Условие задачи:
Определить частоту колебаний световой волны, масса фотона которой равна 3,31·10-36 кг.
Задача №11.1.1 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
(m=3,31 cdot 10^{-36}) кг, (nu-?)
Решение задачи:
Согласно формуле Планка, энергия фотона (E) пропорциональна частоте колебаний (nu) и определяется следующим образом:
[E = hnu;;;;(1)]
В этой формуле (h) – это постоянная Планка, равная 6,62·10-34 Дж·с.
Известно, что энергия фотона (E) связана с массой (m) по такой формуле:
[E = m{c^2};;;;(2)]
Здесь (c) – это скорость света, равная 3·108 м/с.
Приравняем (1) и (2), тогда:
[hnu = m{c^2}]
Из этого равенства выразим искомую частоту колебаний световой волны (nu):
[nu = frac{{m{c^2}}}{h}]
Мы получили решение задачи в общем виде, подставим данные задачи в полученную формулу и посчитаем численный ответ:
[nu = frac{{3,31 cdot {{10}^{ – 36}} cdot {{left( {3 cdot {{10}^8}} right)}^2}}}{{6,62 cdot {{10}^{ – 34}}}} = 4,5 cdot {10^{14}};Гц]
Ответ: 4,5·1014 Гц.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Смотрите также задачи:
11.10.12 Какую энергию можно получить в реакции деления 1 г урана 92U235, если при делении
11.1.2 Пороговая чувствительность сетчатки человеческого глаза к желтому свету
11.1.3 Сколько квантов красного излучения с длиной волны 728,2 нм имеют массу 1 г
Фотон
Фотон — это частица света или квант света; частица с которой можно делать расчёты.
Фотоны всегда находятся в движении и в вакууме движутся с постоянной скоростью 2,998 x 10^8 м/с (это называется скоростью света и обозначается буквой c).
В марте 1905 года Эйнштейн создал квантовую теорию света, это была идея о том, что свет существует в виде крошечных частиц, которые он назвал фотонами.
Позже в том же году была расширена специальная теория относительности, в которой Эйнштейн доказал, что энергия (E) и материя (масса – m) связаны, и это соотношение стало самым знаменитым в физике: E=mc²; (напомним: c — скорость света).
Формулы фотона
Эти формулы являются наиболее важными.
Формула энергии кванта/фотона (формула Планка или Энергия кванта)
Энергия — это постоянная Планка, умноженная на частоту колебаний
Где:
- E — энергия фотона/кванта (в Дж – джоуль),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц).
Масса фотона
Где:
- m — масса фотона (в кг),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц),
- c = 3.10^8 (это скорость света в м/с),
- λ — длина световой волны (в метрах).
Фотоны всегда движутся со скоростью света. В состоянии покоя фотоны не существуют (т.е. можно сказать, что масса покоя равна нулю).
Формула массы фотона (m = h/cλ) была выведена из формулы эквивалентности массы и энергии (E = mc²), при этом было использовано также равенство с энергией Кванта (E = h×v).
Импульс фотона
Где:
- p — импульс фотона (в Н•с – ньютон-секунда),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц),
- c = 3.10^8 (это скорость света в м/с),
- λ — длина световой волны (в метрах).
Длина волны света, период и частота
Это ещё одно соотношение, которое может быть полезным в расчётах.
Где:
- λ — длина световой волны (в метрах),
- c = 3.10^8 (это скорость света в м/с),
- T — период световых колебаний (в секундах),
- ν — частота колебаний света (в Гц – герц).
Пример решения задачи с данными формулами
Определите энергию фотонов красного (λк = 0,76 мкм) света.
λк = 0,76 мкм = 0,76 × 10^(–6) м
Формула энергии фотонов: E = h×v
h — постоянная Планка,
v — частота света; из равенства λ = c/v выходит, что v = с/λ.
Таким образом, составляем равенство:
E = h × (с/λ) = hc / λ
Вспоминаем другие данные:
c = 3.10^8 (это скорость света в м/с)
h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду)
E = hc / λ = ((6,6.10^(–34) Дж.с) × (3.10^8 м/с)) / (0,76 × 10^(–6) м) = 2,6 × 10^(–19) Дж
Фотон является волной?
Фотон является одновременно частицей и волной. Согласно квантовой теории света Эйнштейна, энергия фотонов (E) равняется их частоте колебаний (v), умноженной на постоянную Планка (h); т.е. эта формула выглядит так: E = h×v.
Так он доказал, что:
- свет — это поток фотонов,
- энергия этих фотонов — это высота их частоты колебаний,
- интенсивность света соответствует количеству фотонов.
Таким образом, учёный объяснил, что поток фотонов действует и как волна, и как частица.
Видимый свет: свойства, диапазон, спектр, источники
Видимый свет – это видимая часть электромагнитного излучения, т.е. видимое излучение, воспринимаемое сетчаткой человеческого глаза.
Видимый свет – единственный тип электромагнитных волн, известный людям с незапамятных времен, хотя его природа была неизвестна до 1860-х годов. Люди были очарованы оптическими явлениями, такими как радуга, видимая на фотографии. На протяжении веков спорили о том, имеет ли свет конечную скорость или распространяется мгновенно.
Из этой статьи вы узнаете, как стала понятна природа света и почему мы видим мир в цветах.
В 1861 году Джеймс Максвелл опубликовал уравнения, в которых доказал, что электричество и магнетизм являются двумя видами одного и того же явления – электромагнетизма. Уравнения Максвелла не только связно объяснили все электрические и магнитные явления, но и предсказали существование электромагнитных волн, распространяющихся со скоростью света c = 3 * 10 8 м / с. Естественным выводом было предположить, что свет – это электромагнитная волна.
Свойства
Электромагнитная волна характеризуется:
- частотой ν, которая представляет собой число полных циклов изменения магнитного или электрического поля в секунду, выраженное в герцах (Гц), 1 Гц = 1 с -1 .
- длиной волны λ, которая является расстоянием между ближайшими точками, где электрическое или магнитное поле находится в одной и той же фазе цикла.
Эти величины связаны между собой: чем выше частота, тем короче длина волны: ν = c / λ , где где c – скорость света.
Диапазон.
Видимый свет охватывает очень узкий диапазон в спектре электромагнитных волн, от 380 до 780 нм. Излучение меньшей длины волны является ультрафиолетовым, а излучение большей длины волны – инфракрасным.
Поэтому мы видим только очень ограниченную часть электромагнитного спектра, для остальной части электромагнитного спектра у нас нет сенсорных клеток, и мы вынуждены прибегать к техническим средствам. Часто информация, которую мы регистрируем с помощью технических средств, таких как инфракрасные камеры, затем “переводится” в цвета, которые мы видим.
Спектр
Человеческий глаз воспринимает свет разной длины волны как впечатление различных цветов (рис. 1).
- фиолетовый от 380 нм до 436 нм;
- синий от 436 нм до 495 нм;
- зеленый от 495 нм до 566 нм;
- желтый, от 566 нм до 589 нм;
- оранжевый 589 нм – 627 нм;
- красный от 627 нм до 780 нм.
Белый свет – это смесь всех цветов. Вы можете увидеть это, разложив свет в призме или посмотрев на радугу, которая возникает в результате дисперсии белого света на капельках воды в облаках.
Как получается, что мы видим мир в красках? Когда белый свет падает на тело, часть излучения поглощается, а часть отражается от его поверхности. Если тело поглощает свет от красного до зеленого и отражает синий и фиолетовый свет, то при рассмотрении в белом свете оно будет иметь оттенок синего или фиолетового, в зависимости от соотношения этих цветов в отраженном свете.
Видимый свет лишь слегка поглощается как атмосферой Земли, так и водой. Эта особенность чрезвычайно важна для жизни на Земле. Ему мы обязаны не только способностью видеть окружающее нас пространство, но и самим происхождением жизни на Земле. Жизнь не могла бы существовать без фотосинтеза, для которого необходим свет.
Свет имеет волновую природу, т.е. он подвержен различным физическим явлениям, характерным для волн, таким как дифракция или интерференция. Но в то же время он имеет корпускулярную природу – он состоит из фотонов, элементарных частиц с нулевым зарядом и массой покоя. Отсутствие массы покоя означает, что фотон не существует в состоянии покоя, он может двигаться только со скоростью света.
Энергия фотона прямо пропорциональна частоте волны и обратно пропорциональна длине электромагнитной волны:
E = h * ν = ( h * c ) / λ, где
где ν – частота волны, λ – длина волны, c = 3 * 10 8 – скорость света, h – постоянная Планка, h = 6,63*10- 34 Дж*с = 4,14*10 -15 эВ·c.
Смешивая вместе красные, синие и зеленые лучи света, можно получить любой цвет. Смешивание света равной интенсивности этих трех цветов дает белый свет (рис. 2). Изменяя пропорцию каждого цвета, можно получить другой цвет. Явление создания новых цветов путем наложения лучей видимого света разной длины называется аддитивным синтезом.
Рис. 2. Аддитивный синтез цвета
Чувствительность человеческого глаза к цветам обусловлена наличием в сетчатке трех типов фоторецепторов, называемых колбочками. Каждый тип колбочек чувствителен к разным цветам света: красному, зеленому и синему. В зависимости от соотношения этих трех цветов, регистрируемых колбочками, в мозге формируется впечатление о полученном цвете.
Центр области видимого света находится на длине волны около 555 нм, что соответствует желто-зеленому цвету. К свету этого цвета чувствительность глаза наиболее высока. Кривая чувствительности глаза стремится к нулю как на длинноволновой, так и на коротковолновой стороне (рис. 3).
Рис. 3. Чувствительность глаз к свету разной длины волны
Все современные мониторы, телевизоры, цифровые камеры и подобные устройства работают по принципу аддитивного смешивания цветов. Комбинируя цвета RGB (красный, зеленый, синий) в любом количестве комбинаций, можно получить широкий спектр производных цветов на экране.
Источники.
Источником видимого света может быть пламя свечи, газ в люминесцентной лампе или зажженная лампочка, а также отражающий солнечный свет объект.
Спектр частот света или спектр волн света?
Прежде чем читать и разбираться с этой статьёй, необходимо ознакомиться со статьёй ”Что такое волна?“.
http://samlib.ru/n/nikolaew_s_a/chtotakoewolna.shtml
Эта статья Ссылки находятся внизу в разделе РЕЦЕНЗИИ
А теперь давайте разбираться, что такое частотный спектр света и как в данном вопросе нас специально дурачат? В астрономии от светящегося объекта наблюдатель принимает спектр частот. Вот пример. Солнечный луч света – это множество цветных линий, которые мы наблюдаем как радугу. Каждая тоненькая линия – это монохроматическая частота (одна частота). Каждую монохроматическую частоту приносят частицы фотоны, обладающие этой одной частотой. Вы заметили, что наблюдать можно только линии частот (радуга), а наблюдать длину волны невозможно потому, что её у фотонов просто нет. Фотоны – это частицы, а у частиц волн нет. Частицы могут только совершать колебания. А это не одно и тоже. У фотонов нет также и характеристики длина волны. У фотонов речь может идти только о частотах или спектрах частот.
Необходимо понимать, что эффект зрения основан на частотах, которые переносятся частицами фотонами и которые колеблются, а не волнуются.
Но везде, где речь заходит о частотах света или спектрах частот, то обязательно сразу в качестве единиц измерения применяют единицы длины волны.
Например. Для человека видимый спектр: от 380нм — фиолетовый цвет до 760нм — красный цвет. Вне этого диапазона наше зрение не видит. Но задумайтесь, ведь глаза видят частоты в виде монохроматических частот, либо смеси частот в виде спектра. А никаких длин волн глаза не видят.
Вот ещё пример. Везде, где графики со спектрами частот, размерность должна быть в Гц. Однако Вас везде обманывают и специально вместо частот всегда пишут размерность длины волны, которой на самом деле у фотонов нет. Например, график солнечного спектра частот, а по оси абсцисс пишут размерность длин волн. Кроме того, одна из главных характеристик солнечного спектра специально называется максимальная длина волны (л) излучения (формула Вина л = b/T) вместо максимальной частоты излучения.
ПРИМЕЧАНИЕ. Назовите прибор, который измеряет длину волны? Таких приборов нет, даже для акустических измерений. В акустике и электромеханике измеряется только частота. Затем все обязаны по акустической формуле V=лv рассчитать длину волны и для акустики и для электромеханики, где V — скорость звука, а л — длина волны. Применение формулы С=лv для излучения, где C — скорость света. Это обман и просто невежественно. Сжимается только акустическая волна V=лv. Фотон – это частица с поперечными колебаниями, и сжать фотон невозможно.
Фотон – частица света. Характеристиками фотонов являются: масса, частота, амплитуда и инерция (энергия).
На рисунке изображена спектральная кривая солнечного излучения. Рисунок взят из справочника. Во всех остальных справочниках и учебниках то же самое. Вы нигде не найдёте рисунок спектра с единицами измерения частоты в Гц, везде по оси абсцисс будут единицы измерения в единицах длины.
Этот обман нужен для того, чтобы подтверждались математические теории Эйнштейна, в которых свет (фотоны) является волной. И, чтобы Вы не забывали, везде Вас обманывают. Где только можно. Везде, где излучение упоминание о частотах будет исключено. Например, микроволновка и так далее.
ПРИМЕЧАНИЕ. На всех графиках, где изображаются частотные спектры, в данном случае, частотный спектр Солнца, по оси абсцисс пишут вместо частот размерность длины волны, которой на самом деле у фотонов нет. Это делается всегда и везде (с 1905 года, года вы-хода в свет СТО Эйнштейна) и специально, чтобы этим подтверждались математические теории Эйнштейна, в которых свет (фотоны) является волной. А свет не волна и пересчитывать всегда частоту в длину волны по акустической формуле С=лv просто обман. Спектр частотный, а не волновой. Спектр частот, но не волн.
Посмотрите на частоты видимого света от 750 ТГц (380нм) до 385 ТГц (760нм). Некоторые видят их впервые потому, что негласно их писать запрещено. Зато в единицах длины все помнят. Как это делается. В утверждённой программе образования можно писать только длины волн и это обязательно для всех. Подумайте, нужна Вам такая утверждённая про-грамма образования?
Не разрешайте себя зомбировать утверждённой программой образования, думайте о том, что Вас заставляют заучивать. Там очень много ошибочного, специально для Вас под-сунутого.
Об ошибках в физике здесь более 100 статей
http://samlib.ru/n/nikolaew_s_a/
Документы по борьбе с инакомыслием в науке.
1. Постановление ЦК ВКП(б) от 25.01.1931г.
Запрещение рассмотрения проблем физических взаимодействий на механической, ма-териалистической основе.
2. Специальное постановление ЦК ВКП(б) от 1934г.
О дискуссии о релятивизме.
Жертвами этого постановления стали Н.А.Козырев и Н.П.Бронштейн.
3. Постановление ЦК ВКП(б) от 05.12.1942г.
4. Постановление Президиума АН от 1964г.
В этом постановлении предписывалось объявлять параноиками всех, кто критикует теории относительности Эйнштейна.
Сразу было выявлено 24 параноика среди учёных.
5. Постановление Президиума РАН от 1998г.
О создании комиссии по борьбе с лженаукой и фальсификации научных исследований во главе с академиком Э.П.Кругляковым.
Комиссия исправно функционирует.
Комиссия не скрывает, что следует принципу: ”Всё, что противоречит теориям Эйнштейна и теории ”Большого Взрыва“, является лженаукой“.
Главные идеологи этого мракобесия С.И.Вавилов, А.Ф.Иоффе, В.Л.Гинзбург.
ДОПОЛНЕНИЕ. Кроме того, частоту собственных колебаний фотонов невозможно экспериментально измерить ни в одном диапазоне.
Во-первых, нет эффектов, позволяющих измерить собственную частоту фотонов (света).
Во-вторых, нет таких частотомеров, которые могли бы измерить, например, собственную частоту фотонов видимого света, которая равна 10 в 15 степени Гц.
Есть только прибор пирометр, который определяет электрическим способом цвет, а да-лее по цвету и выдуманной фальшивой формуле Вина, пожалуйста, Вам и частота.
Все частоты в шкале электромагнитных излучений фальшивые. Например, в радиодиапазоне вместо собственной частоты радиофотонов подсунута частота следования фотонов. Однако это не одно и то же.
Это очень ёмкий вопрос и он изложен в книге С.А.Николаева “Ложь об электромагнит-ной волне и шкале электромагнитных излучений”, СПб, 2014г.
А также в 8 издании книги С.А.Николаева “Эволюционный круговорот материи во Вселенной”, СПб, 2015г.
Ольга Норышкина
Ученик
(91),
закрыт
7 лет назад
Лучший ответ
П@Ш@ М@RCH&Co
Мыслитель
(5286)
13 лет назад
Энергия фотона есть E=h*v, где h – постоянная Планка, а v – частота
отсюда находите частоту v=E/h=6.4*10^(-19)/(6.626*10^(-34))=0.965*10^(15) Гц
Далее по формуле E=m*c² видим, что масса фотона
m=h*v/c²=6.4*10^(-19)/(3*10^8)²=7.1*10^(-36) кг – это масса движущегося фотона, так как у фотона нет массы покоя.
Остальные ответы
Похожие вопросы
Название фотон происходит от греческого слова φῶς, которое означает «свет». Фотон — это элементарная частица, которая несет квант (т.е. одну порцию) энергии электромагнитного излучения. Энергия фотона точно определена и зависит от частоты электромагнитной волны.
Изучение свойств электромагнитных волн на рубеже 19 и 20 веков принесло множество наблюдений, которые не могли быть объяснены на основе волновой теории Максвелла. Среди дилемм физиков того времени был спектр излучения тепловых источников света (например, классической лампочки), явление излучения черного тела, внешний фотоэлектрический эффект, то есть эмиссия электронов из металлов под воздействием падающего электромагнитного излучения. Эти явления невозможно объяснить, рассматривая электромагнитное излучение как волну.
Волновое описание света, утвердившееся в науке того времени и подтвержденное рядом экспериментов и теорий, должно было столкнуться с наблюдениями, показывающими, что свет ведет себя не только как волна, но и как совокупность частиц. Макс Планк, объясняя спектральное распределение излучения черного тела, ввел понятие порции энергии, которую он назвал квантом. Эта концепция была развита Альбертом Эйнштейном, когда он заявил, что, например, электромагнитная волна состоит из частиц (так называемых квантов) света.
Определение.
Фотон ( γ ) — это частица, несущая порцию энергии (квант энергии) электромагнитного излучения. Название было предложено американским физиком-химиком Гилбертом Ньютоном Льюисом. Она должна была описывать фотон как частицу, переносящую энергию излучения. По мнению ученого, фотон должен был поглощаться и испускаться материей.
Фотоны ( γ ) являются элементарными частицами. Они не имеют массы покоя и всегда движутся со скоростью света. Согласно текущему состоянию знаний, квантовая механика предлагает наилучшую модель, объясняющую фотоны. Это справедливо для всех элементарных частиц. Поэтому они демонстрируют дуализм волна-частица. Это означает, что они обладают свойствами волн и частиц.
Что такое фотон?
Свет — это диапазон электромагнитного спектра, который вы можете воспринимать невооруженным глазом. Иногда слово «свет» также используется для описания электромагнитных волн с большей длиной волны, например, инфракрасного света, или с меньшей длиной волны, например, ультрафиолетового света. Этот свет описывается в квантовой физике как поток квантовых объектов. Эти квантовые объекты — фотоны.
Фотоны ( γ ) являются частицами-носителями электромагнитного взаимодействия. Таким образом, они представляют свет, а также все другие электромагнитные волны и переносят электромагнитную силу. Квантовая электродинамика описывает фотон как так называемый бозон, элементарную частицу, свойства которой четко отличают ее от свойств электрона или подобных частиц. В большинстве случаев бозоны всегда являются также частицами-носителями сил, таких как электромагнитные, сильные и слабые силы.
Квантовая электродинамика — это область квантовой механики, которая адаптирует классическую электродинамику к современной квантовой механике. Одно из его важнейших свойств — отсутствие массы. Более того, его энергия, а также импульс пропорциональны его частоте.
Свойства фотона
Фотоны — это безмассовые, электрически нейтральные и стабильные элементарные частицы. Фотон является частицей-носителем электромагнитного взаимодействия и не подчиняется принципу Паули.
Электрический заряд | 0, нейтральный |
Масса покоя | 0 кг |
Спин | 1 |
Взаимодействие | электромагнитный гравитация |
Скорость движения | Скорость света c = 299 792 458 м / с |
Масса и скорость фотонов
Согласно современному уровню знаний, фотон должен быть безмассовым. Если бы у него была масса, фотоны не двигались бы со скоростью света (c). Это означало бы, что скорость света перестала бы быть скоростью света, а стала бы теоретическим пределом скорости, которую объект может достичь в пространстве-времени. Кроме того, скорость фотона будет зависеть от его частоты, и многие законы природы, такие как закон Кулона, получат дополнительные факторы. Тогда многие современные устройства будут работать по-другому или вообще не будут работать.
Вывод: экспериментально доказано, что фотон не имеет массы.
Скорость света в вакууме является универсальной константой, равной точно = 299 792 458 м/с. Не странно ли, что, в отличие от других констант, здесь нет многочисленных десятичных цифр, которые мы обычно округляем в зависимости от приближения, которого хотим добиться? Точное значение скорости света просто выводится из определения метра, принятого в 1983 году. Согласно этому определению, 1 метр — это расстояние, которое свет проходит в вакууме за 1/299 792 458 с.
В астрономии используется другая единица длины, не входящая в систему СИ, связанная со скоростью света. Это световой год, определяемый как расстояние, проходимое светом за один год. При определении светового года используется юлианский год, продолжительность которого составляет 365,25 дня. Аналогично можно использовать такие единицы измерения длины, как световая секунда, световая минута и т.д.
Скорость фотонов в вакууме не зависит от частоты электромагнитного излучения. Она одинакова для всех диапазонов излучения — от гамма-излучения до радиоволн. Одним из доказательств является наблюдение за вспышками звезд. Радиоволны и свет, излучаемые во время вспышки звезды, достигают Земли одновременно. Их скорость равна в пределах 10-7.
Фотон в вакууме всегда движется с постоянной скоростью для каждого наблюдателя. Если объект, движущийся со скоростью v = 0,9c, испускает фотон в направлении, совпадающем с направлением его скорости (см. рисунок 2), то фотон будет удаляться от него со скоростью света c. Но для неподвижного наблюдателя скорость фотона также будет равна скорости света с.
Этот факт, не согласующийся с нашим повседневным опытом, является фундаментальным предположением специальной теории относительности Альберта Эйнштейна. Почему это кажется нам странным и противоречит нашему опыту? Просто в повседневной жизни мы не сталкиваемся со скоростями, сравнимыми со скоростью света. Такие скорости достижимы для тел с очень малой массой. Эксперименты с частицами, такими как электроны, протоны или атомные ядра, ускоренные в ускорителях до скоростей, близких к скорости света, подтверждают постоянство скорости света в любой системе отсчета.
Энергия фотона
Фотоны движутся в вакууме со скоростью света c. Поэтому для определения его энергии нужна теория относительности. Это следует из релятивистской взаимосвязи между массой, энергией и импульсом.
E2 = p2 * c2 + m2 * c4
В этой формуле E означает энергию, p — импульс, m — массу, а c — скорость света. Если задать m = 0, то получится следующая взаимосвязь между импульсом и энергией E = p * c.
Поскольку фотон является квантом, то можно выразить его скорость и, следовательно, импульс через его частоту или длину волны. Это дает вам взаимосвязь между частотой и энергией: E = ħ * ω = h * f = h * c / λ .
В этой формуле f — частота фотона, ω = 2 * π * f — его угловая частота, h — обычная постоянная Планка, ħ = h / 2 * π — приведённая постоянная Планка и λ — длина волны фотона.
Постоянная Планка, входящая в формулу, является физической константой, характерной для микромира. В соответствии с решением Генеральной конференции по мерам и весам (CGPM) от 16 ноября 2018 года, её величина определяется точно, т.е. без погрешности, и составляет: h = 6,62607015⋅10−34 кг·м2·с−1 (Дж·с).
Единицей энергии фотона является джоуль (Дж), но очень часто используется альтернативная единица — электронвольт (эВ). Один электрон-вольт — это энергия, полученная электроном, ускоренным напряжением в 1 вольт (В). Для перевода 1 эВ в джоули достаточно умножить величину элементарного заряда e, т.е. 1,602 * 10-19 Кл, на один вольт, то есть 1 эВ = 1,602 * 10-19 Дж.
Поэтому постоянная Планка может быть выражена в эВ. Она составляет 4,135 667 669 …. * 10-15 эВ * с (для расчётов часто используют округленное значение h = 4,14 * 10-15 эВ * с ).
Насколько велика энергия фотона? Определим, например, энергию фотонов, испускаемых гелий-неоновой лазерной указкой с длиной волны 633 нм.
E = 6,62607015⋅10−34 * 3 * 108 / 633*10-9 ≈ 3,14 * 10-19 Дж .
Это значение можно хранить в гораздо более удобной форме в электронвольтах: E = 3,14 * 10-19 / 1,602 * 10-19 ≈ 1,96 эВ .
Типичные энергии в макромире — например, кинетическая энергия мяча, брошенного с высоты 1 м, непосредственно перед ударом об асфальт — порядка 1 Дж, то есть порядка 1019 эВ. Энергии фотонов значительно меньше. Давайте сравним 1 Дж с энергией процесса, характерного для микромира, например, с энергией, выделяемой при полном сгорании одной молекулы метана в кислороде. Энергия сгорания метана составляет 891,6 кДж/моль, что после деления на постоянную Авогадра, составляет: E = ( 891,6 кДж/моль ) / ( 6,02214076⋅1023 моль−1 ) = 14,8 * 10-19 Дж = 9,2 эВ .
Полученное значение, как видно, того же порядка, что и энергия фотона, испускаемого гелий-неоновым лазером.
Следует помнить, что энергия фотонов зависит от частоты электромагнитного излучения, которая может принимать значения от единиц кГц для радиоволн до порядка 1024 Гц для гамма-излучения. Поэтому энергия фотонов может составлять от 10-12 эВ до 109 эВ.
Фотоны, принадлежащие к различным областям электромагнитного спектра, имеют энергию, отличающуюся друг от друга даже на несколько порядков.
Импульс фотона
Как уже упоминалось, теория относительности связывает импульс с энергией. Это важно для фотона, поскольку он движется со скоростью света, т.е. релятивистски.
Зная, что E = h * c / λ , и p = ħ * k , где k = 2 * π / λ — угловое волновое число, в итоге получаем: p = ħ * k = h * f / c = h / λ .
Возникновение фотона
Фотоны создаются различными способами. Наиболее распространенным способом наблюдения генерации фотонов является переход электронов в другие энергетические состояния. Это происходит, например, когда электрон в электронной оболочке атома переходит на более высокий уровень. Этот уровень нестабилен, и электрон через некоторое время возвращается обратно в исходное состояние.
Однако, на высоком уровне было больше энергии, чем на исходном. Эта избыточная энергия излучается в виде фотона. Но фотоны также могут испускаться в виде гамма-излучения во время ядерных переходов или реакций аннигиляции в частицах-античастицах. С помощью правильных измерительных приборов можно обнаружить присутствие таких фотонов.
Запутанные фотоны
Фотоны могут быть запутаны относительно их поляризации или направления полета. Поляризация дает вам информацию о направлении колебаний электромагнитной волны. Это означает, что если вы измеряете поляризацию одной из этих частиц, вы знаете поляризацию другой.
В случае направленного излучения, т.е. излучения, возникающего при встрече античастиц и частиц, образуются запутанные фотоны. Эти два фотона запутаны в своем направлении и поляризации. В медицине это свойство используется в позитронно-эмиссионной томографии (ПЭТ).
Применение фотонов
Фотоны используются во многих областях. Одним из самых распространенных и наиболее важных применений является лазер.
Одиночные фотоны могут быть обнаружены различными методами. Одним из старейших методов является использование фотоумножителя. При этом используется фотоэлектрический эффект. Фотон с достаточной энергией попадает на металлическую пластину. Там он выбивает электрон из связи, что запускает каскадный эффект.
Список использованной литературы
- Кудрявцев П. С. Курс истории физики. — 2-е изд. — М.: Просвещение, 1982. — 448 с.
- Физика микромира : маленькая энциклопедия / Гл. ред. Д. В. Ширков. — М.: Советская энциклопедия, 1980. — 528 с. — 50 000 экз.
- Генденштейн Лев Элевич, Дик Юрий Иванович, физика 11 класс
Корпускулярно-волновой дуализм
Вопрос, на который вам однозначно не ответит никто: «Свет — это частица или волна?». Это очень сложный вопрос, на который ученые давно пытаются ответить.
В XVII веке Исаак Ньютон предложил модель, в которой свет — поток мельчайших корпускул (частиц). Это позволяло просто объяснить многие характерные свойства света. Например, прямолинейность световых лучей и закон отражения, согласно которому угол отражения света равен углу падения. Это соотносится с законом сохранения импульса, которому подчиняются частицы.
Но есть такие явления, как интерференция и дифракция. Они совсем не вписываются в корпускулярную теорию.
Осторожно: дальше много сложных терминов! Но на элективном курсе по физике за 10 класс можно разобраться даже в сложном материале вместе с опытным преподавателем.
Интерференция и дифракция
Интерференция — это явление, при котором происходит наложение двух волн и образуются так называемые «максимумы» и «минимумы» — самые светлые и самые темные участки. Выглядит это так:
В жизни вы это встречали, например, если видели разлитый бензин или пускали мыльные пузыри. Это все следствие интерференции света.
Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн.
Дифракция — это явление огибания препятствий, которые возникают перед волной. Благодаря дифракции свет может огибать препятствие и попадать туда, где с точки зрения геометрии должна быть тень.
В XIX веке появилась волновая теория света, которая объясняла дифракцию и интерференцию. Согласно этой теории, свет — частный случай электромагнитных волн, то есть процесса распространения электромагнитного поля в пространстве.
Волновая оптика вообще казалась в то время каким-то чудом, потому что она объясняла не только те явления, которые не объясняла корпускулярная теория, но и вообще все известные на то время световые эффекты. Даже законы геометрической оптики можно было доказать через волновую оптику.
Казалось бы, ну все тогда — у света волновая природа, никаких тебе частиц, расходимся. Но не тут-то было! Уже в начале XX века корпускулярная теория света снова набрала актуальность, так как ученые обнаружили явления, которые с помощью волновой теории объяснить не удавалось. Например, давление света и фотоэффект, о которых мы еще поговорим.
В рамках корпускулярной теории эти явления прекрасно объяснялись, и корпускулы (частицы) света даже получили название — фотоны.
Сложилась интересная ситуация — параллельно существовали две серьезные научные теории, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории идеально дополняют друг друга. Так мы подошли к понятию корпускулярно-волновой природы света.
Корпускулярно-волновой дуализм — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Практикующий детский психолог Екатерина Мурашова
Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков
Энергия и импульс фотона
Каждый фотон переносит некоторое количество энергии. Именно это количество называется энергией фотона.
Энергия фотона (соотношение Планка-Эйнштейна)
— энергия фотона [Дж]
— постоянная Планка
= 6,6 · 10−34 Дж · c
— частота фотона [Гц]
Импульс фотона связан с энергией следующим соотношением:
Соотношение импульса и энергии фотона
— импульс фотона [(кг · м)/с]
— энергия фотона [Дж]
— скорость света [м/с]
= 3 · 108 м/с
Подставляем вместо
формулу энергии фотона:
А вместо частоты формулу
:
Сокращаем скорость света и получаем формулу импульса.
Импульс фотона
— импульс фотона [(кг · м)/с]
— постоянная Планка
= 6,6 · 10−34 Дж · c
— длина волны [м]
Давление света
Сила Лоренца — это сила, действующая на частицу, движущуюся в магнитном поле.
Если рассматривать свет как совокупность фотонов, то можно предположить, что свет может оказывать давление. Именно такое предположение сделал Джеймс Максвелл в 1873 году и не прогадал.
Пусть на поверхность абсолютно черного тела площадью
перпендикулярно к ней ежесекундно падает
фотонов. Каждый фотон обладает импульсом
.
Полный импульс, получаемый поверхностью тела, равен
.
Из механики известно, что давление — это отношение силы к площади, на которую эта сила воздействует:
.
Не перепутайте: импульс и давление обозначаются одинаковой буквой, но величины разные!
Второй закон Ньютона в импульсной форме имеет вид
, где
— это импульс, а
— промежуток времени, за которое импульс меняется на значение p.
Тогда световое давление определяется так:
.
При падении света на зеркальную поверхность удар фотона считают абсолютно упругим, поэтому изменение импульса и давление в 2 раза больше, чем при падении на черную поверхность (в этом случае удар неупругий, так как черный цвет поглощает фотон).
Предсказанное Максвеллом существование светового давления было экспериментально подтверждено физиком П. Н. Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Теория и эксперимент совпали. Значение давления света составило ≈ 4 · 10-6 Па.
Опыты Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом.
Фотоэффект
Еще одно важное явление, подтверждающее корпускулярную природу света, — это фотоэффект. Пока разберем только принцип этого явления, а сложную математику оставим на другой раз. 😉
На рисунке представлена экспериментальная установка для исследования фотоэффекта.
Установка представляет собой стеклянный вакуумный баллон с двумя металлическими электродами, к которым прикладывается напряжение. Один из электродов через кварцевое окошко освещается монохроматическим светом (монохроматический свет — это свет, длина волны которого неизменна). Под действием фотонов из отрицательно заряженного электрода выбиваются так называемые фотоэлектроны. Они притягиваются к положительному электроду и образуется фототок.
Многочисленные экспериментаторы установили основные закономерности фотоэффекта:
-
Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света
и не зависит от его интенсивности.
-
Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота
, при которой еще возможен внешний фотоэффект.
-
Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
-
Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света
.
Эйнштейн исследовал фотоэффект и пришел к выводу, что свет имеет прерывистую структуру, то есть состоит из фотонов.
Фотоэффект используется, например, в датчиках света. Уличные фонари, оборудованные датчиками света, включаются автоматически при определенном уровне естественного освещения.
Техническое применение фотонов
Важное техническое устройство, использующее фотоны — лазер. Лазеры применяют во многих областях технологии: с их помощью режут, варят и плавят металлы, получают сверхчистые металлы. На лазерах основаны многие точные физические приборы — например, сейсмографы. Ну а с лазерными принтерами и указками вы наверняка знакомы.
На определении местоположения фотонов основаны многие генераторы случайных чисел. Чтобы сгенерировать один бит случайной последовательности, фотон направляется на лучеделитель — штуку, которая разделяет свет на два потока.
Для любого фотона существует лишь две возможности, причем с одинаковой вероятностью: пройти лучеделитель или отразиться от его грани. В зависимости от того, прошел фотон через лучеделитель или нет, следующим битом в последовательность записывается 0 или 1.