштейн.
3. Постановление ЦК ВКП(б) от 05.12.1942г.
4. Постановление Президиума АН от 1964г.
В этом постановлении предписывалось объявлять параноиками всех, кто критикует теории относительности Эйнштейна.
Сразу было выявлено 24 параноика среди учёных.
5. Постановление Президиума РАН от 1998г.
О создании комиссии по борьбе с лженаукой и фальсификации научных исследований во главе с академиком Э.П.Кругляковым.
Комиссия исправно функционирует.
Комиссия не скрывает, что следует принципу: ”Всё, что противоречит теориям Эйнштейна и теории ”Большого Взрыва“, является лженаукой“.
Главные идеологи этого мракобесия С.И.Вавилов, А.Ф.Иоффе, В.Л.Гинзбург.

ДОПОЛНЕНИЕ. Кроме того, частоту собственных колебаний фотонов невозможно экспериментально измерить ни в одном диапазоне.
Во-первых, нет эффектов, позволяющих измерить собственную частоту фотонов (света).
Во-вторых, нет таких частотомеров, которые могли бы измерить, например, собственную частоту фотонов видимого света, которая равна 10 в 15 степени Гц.
Есть только прибор пирометр, который определяет электрическим способом цвет, а да-лее по цвету и выдуманной фальшивой формуле Вина, пожалуйста, Вам и частота.
Все частоты в шкале электромагнитных излучений фальшивые. Например, в радиодиапазоне вместо собственной частоты радиофотонов подсунута частота следования фотонов. Однако это не одно и то же.
Это очень ёмкий вопрос и он изложен в книге С.А.Николаева “Ложь об электромагнит-ной волне и шкале электромагнитных излучений”, СПб, 2014г.
А также в 8 издании книги С.А.Николаева “Эволюционный круговорот материи во Вселенной”, СПб, 2015г.

Фотон в современной физике считается разновидностью элементарных частиц. В частности, он представляет собой квант электромагнитного излучения (квант — неделимая частица чего-либо).

Энергия и импульс фотона

Фотоны обладают определенной энергией и импульсом. Когда свет испускается или поглощается, он ведет себя подобно не волне, а потоку частиц, имеющих энергию Е = hν, которая зависит от частоты. Оказалось, что порция света по своим свойствам напоминает то, что принято называть частицей. Поэтому свойства света, обнаруживаемые при его излучении и поглощении, стали называть корпускулярными. Сама же световая частица была названа фотоном, или квантом электромагнитного излучения.

Как частица, фотон обладает определенной порцией энергии, которая равна . Энергию фотона часто выражают не через частоту v, а через циклическую частоту:ω = 2πν

При этом в формуле для энергии фотона в качестве коэффициента пропорциональности (постоянной Планка) используется другая величина, обозначаемая и равная:

=h2π1,0545726·1034 (Дж·с)

Учитывая это, формула для определения энергии фотона примет вид:

Е=ω

Согласно теории относительности, энергия частиц связана с массой следующим соотношением:

Е=mс2

Так как энергия фотона равна , то, следовательно, его масса m получается равной:

m=hνс2

У фотона нет собственной массы, поскольку он не может существовать в состоянии покоя. Появляясь, он уже имеет скорость света. Поэтому формула выше показывает только массу движущегося фотона.

По известной массе и скорости фотона можно найти его импульс:

p=mc=hνc=hλ

Внимание! Вектор импульса фотона всегда совпадает с направлением распространения луча света.

Чем больше частота ν, тем больше энергия Е и импульс р фотона и тем отчетливее свет проявляет свои корпускулярные свойства. Из-за того что постоянная Планка мала, энергия фотонов видимого излучения крайне незначительна. К примеру, фотоны, свойственные зеленому свету, имеют энергию, равную всего 4∙10–19 Дж. Несмотря на это, человеческий глаз способен различать изменение освещенности, даже если оно измеряется единичными квантами.

Пример №1. Каков импульс фотона, если длина световой волны λ = 5∙10–7 м?

Корпускулярно-волновой дуализм

Законы теплового излучения и фотоэффекта объясняются только при условии, если начать считать свет потоком частиц. Однако нельзя отрицать тот факт, что свету присущи такие явления как интерференция и дифракция света. Но эти явления встречаются только у волновых процессов. Поэтому в современной физике принято считать свет с дуализмом, иначе — двойственностью свойств.

Когда свет распространяется в средах, он проявляет волновые свойства. Когда он начинает взаимодействовать с веществом (поглощаться или излучаться), проявляются корпускулярные свойства (свойства частицы).

Гипотеза де Бройля

Длительное время электромагнитное поле представлялось как материя, которая распределена в пространстве непрерывно. Электроны же представлялись как очень маленькие частицы материи. Не нет ли здесь ошибки, обратной той, которая была допущена при определении света? Может быть, электрон и другие частицы тоже обладают волновыми свойствами. Такую мысль высказал в 1923 г. французский ученый Луи де Бройль.

Он предположил, что с движением частиц связано распространение некоторых волн. И ученому удалось найти длину волны этих волн. Связь длины волны с импульсом частицы оказалась точно такой же, как и у фотонов. Если длину волны обозначить через λ, а импульс — через р, то получится, что:

λ=hp

Эта формула носит название формулы де Бройля, которая является одной из основных в разделе квантовой физики.

В будущем волновые свойства частиц, о которых предположил де Бройль, были обнаружены экспериментально. Так, удалось получить дифракцию электронов и других частиц на кристаллах. В этих случаях получалась почти такая же картина, как в случае с рентгеновскими и другими лучами. И формула де Бройля также нашла экспериментальное доказательство. Волновые свойства микрочастиц описываются квантовой механикой.

Квантовая механика — раздел физики, изучающий теорию движения микрочастиц.

Внимание! Законы Ньютона в квантовой физике в большинстве случаем не могут быть применены.

Давление света

В 1873 г. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствия. Предсказанное Максвеллом существование светового давления было экспериментально подтверждено Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Оно оказалось чрезвычайно малым, около 4∙10-7 Па.

Световое давление, обусловленное солнечным излучением у поверхности Земли, составляет менее 0,0001 Па. Этим и объясняется тот факт, что в обычных условиях давление света заметным образом себя не проявляет. Но давлением света объясняет следующие факты:

  • хвосты комет направлены от ядра кометы в сторону, противоположную Солнцу;
  • изменение орбит искусственных спутников Земли.

информация к уроку Давление света

Свет — это поток фотонов с импульсом:

p=mc

При поглощении веществом фотон перестает существовать, но импульс его, по закону сохранения импульса, не может исчезнуть бесследно. Он предается телу, значит, на тело действует сила.

Приведенное рассуждение будет абсолютно верным, если считать, что свет только веществом поглощается. Но разве это всегда так, свет еще может отражаться телами, а если тело прозрачно, то может проходить сквозь него. В реальных условиях свет частично отражается телом, частично поглощается, а если это, например, стекло, то свет проходит сквозь него. Как будет обстоять дело, если поверхность зеркальная? Возникает световое давление в данном случае?

Для простоты предположим, что свет падает перпендикулярно к поверхности зеркала. Мы знаем, что при абсолютном ударе какого-либо тела о стенку она получает импульс, модуль которого равен удвоенному модулю импульса тела, то есть 2mv. Отражаясь, фотон летит с той же скоростью, но в противоположном направлении. Значит, при отражении фотона от зеркала его импульс изменяется на 2mc. Такое же изменение импульса, но в противоположном направлении, получит зеркало. Импульс, получаемый телом при отражении фотона, будет в 2 раза больше импульса, получаемого телом при поглощении фотона.

Задание EF17985

За время t=4 с детектор поглощает N=6⋅105 фотонов падающего на него монохроматического света. Поглощаемая мощность P=5⋅10−14 Вт. Какова длина волны падающего света?

Ответ:

а) 0,4 мкм

б) 0,6 мкм

в) 520 нм

г) 780 нм


Алгоритм решения

1.Записать исходные данные.

2.Установить взаимосвязь между энергией фотонов и поглощаемой детектором мощностью.

3.Выполнить решение в общем виде.

4.Подставить известные данные и найти искомую величину.

Решение

Запишем исходные данные:

 Количество фотонов: N = 6∙105 шт.

 Поглощенная мощность: P = 5∙10–14 Вт.

Вся энергия фотонов будет поглощена детектором. Согласно закону сохранения энергии:

Nhν=Pt

Длина волны определяется формулой:

λ=cν

Отсюда частота равна:

ν=cλ

Подставим это выражение в записанный закон сохранения энергии:

Nhcλ=Pt

Отсюда длина волны равна:

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17986

При изучении давления света проведены два опыта с одним и тем же лазером. В первом опыте свет лазера направляется на пластинку, покрытую сажей, а во втором – на зеркальную пластинку такой же площади. В обоих опытах пластинки находятся на одинаковом расстоянии от лазера и свет падает перпендикулярно поверхности пластинок.

Как изменится сила давления света на пластинку во втором опыте по сравнению с первым? Ответ поясните, указав, какие физические закономерности Вы использовали для объяснения.


Алгоритм решения

1.Описать процессы, происходящие во время обоих опытов.

2.С помощью физических формул установить, как изменяется сила давления света.

Решение

В обоих опытах происходит поглощение световой волны. Этот процесс можно рассматривать как поглощение за время t большого числа световых квантов — N >>1 (фотонов). Фотоны поглощаются пластинкой. Причем каждый фотон передает этой пластинке свой импульс, равный:

pф=hνc

Поэтому импульс пластинки становится равным сумме импульсу всех поглощенных фотонов:

pп=Nhνc

В результате поглощения света пластинкой, покрытой сажей, она приобретает за время t импульс pп в направлении распространения света от лазера. Согласно закону изменения импульса, тела в инерциальной системе отсчета скорость изменения импульса тела равна силе, действующей на него со стороны других тел или полей:

F1=pпt=Nthνc

В результате отражения света от зеркальной пластины отраженный фотон имеет импульс, противоположный импульсу фотона падающей волны:

pф=pфп

Поэтому отраженная волна будет иметь импульс:

pов=Npф=Nhνc

N — количество отраженных фотонов.

В итоге за время t импульс волны под действием зеркальной пластинки изменился. Это изменение будет равно разности импульса отраженной волны и импульса пластинки:

Δp=pовpп=NpфNpф=(N+N)pф

Согласно закону сохранения импульса, импульс системы, состоящей из световой волны и зеркальной пластинки, сохраняется:

Δ(pп+pпл)=0

Отсюда:

Δpпл=Δpп

Но изменение импульса тела в инерциальной системе отсчета происходит только под действием других тел или полей и характеризуется силой:

F2=pплt=N+Nthνc

Если зеркала отражает хорошо, то N ≈ N´. Тогда:

F22F1

Отсюда видно, что сила давления света увеличится вдвое.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18201

Излучением лазера с длиной волны 3,3⋅10−7 м за время 1,25⋅104 с был расплавлен лёд массой 1 кг, взятый при температуре 0 °С, и полученная вода была нагрета на 100 °С. Сколько фотонов излучает лазер за 1 с? Считать, что 50% излучения поглощается веществом.


Алгоритм решения

1.Записать исходные данные.

2.Установить, какое количество тепла было сообщено льду для его расплавления и нагревания до температуры кипения.

3.Установить, какая энергия была выделена лазером при условии, что лишь половина этой энергии была сообщена льду.

4.Из полученного выражения выразить количество фотонов, излученных лазером за время t.

5.Записать формулу для количества фотонов, выделяемых за время 1 с.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем не только те данные, что есть в условии задачи, но и табличные данные, которые нам понадобятся в ходе решения задачи:

 Удельная теплота плавления льда: λльда = 3,4∙105 Дж/кг.

 Удельная теплоемкость воды: c = 4200 Дж/(кг∙оС).

 Начальная температура льда/воды: t1 = 0 оС.

 Конечная температура воды: t2 = 100 оС.

 Коэффициент полезного действия: η = 50%.

 Длина световой волны: λсвета = 3,3∙10–7.

 Время проведения всего опыта: t = 1,25∙104.

Чтобы лед расплавился, а образовавшаяся вода нагрелась до температуры кипения, нужно сообщить ему следующее количество энергии:

Q=Q1+Q2=mλльда+mc(t2t1)

Так как КПД равен 50% (0,5), то это количество теплоты равно половине энергии, выделенной лазером:

Q=ηE

mλльда+mc(t2t1)=ηE

Энергия, выделенная лазером, равна сумме энергий каждого из излученных фотонов, количество которых будет равно N:

E=Nhν

Но частота световой волны равна:

ν=cλсвета

Тогда:

E=Nhcλсвета

Отсюда:

Nhcλсвета

Теперь мы можем записать:

mλльда+mc(t2t1)=ηNhcλсвета

Выразим количество излученных фотонов за все время:

N=λсвета(mλльда+mc(t2t1))ηhc

Если разделить это выражение на время проведения опыта, то мы найдем количество фотонов, излученных за 1 секунду:

N1с=λсвета(mλльда+mc(t2t1))ηhct

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 2.7k

Содержание:

Фотоны:

В конце XIX в. многие ученые считали, что развитие физики завершилось. Законы механики и теория всемирного тяготения были известны более 200 лет. Максвеллом была завершена теория электромагнетизма. Установлены законы сохранения энергии, импульса, электрического заряда.

Однако к началу XX в. возникли проблемы, касающиеся физической природы излучения и вещества, а также их взаимодействия. В рамках классической физики возникали непреодолимые противоречия при объяснении экспериментальных данных дня процессов поглощения и испускания света атомами, закономерностей испускания электромагнитного излучения нагретыми телами, фотоэффекта и т. п.

Анализ этих противоречий привел к научной революции, и в течение последующих 30 лет были заложены основы квантовой физики. Квантовая физика пришла на смену классической при рассмотрении явлений на атомном и субатомном уровнях.

Тепловое излучение и квантовая гипотеза Планка

Существует три способа теплопередачи: теплопроводность, конвекция и излучение. Спектр — распределение энергии, излучаемой или поглощаемой веществом, по частотам или длинам волн.

Опыт показывает, что все нагретые тела испускают тепловое (электромагнитное) излучение, интенсивность которого зависит от температуры тела. При комнатных температурах мы не ошущаем электромагнитного излучения, испускаемого телами, из-за его слабой интенсивности. Однако по мере повышения температуры интенсивность теплового излучения возрастает, в результате чего мы начинаем ощущать тепло. Нагревание происходит в результате поглощения энергии излучения и ее превращения (трансформации) во внутреннюю энергию тела.

При нагревании тугоплавкое вещество сначала раскаляется докрасна (при температуре ~ 1000 К), затем становится оранжево-красным (при температуре ~ 1500 К), и, наконец, при температуре ~2000 К приобретает бело-желтый цвет.

Любое тело состоит из множества частиц — атомов, молекул, ионов и свободных электронов. Эти частицы в телах непрерывно участвуют в поступательном, вращательном, колебательном движениях. Согласно законам классической электромагнитной теории света любой ускоренно движущийся заряд излучает электромагнитные волны. Излучение, испускаемое телами, содержит волны различных частот, так как частицы совершают колебания, представляющие собой суперпозиции большого числа гармонических колебаний. Кроме того, и интенсивность излучаемых волн на разных частотах различна.

Эксперименты показали, что спектр теплового излучения тел является непрерывным. В волновой теории света испускание и поглощение электромагнитных волн любой частоты рассматривается как непрерывный процесс, в результате которого энергия источника или приемника волн изменяется также непрерывно.

Нагретое тело, согласно электромагнитной теории света, непрерывно излучая электромагнитные волны, теряет энергию, и, следовательно, должно было бы охлаждаться до абсолютного нуля. Следовательно, невозможно было бы тепловое равновесие между веществом и излучением. Однако эксперименты показали, что нагретое тело не расходует всю свою энергию на излучение.

Сточки зрения классической теории, все частоты равноправны. Следовательно, на каждый интервал частот в спектре в условиях равновесия должна приходиться в среднем одна и та же доля энергии. Значит, при перемещении по спектру от его красной области к фиолетовой энергия излучения должна была бы непрерывно расти. Рост энергии излучения тела привел бы к полной потере им энергии, т. е. к «ультрафиолетовой катастрофе».

Эксперименты показали, что в спектре излучения каждого теплового источника имеется максимум, положение которого зависит от температуры источника (рис. 77, а). При температуре 4000 °С максимум находится в инфракрасной области спектра и при нагревании перемещается в видимую область спектра.

Фотоны в физике - основные понятия, формулы и определение с примерами

При температуре абсолютно черного тела 2000 К в видимое излучение переходит только 0,3 % излучаемой энергии, а при температуре 3000 К — 3 %. Выгоднее всего «работает» абсолютно черное тело при температуре 6000 К — температуре поверхности Солнца. Но даже в этом случае в видимое излучение переходит только 13 % излучаемой энергии.

Распределение энергии излучения по частотам (E) для абсолютно черных тел приведено на рисунке 77, б. Если считать Солнце абсолютно черным телом, то температура его поверхности составляет около 6000 К. Для излучателей, не полностью поглощающих падающий на них свет, спектральные кривые располагаются ниже.

Для объяснения распределения энергии в спектре излучения 14 декабря 1900 г. Макс Планк в докладе на заседании немецкого физического общества выдвинул революционную гипотезу, что атомы излучают энергию не непрерывно, а отдельными порциями — квантами световой энергии. В соответствии с этой гипотезой энергия любой колебательной системы (атома, молекулы), имеющей частоту собственных колебаний v, может принимать лишь определенные значения, отличающиеся на целое число п элементарных порций — квантов энергии:

Фотоны в физике - основные понятия, формулы и определение с примерами

где n — целое положительное число, h — коэффициент пропорциональности, который называют постоянной Планка. Это — фундаментальная постоянная. Ее значение

Фотоны в физике - основные понятия, формулы и определение с примерами

Приближенное значение постоянной Планка, применяемое при решении задач,

Фотоны в физике - основные понятия, формулы и определение с примерами

Планк поэтически назвал новую фундаментальную постоянную «таинственным послом из реального мира».

Слово «квант» происходит от латинского слова quantum — «сколько», или «как много». Это слово вообще обозначает часть, долю или разделенную порцию.

Представление о квантах световой энергии объяснило свойства теплового излучения и позволило рассчитывать спектр излучения абсолютно черного тела дня любых температур. Для температуры поверхности Солнца 6000 °К максимум кривой соответствует длине волны Фотоны в физике - основные понятия, формулы и определение с примерами = 0,483 мкм, т. е. сине-зеленой области спектра.

Фотоэффект и экспериментальные законы внешнего фотоэффекта

Свет — электромагнитные волны, обладающие энергией и импульсом и распространяющиеся в вакууме со скоростью с = 3,0Фотоны в физике - основные понятия, формулы и определение с примерами

Наше зрительное восприятие физических явлений в окружающем мире определяется взаимодействием света с веществом. Воздействие света на вещество состоит в сообщении ему энергии, приносимой световой волной, т. е. первичным процессом является поглощение света. Такое взаимодействие, например в сетчатке глаза, приводит к зрительным ощущениям. Для прозрачной среды, например стекла, при падении на него световой волны главным результатом взаимодействия является ее отражение и преломление, а поглощением электромагнитной энергии в видимом диапазоне можно пренебречь.

При падении света на поверхность непрозрачного предмета часть излучения, преломляясь, проникает в него и поглощается, другая часть отражается от поверхности, и мы видим предмет в отраженном свете. Доля отраженного от поверхности света зависит от длины волны. Более темные поверхности поглощают свет сильнее, чем более светлые.

Мы видим не только тела, которые отражают или рассеивают свет, но и тела, которые светятся сами, например Солнце, другие звезды, пламя. Электромагнитное излучение испускают все тела, причем его интенсивность зависит от температуры их поверхности. В видимом диапазоне спектра излучение достаточной интенсивности, позволяющее видеть предмет, возникает, если температура поверхности предмета намного больше комнатной.

Взаимодействие электромагнитных волн с веществом приводит и к другим физическим явлениям, изучение которых помогло выяснить природу света.

Фотоны в физике - основные понятия, формулы и определение с примерами

В 1887 г. Генрих Герц обнаружил, что пробой воздушного промежутка между электродами искрового разрядника происходит при меньшем напряжении, если освещать отрицательно заряженный электрод ультрафиолетовым излучением. Дальнейшие эксперименты показали, что отрицательно заряженная цинковая пластинка при облучении ультрафиолетовым излучением (рис. 78, а) разряжается. Оба эти явления можно объяснить, предполагая, что под действием падающего излучения из металла вылетают отрицательно заряженные частицы — электроны (рис. 78, б). Это явление получило название фотоэффекта.

Фотоэффектом (фотоэлектрическим эффектом) называется явление взаимодействия электромагнитного излучения с веществом, в результате которого энергия излучения полностью передается электронам вещества.

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним фотоэффектом.

Испускание веществом каких-либо частиц называется эмиссией. Поэтому внешний фотоэффект называют также фотоэлектронной эмиссией (фотоэмиссией).

«Фото Фотоны в физике - основные понятия, формулы и определение с примерами» по-гречески означает «свет».

Систематическое изучение фотоэффекта было проведено в 1888—1889 гг. русским физиком Александром Григорьевичем Столетовым.

Установка для изучения внешнего фотоэффекта представлена на рисунке 79, а. В экспериментах Столетова в электрическую цепь был включен конденсатор, одна из обкладок которого была изготовлена из медной сетки, а вторая представляла собой цинковую пластинку. Медная сетка была заряжена положительно, а цинковая пластинка — отрицательно.

Наблюдения показали, что даже при отсутствии напряжения между пластинами под действием падающего ультрафиолетового излучения в цепи возникал электрический ток. Этот ток назвали фототоком (Фотоны в физике - основные понятия, формулы и определение с примерами).

Изменяя напряжение U между пластинами А и В с помощью реостата R (рис. 79, б), Столетов получил зависимость силы фототока Фотоны в физике - основные понятия, формулы и определение с примерами от напряжения U (вольт-амперную характеристику).

Фотоны в физике - основные понятия, формулы и определение с примерами

Как видно из зависимости, представленной на рисунке 79, в, при увеличении напряжения Фотоны в физике - основные понятия, формулы и определение с примерами сила фототока растет до некоторого значения Фотоны в физике - основные понятия, формулы и определение с примерами которое называется фототоком насыщения. Дальнейшее увеличение напряжения не приводит к росту фототока. Изменение полярности напряжения приводит к исчезновению фототока при напряжении которое называется задерживающим напряжением.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового излучения. Однако некоторые металлы, например литий, натрий и калий, испускают электроны и при облучении видимым светом.

Экспериментально установлены следующие законы внешнего фотоэффекта:

1. Сила фототока насыщения Фотоны в физике - основные понятия, формулы и определение с примерами, определяемая максимальным числом фотоэлектронов, вырываемых из катода за единицу времени, прямо пропорциональна интенсивности I падающего излучения (первый закон фотоэффекта).

Вольт-амперная характеристика фотоэффекта показана на рисунке 80, а, а зависимость силы фототока насыщения Фотоны в физике - основные понятия, формулы и определение с примерами от интенсивности падающего излучения I — на рисунке 80, б.

Фотоны в физике - основные понятия, формулы и определение с примерами

Из графика зависимости Фотоны в физике - основные понятия, формулы и определение с примерами от I видно, что сила фототока насыщения равна нулю только при отсутствии излучения (I = 0). Иными словами, фотоэффект наблюдается даже при малых значениях интенсивности падающего излучения.

2. Максимальная кинетическая энергияФотоны в физике - основные понятия, формулы и определение с примерами фотоэлектронов не зависит от интенсивности I падающего излучения и линейно возрастает с увеличением частоты v падающего излучения (второй закон фотоэффекта).

Подчеркнем, что фотоэлектроны не имеют фиксированной кинетической энергии при вылете из фотокатода: она меняется в некотором диапазоне от нуля до Фотоны в физике - основные понятия, формулы и определение с примерами, так как фотоэлектроны могут часть своей энергии, полученной от падающего излучения, передать частицам вещества перед вылетом с поверхности.

Фотоны в физике - основные понятия, формулы и определение с примерами

На рисунке 81 представлен график зависимости максимальной кинетической энергии Фотоны в физике - основные понятия, формулы и определение с примерами от частоты v падающего излучения.

3. Для каждого вещества существует граничная частота Фотоны в физике - основные понятия, формулы и определение с примерами, такая, что излучение меньшей частоты не может вырывать электроны (третий закон фотоэффекта).

Эта минимальная частота Фотоны в физике - основные понятия, формулы и определение с примерами называется красной границей фотоэффекта. Такое название связано с тем, что минимальной частоте излучения соответствует максимальная длина волны. А поскольку максимальная длина волны в видимом диапазоне соответствует красному цвету, то граница и получила название «красной».

Красная граница для различных веществ совсем не обязательно соответствует красному цвету. Например, для рубидия она соответствует желтому цвету, для кальция — синему, а для некоторых веществ может вообще находиться в инфракрасной или ультрафиолетовой областях спектра.

Фотоны в физике - основные понятия, формулы и определение с примерами

На рисунке 82 приведены графики зависимости максимальной кинетической энергии Фотоны в физике - основные понятия, формулы и определение с примерами фотоэлектронов от частоты v падающего излучения для двух различных веществ А и В. Точки пересечения графиков с осью абсцисс (частот) определяют красные границы фотоэффекта для каждого из них: Фотоны в физике - основные понятия, формулы и определение с примерами

При частотах, больших Фотоны в физике - основные понятия, формулы и определение с примерами, излучение даже очень малой интенсивности вызывает фотоэффект. Кроме того, между моментом включения источника излучения и вылетом электронов фактически нет задержки во времени: электроны вылетают из вещества через промежуток времени порядка Фотоны в физике - основные понятия, формулы и определение с примерами с после начала облучения.

Следует заметить, что к моменту открытия фотоэффекта в 1887 г. еще ничего не было известно об электронах, открытых английским физиком Джозефом Джоном Томсоном только в 1897 г.

В 1898 г. Ф. Ленардом и Дж. Дж. Томсоном было определено отношение ! заряда q частицы, вылетающей с поверхности металла при фотоэффекте, к ее массе т (так называемый удельный заряд Фотоны в физике - основные понятия, формулы и определение с примерами) по ее отклонению в электрическом и магнитном полях. Эти измерения дали значение Фотоны в физике - основные понятия, формулы и определение с примерами Таким образом, было доказано, что выбиваемые светом заряженные частицы — электроны.

За работы по определению удельного заряда Фотоны в физике - основные понятия, формулы и определение с примерами, приведшие к открытию первой элементарной частицы — электрона, Дж. Дж. Томсон в 1906 г. был удостоен Нобелевской премии по физике.

На основе волновой теории можно объяснить только 1-й закон фотоэффекта: чем больше энергия падающего света, тем больше электронов вылетает из вещества. Объяснить 2-й и 3-й законы фотоэффекта в рамках классической теории излучения не удалось. Например, непонятно, почему максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения. Невозможно также объяснить существование красной границы фотоэффекта. Действительно, даже при малой частоте падающего излучения, но при длительном воздействии электронам можно сообщить энергию, необходимую для выхода из вещества. Следовательно, красная граница фотоэффекта не должна существовать. Все эти противоречия были сняты квантовой теорией.

Фотон

Электронвольт — энергия, которую приобретет частица с зарядом, равным элементарному, при перемещении между двумя точками с разностью потенциалов 1 В (1,0 эВ =Фотоны в физике - основные понятия, формулы и определение с примерами Дж).

Изменение энергии Фотоны в физике - основные понятия, формулы и определение с примерами системы связано с изменением ее массы Фотоны в физике - основные понятия, формулы и определение с примерами уравнением Эйнштейна: Фотоны в физике - основные понятия, формулы и определение с примерами

Длина волны Фотоны в физике - основные понятия, формулы и определение с примерами связана с ее частотой v соотношением Фотоны в физике - основные понятия, формулы и определение с примерами, где v — скорость волны.

После выдвижения гипотезы Планка началось интенсивное развитие квантовой физики, которая сравнительно быстро превратилась в стройную и законченную теорию, открывшую «новую эру» в развитии физики.

Развивая идеи Планка, Эйнштейн в 1905 г. для объяснения экспериментальных законов внешнего фотоэффекта выдвинул гипотезу, что свет не только излучается и поглощается, но и распространяется в виде отдельных порций (квантов). Таким образом, свет имеет квантовую структуру и является совокупностью движущихся элементарных частиц (корпускул).

Корпускула — от латинского corpusculum — маленькая частица.

Назвать эти частицы фотонами предложил в 1928 г. американский физик Артур Комптон.

По гипотезе Эйнштейна, монохроматическое электромагнитное излучение частотой v представляет собой поток фотонов. Каждый фотон движется со скоростью света с и несет квант энергии E = hv. При взаимодействии с веществом фотон ведет себя подобно частице и передает свою энергию не веществу в целом и даже не атому, а только отдельным электронам в веществе. Последний забирает всю энергию фотона, который с этого мгновения больше не существует. В этом случае говорят, что электрон в веществе поглотил фотон.

Энергия фотона может быть выражена через длину волны Фотоны в физике - основные понятия, формулы и определение с примерами:

Фотоны в физике - основные понятия, формулы и определение с примерами

Из определения релятивистского импульса Фотоны в физике - основные понятия, формулы и определение с примерами для фотона (v = с) следует, что модуль его импульса определяется выражениями

Фотоны в физике - основные понятия, формулы и определение с примерами

Оказывается, фотон — удивительная частица, которая обладает энергией E = hv, импульсом Фотоны в физике - основные понятия, формулы и определение с примерами, но вследствие того, что скорость его движения всегда равна скорости света, его масса равна нулю (m = 0). Такие частицы называют безмассовыми. Энергия фотона связана с его импульсом соотношением Е = рс. Таким соотношением описываются частицы, масса которых равна нулю.

Таким образом, фотом является элементарной частицей, только в отличие от других элементарных частиц он не имеет массы, а потому «обречен» всегда двигаться со скоростью света.

Фотон обладает следующими свойствами:

Уравнение Эйнштейна для фотоэффекта

Рассмотрим объяснение экспериментальных законов фотоэффекта на основе квантовых представлений, предложенное Эйнштейном. Электрон одного из атомов внутри металла после поглощения одного фотона получает квант энергии hv и стремится выйти за пределы кристаллической решетки, т. е. покинуть облучаемое твердое тело.

Электроны, покинувшие образец, имеют некоторую скорость, поэтому даже при отсутствии напряжения между электродами сила фототока не равна нулю. Именно поэтому вольт-амперная характеристика фотоэффекта при напряжении, ..равном нулю, не проходит через нуль (см. рис. 80, а).

Часть энергии, полученной при поглощении фотона, электрон расходует на совершение работы по преодолению сил притяжения, удерживающих его внутри вещества. Соответственно остаток энергии будет равен кинетической энергии электрона:

Фотоны в физике - основные понятия, формулы и определение с примерами

Здесь  Фотоны в физике - основные понятия, формулы и определение с примерами  — кинетическая энергия электрона массой m, вылетевшего под действием света с поверхности металла и движущегося со скоростью v (Фотоны в физике - основные понятия, формулы и определение с примерами). Величина Фотоны в физике - основные понятия, формулы и определение с примерами> 0 представляет собой работу, которую необходимо совершить против сил электрического поля для того, чтобы электрон вылетел из вещества. Она называется работой выхода.

Для металлов эта работа связана с преодолением сил взаимодействия электронов с положительно заряженными ионами кристаллической решетки, которые удерживают электрон в веществе. Работа выхода для металлов обычно составляет несколько электронвольт (табл. 8).
Таблица 8

Фотоэлектрические характеристики некоторых веществ

Вещество     Фотоны в физике - основные понятия, формулы и определение с примерами Фотоны в физике - основные понятия, формулы и определение с примерами Фотоны в физике - основные понятия, формулы и определение с примерами
Цезий          1,9     4,6 650
Калий    
 
2,2      5,3     560
Натрий        
 
2,3     5,6     540
Кальций    
 
2,7     6,5     460
Цинк    
 
3,7     8,9     340
Серебро    
 
4,3     10     300
Вольфрам        
 
4,5     11 270
Никель    
 
5,0     12     250
Платина     5,3     13     230

С появлением мощных монохроматических источников света (лазеров) удалось наблюдать процессы многофотонного поглощения. В таких процессах прежде чем покинуть вещество, электрон поглощает не один, а несколько фотонов. В этом случае формула Эйнштейна для фотоэффекта записывается в виде

Фотоны в физике - основные понятия, формулы и определение с примерами

где N — число фотонов.

Таким образом, уравнение Эйнштейна для внешнего фотоэффекта является следствием закона сохранения и превращения энергии в этом процессе:

Фотоны в физике - основные понятия, формулы и определение с примерами   (1)

Отметим, что Фотоны в физике - основные понятия, формулы и определение с примерами — это максимальная кинетическая энергия электрона (Фотоны в физике - основные понятия, формулы и определение с примерами), которой он может обладать, вылетев из вещества. Из-за различных потерь энергия электрона может быть меньше расчетного значения.

В релятивистском случае (Фотоны в физике - основные понятия, формулы и определение с примерами) для кинетической энергии необходимо использовать выражение

Фотоны в физике - основные понятия, формулы и определение с примерами

Используя уравнение Эйнштейна, можно объяснить экспериментальные законы фотоэффекта.

Первый закон фотоэффекта: сила фототока насыщения пропорциональна общему числу фотоэлектронов, покидающих поверхность металла за единицу времени. Число таких фотоэлектронов пропорционально числу фотонов, падающих на поверхность за это же время. Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают из металла больше электронов.

Второй закон фотоэффекта: при увеличении частоты v падающего света максимальная кинетическая энергия Фотоны в физике - основные понятия, формулы и определение с примерами возрастает линейно согласно формуле

Фотоны в физике - основные понятия, формулы и определение с примерами

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, затрудняющее вылет электронов, то сила тока уменьшится, так как теперь фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Фотоны в физике - основные понятия, формулы и определение с примерами

При некотором отрицательном напряжении Фотоны в физике - основные понятия, формулы и определение с примерами электроны затормаживаются и, не достигнув поверхности анода, возвращаются на катод. Сила тока в цепи будет равна нулю (рис. 83). Величину Фотоны в физике - основные понятия, формулы и определение с примерами называют задерживающим напряжением. Следовательно, вся кинетическая энергия электронов затрачивается на работу против сил электрического поля. При этом максимальная кинетичеcкая энергия электронов выражается через задерживающее напряжение следующим образом:

Фотоны в физике - основные понятия, формулы и определение с примерами    (2)

Третий закон фотоэффекта: если частота падающего света v меньше граничной частоты Фотоны в физике - основные понятия, формулы и определение с примерами, при которой Фотоны в физике - основные понятия, формулы и определение с примерами, то испускания электронов не происходит.

Таким образом, красную границу фотоэффекта можно найти из соотношения

Фотоны в физике - основные понятия, формулы и определение с примерами(3)

Ока зависит только от работы выхода электронов, т. е. определяется строением металла и состоянием его поверхности. Длина волны Фотоны в физике - основные понятия, формулы и определение с примерамиизлучения, соответствующая красной границе фотоэффекта, может быть определена из соотношения

Фотоны в физике - основные понятия, формулы и определение с примерами

Подставив в уравнение Эйнштейна (1) выражения (2) и (3), найдем зависимость задерживающего напряжения от частоты падающего света:

Фотоны в физике - основные понятия, формулы и определение с примерами   (4)

Построим графики зависимости задерживающего напряженияФотоны в физике - основные понятия, формулы и определение с примерами от частоты v падающего света для двух различных металлов. Получаются параллельные прямые (рис. 84).

Фотоны в физике - основные понятия, формулы и определение с примерами

По тангенсу угла наклона а этих прямых из соотношения (4) можно вычислить постоянную Планка, так как

Фотоны в физике - основные понятия, формулы и определение с примерами

а по точкам пересечения графиков с осями — найти работу выхода Фотоны в физике - основные понятия, формулы и определение с примерами и красную границу Фотоны в физике - основные понятия, формулы и определение с примерами

Фотоны в физике - основные понятия, формулы и определение с примерами

В качестве механической аналогии объяснения явления фотоэффекта рассмотрим шарик массой m, покоящийся на дне ямы глубиной Н (рис. 85). Если шарику сообщить достаточную начальную кинетическую энергию Фотоны в физике - основные понятия, формулы и определение с примерами, он поднимется из ямы и покатится по поверхности земли с некоторой скоростью v. Закон сохранения и превращения энергии для такого процесса имеет вид

Фотоны в физике - основные понятия, формулы и определение с примерами

В этом выражении mgH является работой выхода шарика из ямы, а сообщенная ему кинетическая энергия Фотоны в физике - основные понятия, формулы и определение с примерами аналогична энергии фотона. Иначе говоря: шарику необходимо преодолеть потенциальный барьер для того, чтобы оказаться на поверхности земли.

В 1921 г. при присуждении Альберту Эйнштейну Нобелевской премии в решении Нобелевского комитета указывалось, что «премией особенно отмечается объяснение законов фотоэлектрического эффекта».

  • Заказать решение задач по физике

Пример №1

Монохроматический свет длиной волны Фотоны в физике - основные понятия, формулы и определение с примерами = 450 нм падает на поверхность натрия. Определите:

а)    энергию Е фотона этого света;

б)    модуль импульса р фотона падающего света;

в)    красную границу Фотоны в физике - основные понятия, формулы и определение с примерамифотоэффекта для натрия;

г)    максимальную кинетическую энергию Фотоны в физике - основные понятия, формулы и определение с примерами фотоэлектронов.

Фотоны в физике - основные понятия, формулы и определение с примерами

Решение

а) Энергия фотона определяется из соотношения E = hv = $-.

Фотоны в физике - основные понятия, формулы и определение с примерами

б)    Модуль импульса фотона падающего света определяется из соотношения

Фотоны в физике - основные понятия, формулы и определение с примерами

в)    Красная граница связана с работой выхода соотношением

Фотоны в физике - основные понятия, формулы и определение с примерами

г) Согласно уравнению Эйнштейна электрон поглощает фотон и приобретает дополнительную энергию E = hv. Для того чтобы выйти за пределы металла, электрон должен отдать часть энергии на выполнение работы Фотоны в физике - основные понятия, формулы и определение с примерами При этом его максимальная кинетическая энергия

Фотоны в физике - основные понятия, формулы и определение с примерами

Ответ: Фотоны в физике - основные понятия, формулы и определение с примерами

Пример №2

Под действием света длиной волны Фотоны в физике - основные понятия, формулы и определение с примерами = 400 нм с поверхности металла вылетают электроны, при этом их энергия равна половине энергии фотонов, вызывающих фотоэффект. Определите длину волны Фотоны в физике - основные понятия, формулы и определение с примерами соответствующую красной границе фотоэффекта.

Фотоны в физике - основные понятия, формулы и определение с примерами

Ре ш е н и е

Запишем уравнение Эйнштейна для фотоэффекта:

Фотоны в физике - основные понятия, формулы и определение с примерами

Красную границу фотоэффекта определим из соотношения

Фотоны в физике - основные понятия, формулы и определение с примерами

По условию задачи

Фотоны в физике - основные понятия, формулы и определение с примерами

Тогда Фотоны в физике - основные понятия, формулы и определение с примерами, откуда следует, что Фотоны в физике - основные понятия, формулы и определение с примерами . Так как длина волны Фотоны в физике - основные понятия, формулы и определение с примерами

Фотоны в физике - основные понятия, формулы и определение с примерами

ОтветФотоны в физике - основные понятия, формулы и определение с примерами = 800 нм. 

Давление света

Давлением называется скалярная физическая величина, численно равная отношению силы, действующей по нормали к площадке, к ее площади Фотоны в физике - основные понятия, формулы и определение с примерами

В СИ единицей давления является паскаль (Па): 1 Па = Фотоны в физике - основные понятия, формулы и определение с примерами.

Из законов механики следует, что тело при ударе о поверхность оказывает механическое на нее давление, обусловленное изменением импульса тела. Причем давление оказывается в случае как упругого удара, так и неупругого. А будет ли возникать подобный эффект при отражении и поглощении света некоторой поверхностью? Иными словами, оказывает ли свет давление на поверхность, с которой взаимодействует? После завершения построения волновой теории света Максвеллом ответы на эти вопросы стали очевидными. Свет как электромагнитная волна обладает энергией и импульсом и поэтому оказывает давление на поверхность, на которую он падает.

В 1873 г. Максвелл вычислил световое давление, используя разработанную им теорию электромагнитного поля. Он показал, что если за промежуток времени Фотоны в физике - основные понятия, формулы и определение с примерами = 1 с перпендикулярно зеркальной площадке площадью S = 1 м2 падает свет с энергией то он оказывает на площадку давление р:

Фотоны в физике - основные понятия, формулы и определение с примерами

где с — скорость света.

Модуль силы давления, с которой солнечные лучи действуют на S= 1 м2 черной поверхности при нормальном падении: Фотоны в физике - основные понятия, формулы и определение с примерами

Объяснить давление света можно следующим образом. Электрическое поле Фотоны в физике - основные понятия, формулы и определение с примерами электромагнитной волны, падающей на поверхность проводника, вызывает движение электронов вещества в направлении, противоположном Фотоны в физике - основные понятия, формулы и определение с примерами. Магнитное поле Фотоны в физике - основные понятия, формулы и определение с примерами волны действует на уже движущиеся частицы с силой Лоренца Фотоны в физике - основные понятия, формулы и определение с примерами которая в данном случае направлена внутрь вещества (рис. 87) и совпадает с направлением распространения света. Суммарная сила, действующая на все электроны со стороны электромагнитной волны, и есть сила давления света.

Фотоны в физике - основные понятия, формулы и определение с примерами

Это явление можно объяснить и с квантовой точки зрения. Рассмотрим свет как поток фотонов частотой v, падающих нормально на поверхность (рис. 88, а), и приносящий за промежуток времени Фотоны в физике - основные понятия, формулы и определение с примерами=1  с на площадь S = 1 м2 энергию, равную W. Число n фотонов определяется из условия nhv = W т. е.

Фотоны в физике - основные понятия, формулы и определение с примерами

Так как каждый фотон обладает импульсом, модуль которого Фотоны в физике - основные понятия, формулы и определение с примерами (рис. 88, б), то поглощающей поверхности (неупругий удар частицы) он сообщает импульс, модуль которого |Фотоны в физике - основные понятия, формулы и определение с примерами|, а полностью отражающей поверхности (абсолютно упругий удар) — импульс, модуль которого 2 |Фотоны в физике - основные понятия, формулы и определение с примерами|.

Следовательно, модуль импульса, сообщаемого абсолютно поглощающей (абсолютно черной) поверхности площадью S =1 м2 поверхности потоком фотонов за промежуток времени Фотоны в физике - основные понятия, формулы и определение с примерами = 1 с, определяется по формуле:

Фотоны в физике - основные понятия, формулы и определение с примерами

Это и есть изменение модуля импульса потока фотонов:

Фотоны в физике - основные понятия, формулы и определение с примерами

Согласно второму закону Ньютона изменение импульса приводит к возникновению силы Фотоны в физике - основные понятия, формулы и определение с примерами, которая по модулю равна силе давления Фотоны в физике - основные понятия, формулы и определение с примерами, но противоположно направлена. По определению давление на поверхность площадью S равно Фотоны в физике - основные понятия, формулы и определение с примерами. Это приводит к окончательному результату: Фотоны в физике - основные понятия, формулы и определение с примерами В случае полностью отражающей поверхности Фотоны в физике - основные понятия, формулы и определение с примерами, что находится в согласии с формулой Максвелла.

Пусть из полного числа n фотонов, падающих на единичную поверхность за Фотоны в физике - основные понятия, формулы и определение с примерами = 1 с, отражается Rn фотонов (R — коэффициент отражения), а (1 -R)n фотонов поглощается. Тогда сообщаемый единице поверхности импульс, численно равный давлению, находится по формуле

Фотоны в физике - основные понятия, формулы и определение с примерами

Русский физик Петр Николаевич Лебедев в 1899 г. впервые измерил световое давление. Он подвесил на тонкой нити коромысло с парой крылышек на концах (рис. 89): поверхность у одного из них была зачерненной, обеспечивая почти полное поглощение (R = 0), а у другого — зеркальной (/?=!)■

Свет практически полностью отражался от зеркальной поверхности, и его давление на зеркальное крылышко было вдвое больше, чем на зачерненное. Вследствие этого создавался момент сил, поворачивающий коромысло (см. рис. 89). Измеряя угол поворота коромысла, можно было судить о силе, действовавшей на крылышки, а следовательно, определить световое давление.

Фотоны в физике - основные понятия, формулы и определение с примерами

О сложности и тщательности подготовки и проведения измерений говорит тот факт, что при освещении крылышек светом в обычных условиях возникают силы, которые по величине превосходят силу давления света в тысячи раз. Одна из таких сил возникает в газе вследствие разности температур освещенной и неосвещенной сторон крылышка. Это действие Лебедеву удалось свести к минимуму, изготовив крылышки из тонкой, хорошо проводящей тепло фольги и поместив их в вакуум.

Измерения Лебедева дали величину светового давления, согласующуюся с теорией Максвелла с погрешностью до 20 %. В 1923 г. немецкий физик-экспериментатор Вальтер Герлах, используя более совершенные методы получения вакуума, повторил опыты Лебедева. Ему удалось получить результаты, согласующиеся с теоретическими значениями с погрешностью до 2%.

Факт существования светового давления имеет большое значение, так как доказывает наличие у света не только энергии, но и импульса. Это свидетельствует о материальности электромагнитных волн, представляющих собой еще одну форму существования материи — в виде поля.

Фотоны в физике - основные понятия, формулы и определение с примерами

Несмотря на сравнительно малое значение, световое давление играет существенную роль в природе: препятствует гравитационному сжатию звезд, ориентирует хвосты комет в сторону от Солнца, сокращает срок службы искусственных спутников Земли. Сегодня активно обсуждаются и реализуются проекты космических кораблей — «парусников», которые приводятся в движение «солнечным ветром».

В 1604 г. немецкий астроном Иоганн Кеплер объяснил изогнутую форму хвоста кометы действием сил светового давления со стороны Солнца (рис. 90), поскольку хвост всегда направлен от Солнца. Однако на доказательство этого факта потребовалось значительное время.

Корпускулярно-волновой дуализм

Когерентными называются волны одинаковой частоты, разность фаз колебаний которых в некоторой точке пространства остается постоянной с течением времени.

Интерференция — явление взаимодействия двух или более когерентных волн в пространстве, приводящее к увеличению или уменьшению амплитуды результирующего колебания в зависимости от разности хода волн. Дифракция — явление отклонения распространения волн от прямолинейного вблизи краев препятствий и огибания волнами препятствий.

Еще со времен Ньютона и Гюйгенса (XVII в.) представления о природе света были противоречивы. Одни ученые, во главе с Ньютоном, считали свет потоком частиц — корпускул, другие, вслед за Гюйгенсом, полагали, что свет представляет собой волны.

До начала XIX в. обе точки зрения отстаивались с переменным успехом. Так, исходя из гипотезы о корпускулах, можно было объяснить законы прямолинейного распространения и отражения света, а такие явления, как интерференция, дифракция и поляризация света, объяснялись только его волновыми свойствами.

Однако в XX в. было установлено, что в целом ряде явлений, таких, как, например, фотоэффект, свет ведет себя как совокупность частиц с определенной энергией и импульсом. Одновременное наличие у объекта волновых и корпускулярных свойств получило название корпускулярно-волнового дуализма.

В одних процессах проявляются волновые свойства света, в других — корпускулярные. Долгое время природа этого дуализма была совершенно непонятна, и он казался искусственным объединением противоречивых свойств материи.

Для преодоления этого противоречия датский физик Нильс Бор сформулировал принцип дополнительности, который утверждал, что для полного понимания природы света необходимо учитывать как волновые, так и корпускулярные свойства света: они взаимно дополняют друг друга.

Однако для объяснения конкретного эксперимента следует использовать либо волновые, либо корпускулярные представления о природе света, но не те и другие одновременно. Только после создания квантовой механики выяснилось, что «раздвоение личности» света закономерно и представляет собой проявление специфических свойств, присущих микромиру.

В 1923 г. французский физик Луи де Бройль свою диссертацию на соискание ученой степени доктора философии начал словами: «История оптических теорий показывает, что научные взгляды долгое время колебались между механической и волновой концепциями света, однако эти две точки зрения, вероятно, менее противоречат одна другой, чем думали раньше».

Далее он высказал смелое предположение: раз корпускулярно-волновой дуализм имеет место для световых квантов, он должен быть справедлив и для всех других частиц.

В частности движущемуся электрону должна соответствовать некоторая вол-
на, характеризуемая частотой v и длиной волны XR. Как и в случае фотона, частота v должна быть связана с энергией частицы Е соотношением E = hv. В настоящее время с каждой материальной частицей связывают волну, распространяющуюся в направлении движения частицы, которую называют волной де Бройля, а длину этой волны — дебройлевской длиной волны.

Дe Бройль определил, что модуль импульса частицы р должен выражаться через ее длину волны Фотоны в физике - основные понятия, формулы и определение с примерами следующим образом:

Фотоны в физике - основные понятия, формулы и определение с примерами    (I)

По этому соотношению всякому объекту, имеющему импульс Фотоны в физике - основные понятия, формулы и определение с примерами, независимо от его природы ставится в соответствие волновой процесс с длиной волны

Фотоны в физике - основные понятия, формулы и определение с примерами  (2)

Формула де Бройля позволяет определить, в каких явлениях существенны волновые свойства, а в каких — корпускулярные. Вспомним, что волновые свойства — интерференция и дифракция — проявляются только тогда, когда размеры предметов или щелей сравнимы с длиной волны. Для частицы массой m, движущейся со скоростью и, длина волны де Бройля Фотоны в физике - основные понятия, формулы и определение с примерами обратно пропорциональна массе частицы и ее скорости Фотоны в физике - основные понятия, формулы и определение с примерами  Таким образом, чем меньше масса частицы, движущейся с фиксированной скоростью, тем больше соответствующая ей длина волны Фотоны в физике - основные понятия, формулы и определение с примерами и тем более отчетливо обнаруживаются волновые свойства данной частицы. Следовательно, у электронов волновые свойства при движении проявляются наиболее отчетливо по сравнению с другими частицами.

Для большинства движущихся макроскопических объектов (например, песчинка, теннисный шарик, футбольный мяч, Луна и т. д.) модуль импульса р, как правило, очень велик. В этом случае длина волны Фотоны в физике - основные понятия, формулы и определение с примерами намного меньше размеров окружающих тел, и, соответственно, волновые свойства подобных макрообъектов становятся несущественными.

Для подобных предметов эта длина волны не превышает величины Фотоны в физике - основные понятия, формулы и определение с примерами м, поэтому обнаружить их волновые свойства не удается. При сравнении этой величины с размером атома (Фотоны в физике - основные понятия, формулы и определение с примерами м) или даже атомного ядра (Фотоны в физике - основные понятия, формулы и определение с примерами м) становится очевидной невозможность определения волн де Бройля такой длины.

Таким образом, соотношение де Бройля Фотоны в физике - основные понятия, формулы и определение с примерами — особенно важно в следующих отношениях.

Во-первых, оно «узаконило» корпускулярно-волновой дуализм. Всякому телу, движущемуся с импульсом Фотоны в физике - основные понятия, формулы и определение с примерами, сопоставляется теперь волновой процесс с длиной волны Фотоны в физике - основные понятия, формулы и определение с примерами

Во-вторых, из него видно, в каких явлениях волновые свойства существенны, а в каких — нет. Для макроскопических объектов их импульс, как правило, очень велик. Соответственно, в этом случае длина волны мала — много меньше размеров самого тела, и волновые свойства становятся незаметными.

Гипотеза де Бройля о наличии волновых свойств у электрона и других микрочастиц была проверена экспериментально.

Фотоны в физике - основные понятия, формулы и определение с примерами

Поскольку дифракция света наблюдается на решетках, период d которых сравним с длиной волны Фотоны в физике - основные понятия, формулы и определение с примерами, то для наблюдения дифракции электронов следует выбирать решетки с соответствующим периодом. Например, каждому из электронов в пучке, прошедшем между обкладками конденсатора, заряженного до напряжения U = 150 В, соответствует энергия W= 150 эВ и длина волны Фотоны в физике - основные понятия, формулы и определение с примерами. Таким образом, в качестве дифракционной решетки следует выбрать кристалл какого-либо вещества, поскольку именно его кристаллическая решетка имеет период Фотоны в физике - основные понятия, формулы и определение с примерами м, необходимый для обнаружения волновых свойств электронов.

На рисунке 91 представлена фотография дифракционной картины на двух щелях: дня пучка электронов (рис. 91, а) и для светового пучка (рис. 91, б).

Компьютерное моделирование позволяет «увидеть» процесс образования ; дифракционной картины при последовательном увеличении числа электронов, прошедших через щель (рис. 92).

Способность к интерференции и дифракции была обнаружена не только у электронов, но и у других частиц — протонов, нейтронов и а-частиц.

Волновые свойства частиц нашли свое применение в электронной оптике, занимающейся исследованием, построением и использованием в практических целях электронных пучков.

Так использование волновых свойств пучка электронов позволило создать новое поколение микроскопов — электронные микроскопы (рис. 93), значительно превосходящие по степени увеличения оптические микроскопы.

Фотоны в физике - основные понятия, формулы и определение с примерами

Уже первый электронный просвечивающий микроскоп (Э. Руска, 1933 г.) позволял изучать детали в десять раз меньшие, чем те, которые способны разрешать самые «мощные» оптические микроскопы. Дальнейшие исследования позволили сотрудникам лаборатории фирмы IBM в Цюрихе (Швейцария) Г. Биннингу и Г. Рореру в 1981 г. создать электронный сканирующе-туннельный микроскоп, позволяющий рассмотреть даже «отдельный» атом.

Таким образом, корпускулярно-волновой дуализм относится не только к частицам, но и к любым материальным телам. На них также распространяется принцип дополнительности, и используются как волновое, так и корпускулярное представления, в зависимости от конкретной ситуации.

В 1929 г. Луи де Бройль за открытие волновой природы электрона был удостоен Нобелевской премии.

В 1986 г. Герду Биннингу и Генриху Рореру совместно с Эрнстом Руска была присуждена Нобелевская премия по физике за создание электронного микроскопа.

Пример №3

Вычислите длину волны де Бройля Фотоны в физике - основные понятия, формулы и определение с примерами для футбольного мяча массой m = 400 г, летящего со скоростью v = 20 Фотоны в физике - основные понятия, формулы и определение с примерами

Фотоны в физике - основные понятия, формулы и определение с примерами

Решение

Длина волны де Бройля Фотоны в физике - основные понятия, формулы и определение с примерами определяется по формуле

Фотоны в физике - основные понятия, формулы и определение с примерами

Ответ: Фотоны в физике - основные понятия, формулы и определение с примерами

Химическое действие света

В веществах под действием света могут происходить химические реакции, которые без освещения (если все остальные условия остаются неизменными) не происходят. Такие реакции называются фотохимическими.

Примерами фотохимических реакций являются реакции фотосинтеза и реакции разложения (диссоциации).

Реакция фотосинтеза заключается в том, что под действием света происходит образование углеводов и выделение кислорода в растениях:

Фотоны в физике - основные понятия, формулы и определение с примерами

Фотосинтез — основа жизни на Земле. Это единственный процесс, в результате которого «органический мир» за счет энергии излучения Солнца пополняет запасы кислорода, расходуемые в процессе жизнедеятельности. По современным представлениям, весь кислород в атмосфере Земли образовался и постоянно пополняется за счет фотосинтеза в листьях растений и зеленых водорослях. Кроме того, эта реакция обеспечивает круговорот углерода в природе, без которого было бы невозможно длительное существование органической жизни на Земле.

Реакция разложения приводит к образованию более простых молекул и атомов под действием света. Например: разложение бромистого серебра

Химическое действие света

Фотоны в физике - основные понятия, формулы и определение с примерами

диссоциация молекул хлора

Фотоны в физике - основные понятия, формулы и определение с примерами

разложение углекислого газа

Фотоны в физике - основные понятия, формулы и определение с примерами

(В реакциях разложения значком (*) обозначены энергетически возбужденные атомы, которые в химии называются активными радикалами.)

Классическая физика не могла объяснить экспериментально установленные закономерности фотохимических реакций. В квантовой физике они нашли четкое объяснение. В 1912 г. Эйнштейн, используя квантовые представления, дал объяснения фотохимических явлений и сформулировал два закона фотохимических реакций.

  1. Каждый поглощенный веществом фотон вызывает превращение одной поглотившей свет молекулы (закон эквивалентности).
  2. Молекула вступает в фотохимическую реакцию под действием фотона лишь в том случае, когда энергия фотона не меньше определенного значения (энергии активации D):

Фотоны в физике - основные понятия, формулы и определение с примерами

Атомы внутри молекулы удерживаются химическими связями, которые при поглощении молекулой фотона с энергией Е разрываются, и в результате молекула распадается. Однако если энергия фотона меньше энергии, необходимой для разрыва молекулярных связей, то фотохимическая реакция не произойдет. Вследствие этого для каждой фотохимической реакции существует «красная граница», т. е. минимальная частота, при которой свет еще химически активен.

Химическим действием света обусловлены реакции фотосинтеза хлоропласта в зеленых частях растений, появление загара у человека, выцветание тканей на солнце, разложение молекул бромистого серебра в светочувствительном слое фотопластинки и т. д. Большую роль играют фотохимические превращения, лежащие в основе зрительного восприятия человека и животных.

Фотохимические реакции лежат в основе фотографического процесса (фотография — светопись) — одного из величайших достижений нашей цивилизации. Он состоит из четырех основных этапов:

  1. фотосъемка — распад молекул бромистого серебра в фотопленке под действием света;
  2. проявление фотопленки — выделение серебра, образовавшегося при световом воздействии;
  3. закрепление фотопленки — удаление бромистого серебра с фотослоя и таким образом предохранение фотослоя от дальнейших изменений под действием света;
  4. копирование — перенос изображения с фотопленки на фотобумагу.

Самое первое упоминание о фотографии на стекле (медная гравюра с изображением папы Пия VII), снятой в Грасе (Франция), содержится в письме французского ученого Жозефа Нисефора Ньепса от 19 июля 1822 г. 7 января 1839 г. принято считать датой рождения фотографии. В этот день на заседании Парижской академии наук ее секретарь Доменик Франсуа Араго доложил об изобретении художника Луи Жака Дагера. «Благодаря стараниям Луи Дагера человечество вознаграждено за настойчивость: свет стал послушным рисовальщиком».

Самая первая фотография с воздуха выполнена в 1858 г. Гаспаром Феликсом Турнашоном с воздушного шара над окраиной Парижа. Самой маленькой является круглая японская камера «Petal» диаметром 2,9 см и толщиной 1,65 см. Ее фокусное расстояние равно 12 мм.

Итоги:

Начало квантовой теории было положено гипотезой Планка, согласно которой излучение и поглощение света веществом происходит не непрерывно, а порциями, или квантами.

Наименьшая порция энергии (квант энергии), которую несет излучение частотой v, определяется по формуле

Е = hv,

где постоянная h — фундаментальная постоянная (постоянная Планка). Ее значение

Фотоны в физике - основные понятия, формулы и определение с примерами

Эйнштейн развил гипотезу Планка, представив, что свет является совокупностью движущихся фотонов.

Модуль импульса фотона определяется соотношением

Фотоны в физике - основные понятия, формулы и определение с примерами

Явление испускания электронов веществом под действием падающего на него света получило название внешнего фотоэффекта. Испускание веществом каких-либо частиц называется эмиссией. Поэтому внешний фотоэффект называют также фотоэлектронной эмиссией (фотоэмиссией), а вылетающие электроны — фотоэлектронами.

Экспериментально установлены следующие законы внешнего фотоэффекта:

  1. Сила фототока насыщения Фотоны в физике - основные понятия, формулы и определение с примерами определяемая максимальным числом фотоэлектронов, вырываемых из катода за единицу времени, прямо пропорциональна интенсивности l падающего излучения.
  2. Максимальная кинетическая энергия Фотоны в физике - основные понятия, формулы и определение с примерами фотоэлектронов не зависит от интенсивности l падающего излучения и линейно возрастает с увеличением частоты v падающего излучения.
  3. Для каждого вещества существует граничная частота vmin такая, что излучение меньшей частоты не может вырывать электроны.

Формула, предложенная Эйнштейном для объяснения внешнего фотоэффекта, имеет вид:

Фотоны в физике - основные понятия, формулы и определение с примерами

Красная граница фотоэффекта — наименьшая частота излучения, при которой наблюдается фотоэффект:

Фотоны в физике - основные понятия, формулы и определение с примерами

зависит только от работы выхода электронов для данного вещества (Фотоны в физике - основные понятия, формулы и определение с примерами > 0), т. е. определяется химической природой вещества и состоянием его поверхности.

Под корпускулярно-волновым дуализмом понимают совокупность волновых и корпускулярных свойств, присущих всем объектам в природе.

Химическое действие света (фотохимические реакции) — химические превращения, происходящие в веществах в результате поглощения света.

Фотоны и действия света

В конце XIX в. многие ученые считали, что развитие физики завершилось. Законы механики и теория всемирного тяготения были известны более 200 лет. К этому времени была развита и стала общепризнанной теория электромагнитного поля, основы которой были заложены Дж. Максвеллом.

Однако к началу XX в. возникли проблемы, касающиеся физической природы излучения и вещества, а также их взаимодействия. В рамках классической физики возникали непреодолимые противоречия при объяснении экспериментальных данных для процессов поглощения и испускания света атомами, закономерностей испускания электромагнитного излучения нагретыми телами, фотоэффекта и т. п.

Анализ этих противоречий привел физиков в начале XX в. к научной революции, которая коренным образом изменила взгляды ученых на объекты микромира — атом, его ядро и элементарные частицы. В течение последующих 30 лет были заложены основы современной квантовой физики, пришедшей на смену классической физике при рассмотрении явлений на атомном и внутриатомном (субатомном) уровнях. В следующих двух главах (5-й и 6-й) рассматриваются основные вопросы квантовой физики.

Экспериментальные законы внешнего фотоэффекта и квантовая гипотеза Планка

Сила тока Фотоны в физике - основные понятия, формулы и определение с примерами — скалярная физическая величина, равная отношению заряда Фотоны в физике - основные понятия, формулы и определение с примерами  прошедшего за промежуток времени Фотоны в физике - основные понятия, формулы и определение с примерами через поперечное сечение проводника, к этому промежутку: Фотоны в физике - основные понятия, формулы и определение с примерами

Наше зрительное восприятие физических явлений в окружающем мире определяется взаимодействием света с веществом. Воздействие света на вещество состоит в поглощении им световой энергии, приносимой излучением, т. е. первичным процессом является поглощение света. Такое взаимодействие, например в сетчатке глаза, приводит к зрительным ощущениям.

При падении света на поверхность непрозрачного предмета часть излучения проникает в него и поглощается, другая часть отражается от поверхности, и мы видим предмет в отраженном свете. Более темные поверхности поглощают свет сильнее, чем более светлые. Доля отраженного от поверхности света зависит от длины волны.

Для прозрачной среды, например стекла, при падении на него световой волны главным результатом взаимодействия является ее отражение и преломление, а поглощением электромагнитной энергии в видимом диапазоне можно пренебречь. Именно поэтому среда и воспринимается зрительно как прозрачная.

Мы видим не только тела, которые отражают или рассеивают свет, но и тела, которые светятся сами, например Солнце, другие звезды, пламя. Электромагнитное излучение испускают все тела, причем его интенсивность зависит от температуры их поверхности. В видимом диапазоне спектра излучение достаточной интенсивности, позволяющее видеть предмет, возникает, если температура поверхности предмета намного больше комнатной.

Взаимодействие электромагнитных волн с веществом приводит и к другим физическим явлениям, изучение которых помогло выяснить природу света.

В 1887 г. Генрих Герц обнаружил, что пробой воздушного промежутка между электродами искрового разрядника происходит при меньшем напряжении, если освещать отрицательно заряженный электрод ультрафиолетовым излучением. Дальнейшие эксперименты показали, что отрицательно заряженная цинковая пластинка при облучении ультрафиолетовым излучением (рис. 107, а) разряжается. Оба эти явления можно объяснить, предполагая, что под действием падающего излучения из металла вылетают отрицательно заряженные частицы — электроны (рис. 107, б). Это явление получило название фотоэффекта.

Фотоэффектом (фотоэлектрическим эффектом) называется явление взаимодействия электромагнитного излучения с веществом, в результате которого энергия излучения передается электронам вещества, что приводит к разрыву связей электронов и ядер в атомах.
Фотоны в физике - основные понятия, формулы и определение с примерами

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним фотоэффектом. При внутреннем фотоэффекте часть электронов, находящихся в веществе в связанном состоянии, переходят в свободное состояние, увеличивая концентрацию носителей тока.

Испускание веществом каких-либо частиц называется эмиссией. Поэтому внешний фотоэффект называют также фотоэлектронной эмиссией (фотоэмиссией).

Фотоны в физике - основные понятия, формулы и определение с примерами (фотос) по-гречески означает «свет».

Систематическое изучение фотоэффекта было проведено в 1888—1889 гг. русским физиком Александром Григорьевичем Столетовым.

Установка для изучения внешнего фотоэффекта представлена на рисунке 108, а. В экспериментах Столетова в электрическую цепь был включен конденсатор, одна из обкладок которого была изготовлена из медной сетки, а вторая — представляла собой цинковую пластинку. Медная сетка была заряжена положительно, а цинковая пластинка — отрицательно. Наблюдения показали, что под действием падающего ультрафиолетового излучения в цепи возникает электрический ток. Этот ток называется фототоком.

Изменяя напряжение Фотоны в физике - основные понятия, формулы и определение с примерами между пластинами Фотоны в физике - основные понятия, формулы и определение с примерами с помощью реостата (рис. 108,6), Столетов исследовал зависимость силы фототока Фотоны в физике - основные понятия, формулы и определение с примерами от напряжения Фотоны в физике - основные понятия, формулы и определение с примерами (вольт-амперную характеристику). Как видно из представленной на рисунке 108, в зависимости, даже при отсутствии разности потенциалов между пластинами в цепи проходит фототок. Так как скорости электронов, испускаемых катодом, различны как по модулю, так и по направлению, то не все они при малых значениях напряжения могут достигнуть анода.
Фотоны в физике - основные понятия, формулы и определение с примерами

При увеличении напряжения сила фототока растет до некоторого максимального значения Фотоны в физике - основные понятия, формулы и определение с примерами которое называется фототоком насыщения. Оно определяется при таком значении напряжения, при котором все электроны, испускаемые катодом, достигают анода. Дальнейшее увеличение напряжения не приводит к росту силы фототока. Изменение полярности напряжения приводит к исчезновению фототока при напряжении Фотоны в физике - основные понятия, формулы и определение с примерами которое называется задерживающим напряжением.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового излучения. Однако некоторые металлы, например литий, натрий и калий, испускают электроны и при их облучении видимым светом.

Экспериментально установлены следующие законы внешнего фотоэффекта.

1. Сила фототока насыщения Фотоны в физике - основные понятия, формулы и определение с примерами прямо пропорциональна интенсивности Фотоны в физике - основные понятия, формулы и определение с примерами падающего излучения (первый закон фотоэффекта).

Вольт-амперная характеристика фотоэффекта показана на рисунке 108, в и 109, а, а зависимость силы фототока насыщения Фотоны в физике - основные понятия, формулы и определение с примерами от интенсивности падающего излучения Фотоны в физике - основные понятия, формулы и определение с примерами — на рисунке 109, б.

Из графика зависимости Фотоны в физике - основные понятия, формулы и определение с примерами (график выходит из начала координат), приведенного на рисунке 109, б, видно, что сила фототока насыщения равна нулю Фотоны в физике - основные понятия, формулы и определение с примерами только при отсутствии излучения. Иными словами, фотоэффект наблюдается даже при малых значениях интенсивности падающего излучения.

2. Максимальная кинетическая энергия Фотоны в физике - основные понятия, формулы и определение с примерами фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты v падающего излучения (второй закон фотоэффекта).
Фотоны в физике - основные понятия, формулы и определение с примерами

Подчеркнем, что кинетическая энергия фотоэлектронов, вылетающих из фотокатода, изменяется в некотором диапазоне от нуля до Фотоны в физике - основные понятия, формулы и определение с примерами так как фотоэлектроны часть своей энергии, полученной от падающего излучения, передают частицам вещества до вылета с его поверхности.

На рисунке 110 представлена зависимость Фотоны в физике - основные понятия, формулы и определение с примерами от частоты падающего излучения.

Фотоны в физике - основные понятия, формулы и определение с примерами

3. Для каждого вещества существует граничная частота Фотоны в физике - основные понятия, формулы и определение с примерами такая, что излучение меньшей частоты не может вырывать электроны из его поверхности (третий закон фотоэффекта).

Эта минимальная частота Фотоны в физике - основные понятия, формулы и определение с примерами называется красной границей фотоэффекта. Такое название связано с тем, что минимальной частотой излучения в видимом диапазоне обладает излучение, соответствующее красному цвету.

Красная граница фотоэффекта для различных веществ совсем не обязательно соответствует красному цвету. Например, для рубидия она соответствует желтому цвету, для кальция — синему, а для некоторых веществ может вообще находиться в инфракрасной или ультрафиолетовой областях спектра.

На рисунке 111 приведены экспериментальные зависимости максимальной кинетической энергии фотоэлектронов Фотоны в физике - основные понятия, формулы и определение с примерами от частоты падающего излучения для цезия, рубидия, магния и серебра. Как видно из рисунка 111, экспериментальные прямые параллельны друг другу, причем точки пересечения графиков с осью абсцисс (частот) определяют красные границы фотоэффекта для каждого из них.

При частотах, больших Фотоны в физике - основные понятия, формулы и определение с примерами излучение даже очень малой интенсивности вызывает фотоэффект. Кроме того, между
Фотоны в физике - основные понятия, формулы и определение с примерами

моментом включения источника излучения и вылетом электронов фактически нет задержки во времени: электроны вылетают из вещества через промежуток времени порядка Фотоны в физике - основные понятия, формулы и определение с примерами с после начала облучения.

Следует заметить, что к моменту открытия фотоэффекта в 1887 г. еще ничего не было известно об электронах, открытых Дж. Томсоном только в 1897 г.

В 1898 г. Филиппом Ленардом и Джозефом Джоном Томсоном было определено отношение заряда Фотоны в физике - основные понятия, формулы и определение с примерами частицы, вылетающей с поверхности металла при фотоэффекте, к ее массе Фотоны в физике - основные понятия, формулы и определение с примерами (так называемый удельный заряд — Фотоны в физике - основные понятия, формулы и определение с примерами по ее отклонению в электрическом и магнитном полях. Эти измерения дали то же

значение, что и отношение заряда электрона к его массе Фотоны в физике - основные понятия, формулы и определение с примерами

Таким образом, было доказано, что выбиваемые светом заряженные частицы — электроны.

За работы по определению удельного заряда электрона Фотоны в физике - основные понятия, формулы и определение с примерами приведшие к открытию первой элементарной частицы — электрона, Дж. Томсон в 1906 г. был удостоен Нобелевской премии по физике.

Установленные экспериментально законы фотоэффекта невозможно объяснить на основе представлений о том, что свет — это электромагнитная волна. На основе этих представлений можно объяснить только первый из приведенных экспериментальных законов фотоэффекта: чем больше энергия падающего света, тем больше электронов вылетает из вещества. Объяснить 2-й и 3-й законы фотоэффекта в рамках классической теории излучения невозможно.

Так, например, непонятно, почему максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения. Невозможно также объяснить существование красной границы фотоэффекта. Действительно, даже при малой частоте падающего излучения, но при длительном воздействии электромагнитной волны на электрон ему можно сообщить энергию, необходимую для выхода из вещества. Следовательно, красная граница фотоэффекта не должна существовать. Все эти противоречия были сняты квантовой теорией.

Квантовые представления были впервые введены немецким физиком Максом Планком при разработке теории теплового излучения. Планк сделал фундаментальное предположение, что энергия любой колебательной системы, совершающей гармонические колебания с частотой Фотоны в физике - основные понятия, формулы и определение с примерами (осциллятора), может принимать лишь определенные дискретные значения, отличающиеся на целое число элементарных порций — квантов энергии:

Фотоны в физике - основные понятия, формулы и определение с примерами

где Фотоны в физике - основные понятия, формулы и определение с примерами — целое положительное число, Фотоны в физике - основные понятия, формулы и определение с примерами — коэффициент пропорциональности, который называют постоянной Планка. Это фундаментальная постоянная. Ее значение:

Фотоны в физике - основные понятия, формулы и определение с примерами

 Приближенное значение постоянной Планка, применяемое при решении задач:

Фотоны в физике - основные понятия, формулы и определение с примерами

Слово квант происходит от латинского слова «quantum» — «сколько» или «как много». Это слово, вообще, обозначает часть, долю или неделимую порцию. Планк поэтически назвал новую фундаментальную постоянную Фотоны в физике - основные понятия, формулы и определение с примерами «таинственным послом из реального мира».

Следовательно, отдельный осциллятор может обладать не любой энергией, а лишь энергией, кратной Фотоны в физике - основные понятия, формулы и определение с примерами Таким образом впервые появилась идея о квантовании энергии.

14 декабря 1900 г. Планк доложил свои результаты на заседании Немецкого физического общества. Этот день и считают днем рождения квантовых представлений. Появился квант энергии как дискретная порция энергии. Планк относил дискретность энергии к свойствам вещества, а излучение рассматривалось как электромагнитные волны.

После выдвижения гипотезы Планком (1900 г.) началось интенсивное развитие квантовых представлений в физике, которые к 1925—1928 гг. превратились в стройную и логичную квантовую теорию, открывшую «новую эру» в развитии физики.

Фотон и уравнение Эйнштейна для фотоэффекта

Электронвольт — энергия, которую приобретет частица с зарядом, равным элементарному, при перемещении между двумя точками с ускоряющей разностью потенциалов Фотоны в физике - основные понятия, формулы и определение с примерами

Развивая идеи М. Планка, А. Эйнштейн в 1905 г. для объяснения экспериментальных законов внешнего фотоэффекта выдвинул гипотезу о дискретности самого электромагнитного излучения — свет излучается, поглощается и распространяется в виде отдельных порций (квантов). Он рассмотрел элементарные процессы поглощения и испускания этих квантов.

По гипотезе Эйнштейна, монохроматическое электромагнитное излучение частотой Фотоны в физике - основные понятия, формулы и определение с примерами обладает не только волновыми свойствами, но и свойствами, характерными для потока частиц. Каждая такая частица движется со скоростью света Фотоны в физике - основные понятия, формулы и определение с примерами и несет квант энергии Фотоны в физике - основные понятия, формулы и определение с примерами Назвать эти частицы фотонами предложил в 1928 г. американский физик Артур Комптон.

Энергия фотона может быть выражена через длину волны Фотоны в физике - основные понятия, формулы и определение с примерами

Фотоны в физике - основные понятия, формулы и определение с примерами

Как следует из формул (2) § 25, Фотоны в физике - основные понятия, формулы и определение с примерами Тогда модуль импульса фотона Фотоны в физике - основные понятия, формулы и определение с примерами определяется выражением:

Фотоны в физике - основные понятия, формулы и определение с примерами

Следовательно, для фотона:

Фотоны в физике - основные понятия, формулы и определение с примерами

Но согласно СТО (см. § 25) энергия и импульс любой частицы связаны соотношением:

Фотоны в физике - основные понятия, формулы и определение с примерами

При подстановке в эту формулу энергии фотона Фотоны в физике - основные понятия, формулы и определение с примерами находим, что масса фотона равна нулю Фотоны в физике - основные понятия, формулы и определение с примерами

Оказывается, что фотон — это удивительная частица, которая обладает энергией Фотоны в физике - основные понятия, формулы и определение с примерами импульсом Фотоны в физике - основные понятия, формулы и определение с примерами но вследствие того, что скорость его движения всегда равна скорости распространения света, его масса равна нулю Фотоны в физике - основные понятия, формулы и определение с примерами Такие частицы называют безмассовыми.

Фотон является элементарной частицей, только в отличие от других элементарных частиц он не имеет массы, а потому «обречен» всегда двигаться со скоростью распространения света.

Таким образом, фотон обладает следующими свойствами:

существует только в движении;

  • является без массовой частицей Фотоны в физике - основные понятия, формулы и определение с примерами
  • электрически нейтрален Фотоны в физике - основные понятия, формулы и определение с примерами
  • модуль его скорости движения равен модулю скорости распространения света в вакууме Фотоны в физике - основные понятия, формулы и определение с примерами во всех ИСО;
  • его энергия пропорциональна частоте соответствующего электромагнитного излучения Фотоны в физике - основные понятия, формулы и определение с примерами
  • модуль импульса фотона равен отношению его энергии к модулю скорости движения Фотоны в физике - основные понятия, формулы и определение с примерами

Рассмотрим объяснение экспериментальных законов фотоэффекта, предложенное Эйнштейном на основе квантовых представлений. При освещении электрода электромагнитным излучением (см. рис. 109) происходит взаимодействие фотонов с электронами вещества. Если энергия фотона Фотоны в физике - основные понятия, формулы и определение с примерами достаточно велика, то какой-либо из электронов после поглощения фотона может получить энергию, достаточную для того, чтобы покинуть облучаемое тело. Электроны, покинувшие образец, имеют некоторую скорость, поэтому даже при отсутствии напряжения между электродами сила фототока не равна нулю. Именно поэтому вольт-амперная характеристика фотоэффекта при напряжении, равном нулю, не проходит через нуль (см. рис. 109, а).

Для того чтобы покинуть вещество, электрон должен совершить работу против сил связи электрона с атомами вещества. Она называется работой выхода и обозначается Фотоны в физике - основные понятия, формулы и определение с примерами Для металлов эта работа связана с преодолением сил взаимодействия электронов с положительно заряженными ионами кристаллической решетки, которые удерживают электрон в веществе. Работа выхода для металлов обычно составляет несколько электронвольт (табл. 8).

Оставшаяся часть энергии поглощенного кванта составляет кинетическую энергию освободившегося электрона. Наибольшей кинетической энергией 

Фотоны в физике - основные понятия, формулы и определение с примерами

будут обладать те электроны, которые поглотят кванты света вблизи поверхности металла и вылетят из него, не успев потерять энергию при столкновениях с другими частицами в металле.

На основе закона сохранения энергии можно записать следующее уравнение для фотоэлектрона:
Фотоны в физике - основные понятия, формулы и определение с примерами
Это соотношение называют уравнением Эйнштейна для внешнего фотоэффекта.

Отметим, что Фотоны в физике - основные понятия, формулы и определение с примерами — это максимальная кинетическая энергия электрона Фотоны в физике - основные понятия, формулы и определение с примерами которой он может обладать, вылетев из вещества. Из-за различных потерь энергия электрона может быть меньше расчетного значения.

Если энергия фотонов очень велика (для рентгеновского или Фотоны в физике - основные понятия, формулы и определение с примерами-излучения), то скорости фотоэлектронов сравнимы со скоростью света Фотоны в физике - основные понятия, формулы и определение с примерами В этом случае для кинетической энергии фотоэлектрона необходимо использовать релятивистское выражение:

Фотоны в физике - основные понятия, формулы и определение с примерами
Используя уравнение Эйнштейна, можно объяснить экспериментальные законы фотоэффекта.

Объяснение первого закона фотоэффекта

Сила фототока насыщения пропорциональна общему числу фотоэлектронов, покидающих поверхность металла за единицу времени. Число таких фотоэлектронов пропорционально числу фотонов, падающих на поверхность за это же время. Именно пропорционально, а не равно, так как часть квантов света поглощается кристаллической решеткой, и их энергия переходит во внутреннюю энергию металла. Увеличение интенсивности падающего света приводит к росту числа фотоэлектронов, покидающих поверхность металла.

Объяснение второго закона фотоэффекта

Фотоэлектрон вырывается из катода за счет действия одного кванта падающего излучения. Поэтому кинетическая энергия фотоэлектрона зависит не от полной энергии волны, а от энергии одного кванта, т. е. частоты Фотоны в физике - основные понятия, формулы и определение с примерами При увеличении частоты Фотоны в физике - основные понятия, формулы и определение с примерами падающего света максимальная кинетическая энергия Фотоны в физике - основные понятия, формулы и определение с примерами фотоэлектронов возрастает линейно, как следует из уравнения Эйнштейна для фотоэффекта (3), согласно соотношению:

Фотоны в физике - основные понятия, формулы и определение с примерами

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то сила тока уменьшится, так как теперь фотоэлектронам, кроме работа выхода, придется совершать дополнительную работу против сил электрического поля.

При некотором отрицательном значении напряжения Фотоны в физике - основные понятия, формулы и определение с примерами электроны затормаживаются и, не достигнув поверхности анода, возвращаются на катод. Сила тока в цепи при этом будет равна нулю (рис. 112). Величину Фотоны в физике - основные понятия, формулы и определение с примерами при которой сила тока в цепи равна нулю, называют задерживающим напряжением. Следовательно, вся кинетическая энергия электронов затрачивается на работу против сил электрического поля. При этом максимальная кинетическая энергия электронов выражается через задерживающее напряжение следующим образом:

Фотоны в физике - основные понятия, формулы и определение с примерами

Объяснение третьего закона фотоэффекта

Если частота Фотоны в физике - основные понятия, формулы и определение с примерами падающего излучения меньше граничной частоты Фотоны в физике - основные понятия, формулы и определение с примерами при которой Фотоны в физике - основные понятия, формулы и определение с примерами то испускания электронов не происходит. Таким образом, фотоэффект отсутствует, если частота излучения оказывается меньше некоторой характерной для данного вещества величины Фотоны в физике - основные понятия, формулы и определение с примерами

Следовательно, красную границу фотоэффекта можно найти из условия:

Фотоны в физике - основные понятия, формулы и определение с примерами
Она зависит только от работы выхода электронов, т. е. определяется строением металла и состоянием его поверхности.

Длина волны Фотоны в физике - основные понятия, формулы и определение с примерами излучения, соответствующая красной границе фотоэффекта, может быть определена из соотношения:

Фотоны в физике - основные понятия, формулы и определение с примерами

Подставляя в уравнение (3) выражения (5) и (6), найдем зависимость задерживающего напряжения от частоты падающего света:

Фотоны в физике - основные понятия, формулы и определение с примерами

Находя тангенс угла наклона Фотоны в физике - основные понятия, формулы и определение с примерами прямых линий на рисунке 111, можно из соотношения (8) с учетом (5) вычислить постоянную Планка:

Фотоны в физике - основные понятия, формулы и определение с примерами

а по точкам пересечения продолжения графиков с осями Фотоны в физике - основные понятия, формулы и определение с примерами — найти работу выхода Фотоны в физике - основные понятия, формулы и определение с примерами и красную границу Фотоны в физике - основные понятия, формулы и определение с примерами

В 1921 г. при присуждении Альберту Эйнштейну Нобелевской премии в решении Нобелевского комитета указывалось, что «премией особенно отмечается объяснение законов фотоэлектрического эффекта».

Пример №4

Монохроматический свет длиной волны Фотоны в физике - основные понятия, формулы и определение с примерами падает на поверхность натрия. Определите: а) энергию Фотоны в физике - основные понятия, формулы и определение с примерами фотона этого света; б) модуль импульса Фотоны в физике - основные понятия, формулы и определение с примерами фотона падающего света; в) красную границу Фотоны в физике - основные понятия, формулы и определение с примерами фотоэффекта для натрия; г) максимальную кинетическую энергию Фотоны в физике - основные понятия, формулы и определение с примерами фотоэлектронов.

Дано: 

Фотоны в физике - основные понятия, формулы и определение с примерами

Фотоны в физике - основные понятия, формулы и определение с примерами

Решение а) Энергия фотона:

Фотоны в физике - основные понятия, формулы и определение с примерами

б) Модуль импульса фотона:

Фотоны в физике - основные понятия, формулы и определение с примерами

в) Красная граница связана с работой выхода соотношением:

Фотоны в физике - основные понятия, формулы и определение с примерами

г) Из уравнения Эйнштейна для внешнего фотоэффекта находим, что максимальная кинетическая энергия вылетевшего электрона:

Фотоны в физике - основные понятия, формулы и определение с примерами

Ответ: Фотоны в физике - основные понятия, формулы и определение с примерамиФотоны в физике - основные понятия, формулы и определение с примерами

Давление света и корпускулярно-волновой дуализм

Словечко громкое всегда Из затрудненья вас выводит! И. Гете «Фауст»

Давлением называется скалярная физическая величина, численно равная отношению модуля силы, действующей по нормали к площадке, к ее площади Фотоны в физике - основные понятия, формулы и определение с примерами В СИ единицей давления является 1 паскаль (Па): Фотоны в физике - основные понятия, формулы и определение с примерами

Из законов механики следует, что тело при ударе о некоторую поверхность оказывает на нее механическое давление, обусловленное изменением импульса тела. Причем давление тела на поверхность оказывается в случае как упругого, так и не упругого удара. А будет ли возникать подобный эффект при отражении и поглощении света некоторой поверхностью? Иными словами, оказывает ли свет давление на поверхность, с которой взаимодействует? После завершения построения Дж. Максвеллом волновой теории света ответы на эти вопросы стали очевидными. Свет как электромагнитная волна обладает энергией и импульсом и поэтому оказывает давление на поверхность, на которую он падает.

Объяснить давление света можно следующим образом. Электрическое поле напряженностью Фотоны в физике - основные понятия, формулы и определение с примерами электромагнитной волны, падающей на поверхность проводника, вызывает движение электронов вещества под действием электрической силы в направлении, противоположном Фотоны в физике - основные понятия, формулы и определение с примерами Магнитное поле волны индукцией Фотоны в физике - основные понятия, формулы и определение с примерами действует на движущиеся частицы с силой Лоренца Фотоны в физике - основные понятия, формулы и определение с примерами которая в данном случае будет направлена внутрь вещества (рис. 114) и совпадает с направлением распространения света. Суммарная сила, действующая на все электроны со стороны электромагнитной волны, и есть сила давления света.

В 1873 г. Максвелл вычислил световое давление, используя разработанную им теорию электромагнитного поля. Он показал, что если свет, падающий перпендикулярно на зеркальную поверхность площадью Фотоны в физике - основные понятия, формулы и определение с примерами приносит за промежуток времени Фотоны в физике - основные понятия, формулы и определение с примерами с энергию Фотоны в физике - основные понятия, формулы и определение с примерами то он оказывает на данную поверхность давление:

Фотоны в физике - основные понятия, формулы и определение с примерами

где Фотоны в физике - основные понятия, формулы и определение с примерами — модуль скорости распространения света. Поскольку для солнечного излучения Фотоны в физике - основные понятия, формулы и определение с примерами то модуль силы давления, с которой солнечное излучение действует при нормальном падении на зеркальную поверхность площадью Фотоны в физике - основные понятия, формулы и определение с примерамиФотоны в физике - основные понятия, формулы и определение с примерами равен Фотоны в физике - основные понятия, формулы и определение с примерами

При нормальном падении света на черную (поглощающую) поверхность модуль соответствующей силы давления Фотоны в физике - основные понятия, формулы и определение с примерами Следовательно, сила, с которой солнечное излучение действует на черную поверхность площадью Фотоны в физике - основные понятия, формулы и определение с примерами в два раза меньше, чем на зеркальную, и составляет Фотоны в физике - основные понятия, формулы и определение с примерами

Давление света можно объяснить и с квантовой точки зрения. Рассмотрим свет как поток фотонов энергией Фотоны в физике - основные понятия, формулы и определение с примерами падающих нормально на зеркальную поверхность (рис. 115, а) и приносящих за промежуток времени Фотоны в физике - основные понятия, формулы и определение с примерами с на площадь Фотоны в физике - основные понятия, формулы и определение с примерами энергию, равную Фотоны в физике - основные понятия, формулы и определение с примерами

Число Фотоны в физике - основные понятия, формулы и определение с примерами этих фотонов определяется из условия Фотоны в физике - основные понятия, формулы и определение с примерами

Фотоны в физике - основные понятия, формулы и определение с примерами
Фотоны в физике - основные понятия, формулы и определение с примерами

При отражении от зеркала фотон испытывает «упругий» удар, при котором происходит изменение направления импульса фотона на противоположное (рис. 115, б). Модуль этого изменения:

Фотоны в физике - основные понятия, формулы и определение с примерами

Соответственно, модуль изменения импульса потока фотонов, падающих на зеркало площадью Фотоны в физике - основные понятия, формулы и определение с примерами за промежуток времени Фотоны в физике - основные понятия, формулы и определение с примерами

Фотоны в физике - основные понятия, формулы и определение с примерами

Изменение импульса потока фотонов вызвано силой Фотоны в физике - основные понятия, формулы и определение с примерами действующей на фотоны со стороны зеркала. Модуль этой силы и модуль силы, действующей со стороны потока фотонов (т. е. света) на зеркало, находится из закона изменения импульса: 

Фотоны в физике - основные понятия, формулы и определение с примерами

Следовательно, давление света на зеркало:

Фотоны в физике - основные понятия, формулы и определение с примерами

что совпадает с результатом, полученным Максвеллом.

При падении света на полностью поглощающую (черную) поверхность изменение импульса фотона будет в 2 раза меньше, так как

Фотоны в физике - основные понятия, формулы и определение с примерами

Соответственно, и давление света в этом случае будет в 2 раза меньше:

Фотоны в физике - основные понятия, формулы и определение с примерами

Пусть из полного числа Фотоны в физике - основные понятия, формулы и определение с примерами фотонов, падающих на единичную поверхность за Фотоны в физике - основные понятия, формулы и определение с примерами отражается Фотоны в физике - основные понятия, формулы и определение с примерами фотонов Фотоны в физике - основные понятия, формулы и определение с примерами называется коэффициентом отражения), а Фотоны в физике - основные понятия, формулы и определение с примерами фотонов поглощается. Тогда сообщаемый ими единице поверхности импульс, численно равный давлению, находится по формуле:

Фотоны в физике - основные понятия, формулы и определение с примерами

Русский физик Петр Николаевич Лебедев в 1899 г. впервые измерил световое давление. Он подвесил на тонкой нити коромысло с парой крылышек на концах (рис. 116), поверхность у одного из которых была зачерненной, обеспечивая почти полное поглощение Фотоны в физике - основные понятия, формулы и определение с примерами а у другого — зеркальной Фотоны в физике - основные понятия, формулы и определение с примерами Подвес с крылышками образовал чувствительные крутильные весы, которые помещались в сосуд, воздух из которого был откачан.

В опытах свет поочередно направлялся на каждое из крылышек коромысла. При этом он практически полностью отражался от зеркальной поверхности и практически полностью поглощался зачерненной поверхностью. Вследствие этого, давление света на зеркальное крылышко было примерно вдвое больше, чем на зачерненное. Соответственно, больше был и момент сил, поворачивающий коромысло при падении света на зеркальную поверхность (см. рис. 116). Измеряя угол поворота коромысла под действием света в обоих случаях, можно было судить о силе, действовавшей на крылышки, а следовательно, определить световое давление.

Фотоны в физике - основные понятия, формулы и определение с примерами

 О сложности и тщательности подготовки и проведения измерений говорит тот факт, что при освещении крылышек светом в обычных условиях возникают силы, которые по величине превосходят силу давления света в тысячи раз. Основными являются силы, возникающие вследствие действия конвекционных потоков газа, и радиометрического действия.

Радиометрическое действие возникает вследствие разности температур освещенной и неосвещенной сторон крылышка в разреженном газе. Молекулы газа, остающиеся в баллоне, отражаются от более нагретой стороны с большей скоростью, и вследствие отдачи крылышки стремятся повернуться в том же направлении, что и под действием светового давления. Радиометрическое действие уменьшается, если применять очень тонкие металлические крылышки для уменьшения разности температур и увеличить разрежение газа в баллоне.

Измерения Лебедева дали величин}’ светового давления, согласующуюся с теорией Максвелла с погрешностью до 20 %. В 1923 г. немецкий физик Вальтер Герлах, используя более совершенные методы получения вакуума, повторил опыты Лебедева. Ему удалось получить результаты, согласующиеся с теоретическими значениями с погрешностью до 2 %.

Факт существования светового давления имеет большое значение, так как доказывает наличие у света не только энергии, но и импульса. Это свидетельствует о материальности электромагнитного излучения, представляющего собой еще одну форму существования материи — в виде электромагнитного поля.

Несмотря на сравнительно малое значение в обычных условиях, световое давление играет существенную роль в природе: препятствует гравитационному сжатию звезд, ориентирует хвосты комет в сторону от Солнца (рис. I 17), сокращает срок службы искусственных спутников Земли вследствие постепенного уменьшения радиуса их орбиты. Еще в 1604 г. немецкий астроном Иоганн Кеплер объяснил изогнутую форму хвоста кометы действием сил светового давления со стороны Солнца.

Фотоны в физике - основные понятия, формулы и определение с примерамиФотоны в физике - основные понятия, формулы и определение с примерами

В настоящее время активно обсуждаются и реализуются проекты космических кораблей — «парусников», которые приводятся в движение «солнечным ветром».
Еще со времен Исаака Ньютона и Христиана Гюйгенса (XVII в.) представления о природе света были противоречивы. Одни ученые, во главе с Ньютоном, считали свет потоком частиц — корпускул, другие, вслед за Гюйгенсом, полагали, что свет представляет собой не что иное, как волны.

«Корпускула» от латинского слова corpusculum — маленькая частица.

До начала XIX в. обе точки зрения отстаивались с переменным успехом. Так, исходя из гипотезы о корпускулах, можно было объяснить законы прямолинейного распространения и отражения света, а такие явления, как интерференция и дифракция, объяснялись только его волновыми свойствами.

Однако в XX в. было установлено, что в целом ряде явлений, таких как, например, фотоэффект, свет ведет себя как совокупность частиц с определенной энергией и импульсом. Одновременное наличие у объекта волновых и корпускулярных свойств получило название корпускулярно-волнового дуализма.

В одних процессах в большей мере проявляются волновые свойства света, в других — корпускулярные. Долгое время природа этого дуализма была совершенно непонятна, и он казался искусственным объединением противоречивых свойств материи.

Только после создания квантовой механики выяснилось, что «раздвоение личности» света закономерно и представляет собой проявление специфических свойств, присущих микромиру в целом.

Французский физик Луи де Бройль в 1923 г. высказал смелое предположение, что корпускулярно-волновой дуализм должен иметь место для всех микрообъектов.

В своей теоретической статье «Кванта света, дифракция и интерференция» (1923 г.) де Бройль уверенно предсказал, что «Дифракционные явления обнаружатся и в потоке электронов, проходящих сквозь достаточно малое отверстие».

В квантовой физике с каждой материальной частицей связывают волну, распространяющуюся в направлении движения частицы, которую называют волной де Бройля, а длину этой волны называют дебройлевской длиной волны. Частота Фотоны в физике - основные понятия, формулы и определение с примерами связана с энергией Фотоны в физике - основные понятия, формулы и определение с примерами частицы соотношением Фотоны в физике - основные понятия, формулы и определение с примерами Де Бройль нашел, что модуль импульса Фотоны в физике - основные понятия, формулы и определение с примерами частицы должен выражаться через ее длину волны Фотоны в физике - основные понятия, формулы и определение с примерами так же, как у света:

Фотоны в физике - основные понятия, формулы и определение с примерами

Это соотношение «узаконивает» корпускулярно-волновой дуализм, поскольку всякому объекту, имеющему импульс Фотоны в физике - основные понятия, формулы и определение с примерами независимо от его природы ставят в соответствие волновой процесс с длиной волны

Фотоны в физике - основные понятия, формулы и определение с примерами

Оно также позволяет определить, в каких явлениях волновые свойства существенны, а в каких — нет. Для макроскопических объектов их модуль импульса как правило очень велик. Соответственно, в этом случае длина волны мала — много меньше размеров самого тела, и волновые свойства становятся незаметными.

Гипотеза де Бройля о наличии волновых свойств у электрона и других микрочастиц была проверена экспериментально.

Поскольку дифракция света наблюдается на решетках, период которых сравним с длиной волны Фотоны в физике - основные понятия, формулы и определение с примерами то для наблюдения дифракции электронов следует выбирать решетки с соответствующим периодом. Например, каждому из электронов в пучке, прошедшем между обкладками конденсатора, заряженного до напряжения Фотоны в физике - основные понятия, формулы и определение с примерами соответствует энергия Фотоны в физике - основные понятия, формулы и определение с примерами и его дебройлевская длина волны Фотоны в физике - основные понятия, формулы и определение с примерами Поэтому для обнаружения волновых свойств электронов необходимо в качестве дифракционной решетки использовать кристаллы, представляющие собой упорядоченные структуры, расстояния между атомами которых Фотоны в физике - основные понятия, формулы и определение с примерами

В 1927 г. американские физики Клинтон Дэвиссон и Люстер Джермер впервые наблюдали дифракцию электронов на кристалле никеля. На рисунке 118 представлена фотография дифракционной картины электронов на слюде.

Современные эксперименты позволяют наблюдать процесс образования дифракционной картины при последовательном увеличении числа электронов, проходящих через щель, а компьютерное моделирование этого процесса представлено на рисунке 119.

Фотоны в физике - основные понятия, формулы и определение с примерами

Способность к интерференции и дифракции была обнаружена не только у электронов, но и у других частиц — протонов, нейтронов и альфа-частиц.

Волновые свойства частиц нашли свое применение в электронной оптике, занимающейся исследованием, построением и использованием электронных пучков для получения изображений.

Так, использование волновых свойств пучка электронов позволило создать новое поколение микроскопов — электронные микроскопы (рис. 120), значительно превосходящие по степени увеличения оптические микроскопы вследствие того, что дебройлевская длина волны электронов гораздо меньше длины волны видимого света.

Фотоны в физике - основные понятия, формулы и определение с примерами

Уже первый электронный просвечивающий микроскоп (Э. Руска, 1933 г.) позволял изучать детали в десять раз меньшие, чем те, которые способны разрешать самые «мощные» оптические микроскопы. Дальнейшие исследования позволили сотрудникам лаборатории фирмы IBM в Цюрихе (Швейцария) Г. Биннингу и Г. Рореру в 1981 г. создать электронный сканирующий туннельный микроскоп, позволяющий рассмотреть даже «отдельный» атом.

В мае 2013 г. международная группа ученых (Германия, Греция, Нидерланды, США, Франция) с помощью фотоионизационного микроскопа сумела «сфотографировать» отдельный атом водорода. Ученым удалось получить прямое изображение самого легкого и самого маленького из всех атомов (рис. 121).

Датский физик Нильс Бор сформулировал принцип дополнительности, который утверждал, что для описания свойств материи (как поля, так и вещества) необходим учет как волновых, так и корпускулярных свойств.

Таким образом, корпускулярно-волновой дуализм присущ не только электромагнитному излучению, но и элементарным частицам. На них также распространяется и принцип дополнительности, в соответствии с которым используются как волновые, так и корпускулярные представления в зависимости от конкретной ситуации.

В 1929 г. Луи де Бройль за открытие волновой природы электрона был удостоен Нобелевской премии.

В 1986 г. Герду Биннингу и Гейнриху Рореру совместно с Эрнстом Руска была присуждена Нобелевская премия по физике за создание электронного микроскопа.

Итоги:

Раздел физики, описывающий физические явления на атомном и внутриатомном (субатомном) уровнях, называется квантовой физикой.

Энергия колебательной системы (осциллятора), совершающей гармонические колебания с частотой Фотоны в физике - основные понятия, формулы и определение с примерами может, согласно гипотезе Планка, принимать лишь определенные дискретные значения, отличающиеся на целое число элементарных порций — квантов энергии.

Эйнштейн развил гипотезу Планка, представив, что свет излучается, поглощается и распространяется в виде отдельных порций (квантов).

Наименьшая порция (квант) энергии, которую несет излучение частотой Фотоны в физике - основные понятия, формулы и определение с примерами определяется по формуле:

Фотоны в физике - основные понятия, формулы и определение с примерами

где постоянная Фотоны в физике - основные понятия, формулы и определение с примерами — фундаментальная постоянная — постоянная Планка. Ее. приближенное значение:

Фотоны в физике - основные понятия, формулы и определение с примерами

Модуль импульса фотона определяется соотношением:

Фотоны в физике - основные понятия, формулы и определение с примерами

Явление испускания электронов веществом под действием падающего на него света получило название внешнего фотоэффекта. Испускание веществом каких-либо частиц называется эмиссией. Поэтому внешний фотоэффект называют также фотоэлектронной эмиссией (фотоэмиссией), а вылетающие электроны — фотоэлектронами.

Экспериментально установлены следующие законы внешнего фотоэффекта.

  1. Сила фототока насыщения Фотоны в физике - основные понятия, формулы и определение с примерами прямо пропорциональна интенсивности Фотоны в физике - основные понятия, формулы и определение с примерами падающего излучения.
  2. Максимальная кинетическая энергия Фотоны в физике - основные понятия, формулы и определение с примерами фотоэлектронов не зависит от интенсивности Фотоны в физике - основные понятия, формулы и определение с примерами падающего излучения и линейно возрастает с увеличением частоты Фотоны в физике - основные понятия, формулы и определение с примерами падающего излучения.
  3. Для каждого вещества существует граничная частота Фотоны в физике - основные понятия, формулы и определение с примерами такая, что излучение меньшей частоты не может вырывать электроны из его поверхности.

Формула Эйнштейна дня внешнего фотоэффекта:

Фотоны в физике - основные понятия, формулы и определение с примерами

Красная граница фотоэффекта — наименьшая частота излучения, при которой наблюдается фотоэффект Фотоны в физике - основные понятия, формулы и определение с примерами зависит только от работы выхода электронов для данного вещества Фотоны в физике - основные понятия, формулы и определение с примерами т. е. определяется химической природой вещества и состоянием его поверхности.

Под корпускулярно-волновым дуализмом понимают тот факт, что всем объектам в природе присущи как волновые, так и корпускулярные свойства. В одних условиях в большей мере проявляются волновые, в других — корпускулярные свойства объектов.

Принцип дополнительности утверждает, что для описания свойств материи (как поля, так и вещества) необходим учет как волновых, так и корпускулярных свойств.

  • Зеркала и изображение в плоском зеркале
  • Световой луч и световой пучок
  • Разложение белого света на цвета и образование цветов
  • Давление света в физике
  • Источники света
  • Скорость света
  • Отражение света
  • Спектральный состав естественного света

Добавить комментарий