Как найти частоту колебаний источника звука

Как найти частоту звуковых колебаний

Звуком называют волны механических деформаций, распространяющиеся в любой достаточно упругой среде (жидкостях, твердых телах, газах). Как и другие волны, звук характеризуется, в частности, частотой колебаний. В зависимости от начальных условий найти частоту звука можно разными способами.

Как найти частоту звуковых колебаний

Вам понадобится

  • – калькулятор;
  • – физический справочник;
  • – тахометр;
  • – звуковой датчик;
  • – осциллограф.

Инструкция

Найдите частоту звуковых колебаний, если известна длина их волн и скорость звука в среде, где они распространяются. Вычисления следует производить по формуле F=V/L. Здесь V – скорость звука в среде, а L – длина волны (известная величина). Значения скоростей звука для разных сред можно узнать из физических справочников. Так, для воздуха при нормальных условиях (температуре в районе 20°C и давлении, близком к атмосферному) это значение составляет 341 м/с. Поэтому, например, звуковые колебания в воздухе с длиной волны в 0,25 м будут иметь частоту 341/0,25=1364 Гц.

Найти частоту звуковых колебаний, зная их период, можно по простой формуле: F=1/T. Обратите внимание на то, что для получения корректных значений частоты, представленных в герцах, период T должен быть выражен системе СИ, то есть иметь размерность в секундах.

Для получения частоты звуковых колебаний, распространяющихся в реальной среде, осуществите физический эксперимент. Примените специализированное устройство – тахометр. Сегодня тахометры, как правило, имеют высокую точность измерений и отображают информацию в готовом виде на цифровом индикаторе.

При отсутствии тахометра для нахождения частоты звука можно воспользоваться микрофоном или другим звуковым датчиком с достаточной чувствительностью, а также осциллографом. Подключите датчик к осциллографу и создайте условия для получения сигнала (например, поместите датчик в исследуемую среду). Подберите чувствительность осциллографа так, чтобы колебания на экране отображались с достаточной амплитудой. Путем подстройки частоты развертки добейтесь отображения устойчивой картинки. Узнайте период звуковых колебаний, ориентируясь на шкалу прибора. Найдите частоту, используя способ, описанный во втором шаге.

Обратите внимание

При вычислениях, связанных с получением значений частоты звука, всегда переводите все известные значения в систему СИ.

Полезный совет

Если дополнительно требуется найти циклическую частоту звуковых колебаний, рассчитайте ее по формуле w=2*PI*F, где F – частота, выраженная в герцах, полученная одним из описанных способов.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Звуковая волна – период, длина, частота и скорость распространения


Калькуляторы онлайн перевода длины звуковой, инфразвуковой или ультразвуковой
волны в частоту и наоборот. Таблица соответствия
нот полного звукоряда частотам.

Звуковая волна – это механические колебания, которые в результате колебаний молекул вещества распространяются в какой-либо
среде (в газе, жидкости или твёрдом теле) и, достигнув органов слуха человека, воспринимаются им как звук. Источник, создающий
возмущение (колебания воздуха), называется источником звука.
Как уже было сказано, для распространения звука необходима какая-либо упругая среда. Поэтому в вакууме ори, не ори – тебя никто не
услышит, по причине того, что звуковые волны распространяться не смогут, так как там нечему колебаться.., да и слушать там, по большому
счёту, тоже некому.

Длина, скорость и частота электромагнитной волны

Так же, как и в случае с электромагнитными волнами, соотношение, связывающее длину звуковой волны с частотой колебаний,
в общем случае выглядит следующим образом:
λ (м) = V (м/сек) / F (Гц), где V (м/сек) – это скорость распространения
звука в среде.

Период колебаний также не претерпел никаких изменений и по-прежнему равен:

T(сек) = 1 / F (Гц) = λ (м) / V (м/сек).

Частота колебаний звукового сигнала F (Гц) – это параметр стабильный, практически не зависящий от среды распространения.

А вот скорость звука V (м/сек), а соответственно и длина звуковой волны – это величины, которые зависят
не только от плотности вещества, но и от его упругости, а в случае с жидкостями и газами ещё – и от температуры, и атмосферного
давления.

Зависимость скорости звуковой волны от свойств упругой среды легко прослеживается по следующей формуле:
V (м/сек) = √Eупр (паскаль) / ρ (кг/м3)
,
где Eупр представляет собой модуль объёмной упругости среды, а ρ – плотность среды.
Модуль упругости, так же как и плотность – это справочные величины, прописанные для конкретных материалов.

В качестве примера, ниже приведена таблица величины скорости распространения звука в различных средах:

    Среда         Скорость звука, м/сек    
    Воздух при 0°      331
Воздух при 30° 350
Вода 1450
Медь 3800
Дерево 4800
Железо 4900
Сталь 5600

Для газов параметры модуля объёмной упругости и плотности имеют ярко выраженную зависимость от температуры и атмосферного давления.
Если углубиться, то скорость звука в газах можно вычислить по следующей формуле:

V (м/сек) = √γ*Ратм / ρ ,
где

γ = cp/сv – это отношение удельной теплоёмкости при постоянном давлении
к удельной теплоёмкости при постоянном объёме, а Pатм – атмосферное давление,
которое связано с температурой газообразной среды.

Поэтому, чтобы никого сильно не грузить, приведу и приближённую зависимость скорости звука (при нормальном
атмосферном давлении) от температуры среды:
V (м/сек) = (331 + 0,6 * T°), где 331 м/сек – это скорость звука при 0°С,
а T° – температура в градусах Цельсия.

Теперь можно совместить формулы и получить простое соотношение, связывающее длину звуковой волны с частотой колебаний с учётом
температуры среды:

λ (м) = (331 + 0,6 * T°) / F (Гц).

Всё это без лишнего напряга несложно посчитать при помощи листа бумаги или деревянных счёт, ну а для пущего упрощения жизни человека,
приведу и пару он-лайн считалок для перевода одного из параметров в другой.
Калькуляторы предполагают расчёты длины и частоты звуковой волны для воздушной среды при нормальном атмосферном
давлении (760 мм ртутного столба).

Онлайн калькулятор расчёта длины звуковой волны по частоте

   Частота звуковых колебаний f  

     


   Температура Т(°С) (по умолчанию 20°)  
     

  

   Длина волны   
     

Онлайн калькулятор расчёта частоты по длине звуковой волны

   Длина волны λ при заданной Т  

     


   Температура Т(°С) (по умолчанию 20°)  
     

  

   Частота колебаний   
     

Полный диапазон звуковых частот условно находится в пределах:
16…20 000 Гц.
Ниже ( 0,001…16Гц ) – инфразвук.
Выше ( 20…100кГц ) – низкочастотный ультразвук,
ещё выше (100кГц…1МГц) – высокочастотный ультразвук.

А для интересующихся приведу таблицу соответствия нот стандартного музыкального звукоряда частотам.

Частота (Гц)
Октава Нота
До До – диез Ре Ми – бемоль Ми Фа Фа – диез Си Си- диез Ля Соль-бемоль Соль
C C# D Eb E F F# G G# A Bb B
0 16.35 17.32 18.35 19.45 20.60 21.83 23.12 24.50 25.96 27.50 29.14 30.87
1 32.70 34.65 36.71 38.89 41.20 43.65 46.25 49.00 51.91 55.00 58.27 61.74
2 65.41 69.30 73.42 77.78 82.41 87.31 92.50 98.00 103.8 110.0 116.5 123.5
3 130.8 138.6 146.8 155.6 164.8 174.6 185.0 196.0 207.7 220.0 233.1 246.9
4 261.6 277.2 293.7 311.1 329.6 349.2 370.0 392.0 415.3 440.0 466.2 493.9
5 523.3 554.4 587.3 622.3 659.3 698.5 740.0 784.0 830.6 880.0 932.3 987.8
6 1047 1109 1175 1245 1319 1397 1480 1568 1661 1760 1865 1976
7 2093 2217 2349 2489 2637 2794 2960 3136 3322 3520 3729 3951
8 4186 4435 4699 4978 5274 5588 5920 6272 6645 7040 7459 7902

У этого термина существуют и другие значения, см. Звук (значения).

Звук — физическое явление, представляющее собой распространение упругих волн в газообразной, жидкой или твёрдой среде. В узком смысле под звуком имеют в виду эти волны, рассматриваемые в связи с тем, как они воспринимаются органами чувств.[1]

Источником звука может выступать тело, совершающее механические колебания по определённому закону.

В общем случае звук является совокупностью волн различных частот. Распределения интенсивности по частотам {displaystyle dI/df} бывают плавными (непрерывными) или с выраженными максимумами при {displaystyle f=f_{1},,f_{2},..} (дискретными). Для упрощения нередко сосредоточиваются на одной волне конкретной частоты.

Обычный человек способен слышать звуковые колебания в диапазоне частот от 16—20 Гц до 15—20 кГц[2]. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, — ультразвуком, от 1 ГГц — гиперзвуком.

В первом приближении громкость звука диктуется амплитудой волны, а тон, высота звука — частотой. Более точно, громкость сложным образом зависит от эффективного звукового давления, частоты и формы колебаний, а высота звука — не только от частоты, но и от величины звукового давления.

Среди слышимых звуков выделяются фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка). Музыкальные звуки содержат не один, а несколько тонов (волн фиксированных частот f_{i}), а иногда и шумовые компоненты в широком акустическом диапазоне.

Понятие о звуке[править | править код]

Звуковые волны в воздухе — чередующиеся области сжатия и разрежения

Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением.

Если произвести резкое смещение частиц упругой среды в одном месте (например, с помощью поршня), то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

более детальная информация

Скорость колебательного движения частиц упругой среды — колебательная скорость — измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент (D) и добротность (Q).

Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого амплитуда уменьшается в е = 2,718 раз, через tau , то:

S=frac{1}{tau}.

Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания tau :

D=frac{T}{tau}

Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания, характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы.

При частотах воздействия, значительно меньших резонансной, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.

Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разрежения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды (rho ) на скорость (с) распространения в ней звуковых волн.

Z=rho c

Удельное акустическое сопротивление измеряется в паскаль-секундах на метр (Па·с/м) или дин•с/см³ (СГС); 1 Па·с/м = 10−1 дин • с/см³.

Значение удельного акустического сопротивления среды часто выражается в г/с·см², причём 1 г/с·см² = 1 дин•с/см³. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн.

Звуковое, или акустическое, давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статическим давлением в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц:

P=2pi frho cA

где Р — максимальное акустическое давление (амплитуда давления);

  • f — частота;
  • с — скорость распространения ультразвука;
  • rho — плотность среды;
  • А — амплитуда колебания частиц среды.

На расстоянии в половину длины волны (λ/2) значение звукового давления из положительного становится отрицательным. Разница давлений в двух точках с максимальным и минимальным его значением (отстоящих друг от друга на λ/2 вдоль направления распространения волны) равна 2Р.

Для выражения звукового давления в единицах СИ используется паскаль (Па), равный давлению в один ньютон на квадратный метр (Н/м²). Звуковое давление в системе СГС измеряется в дин/см²; 1 дин/см² = 10−1 Па = 10−1 Н/м². Наряду с указанными единицами часто пользуются внесистемными единицами давления — атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98⋅106 дин/см² = 0,98⋅105 Н/м². Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 106 дин/см².

Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растёт в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак.

Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением:

{displaystyle a=omega ^{2}A=(2pi f)^{2}A}

Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разрежения среды создают добавочные изменения давления в среде по отношению к окружающему её внешнему давлению. Такое добавочное внешнее давление носит название давления излучения (радиационного давления). Оно служит причиной того, что при переходе ультразвуковых волн через границу жидкости с воздухом образуются фонтанчики жидкости и происходит отрыв отдельных капелек от поверхности.
Этот механизм нашёл применение в образовании аэрозолей лекарственных веществ. Радиационное давление часто используется при измерении мощности ультразвуковых колебаний в специальных измерителях — ультразвуковых весах.

В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны (поперечная волна). Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

В философии, психологии и экологии средств коммуникации звук исследуется в связи с его воздействием на восприятие и мышление (речь идёт, например, об акустическом пространстве как пространстве, создаваемом воздействием электронных средств коммуникации).

Физические параметры звука[править | править код]

Спектр звука[править | править код]

Примеры форм звуковых сигналов (слева) и соответствующих спектров: a-c — дискретные; d — непрерывный

Под спектром понимается распределение звуковой энергии по частоте {displaystyle dI/df}, то есть функция, показывающая относительную представленность различных частот в изучаемом звуке. Если это распределение дискретное, то {displaystyle dI/df} записывается как сумма дельта-функций вида {displaystyle sum I_{i}delta (f-f_{i})}; в таком случае может быть приведён перечень присутствующих частот с их вкладами в общую интенсивность: {displaystyle (f_{1},,I_{1}),,,(f_{2},,I_{2}),..} и так далее.

Применительно к музыкальным звукам вместо слова «спектр» используется понятие «тембр» в том же значении.

Интенсивность звука[править | править код]

Интенсивность (сила) звука — скалярная физическая величина, характеризующая мощность, переносимую в направлении распространения звука. Учитывает весь частотный диапазон, а именно {displaystyle I=int (dI/df),df}. Различаются мгновенная, то есть в данный момент I(t), и усреднённая по некоторому промежутку времени {displaystyle <I(t)>} интенсивность.

Длительность звука[править | править код]

Длительность звука — общая продолжительность колебаний источника упругих волн в секундах или, в музыке, в единицах музыкального ритма (см. длительность (музыка)).

Скорость звука[править | править код]

Скорость звука — скорость распространения звуковых волн в среде.

Как правило, в газах скорость звука меньше, чем в жидкостях.

Скорость звука в воздухе зависит от температуры и в нормальных условиях составляет примерно 340 м/с.

Скорость звука в любой среде вычисляется по формуле:

c = sqrt{frac{1}{betarho}},

где beta  — адиабатическая сжимаемость среды; rho  — плотность.

Громкость звука[править | править код]

Громкость звука — субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления, амплитуды и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний, индивидуальная чувствительность слухового анализатора человека и другие факторы[3][4].

Генерация звука[править | править код]

Обычно для генерации звука применяются колеблющиеся тела различной природы, вызывающие колебания окружающего воздуха. Примером такой генерации может служить использование голосовых связок, динамиков или камертона. Большинство музыкальных инструментов основано на том же принципе. Исключением являются духовые инструменты, в которых звук генерируется за счёт взаимодействия потока воздуха с неоднородностями в инструменте. Для создания когерентного звука применяются так называемые звуковые или фононные лазеры[5].

В технике применяются генераторы звука.

Ультразвук[править | править код]

Ультразвук — упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 Гц-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). На явлении отражения основана ультразвуковая диагностика.

Поглощение ультразвуковых волн

Поскольку среда, в которой распространяется ультразвук, обладает вязкостью, теплопроводностью и имеет другие причины внутреннего трения, то при распространении волны происходит поглощение, то есть по мере удаления от источника амплитуда и энергия ультразвуковых колебаний становятся меньше. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощённой энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения.

Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается вдвое. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счёте, также вызвать затухание волны в первоначальном направлении распространения.

На границе раздела сред (напр., эпидермис — дерма — фасция — мышца) будет наблюдаться преломление ультразвуковых волн.

Бегущие и стоячие ультразвуковые волны

Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний.
Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.

Инфразвук[править | править код]

Инфразву́к (от лат. infra — ниже, под) — звуковые колебания, имеющие частоты ниже воспринимаемых человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16—25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.

Поскольку природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.

Инфразвук, образующийся в море, называют одной из возможных причин нахождения судов, покинутых экипажем[6].

Опыты и демонстрации[править | править код]

Видеоурок: возникновение звука

Для демонстрации стоячих волн звука служит труба Рубенса.

Различие в скоростях распространения звука наглядно, когда вдыхают вместо воздуха гелий, и говорят что-либо, выдыхая им, — голос становится выше. Если же газ — гексафторид серы SF6, то голос звучит ниже[7]. Связано это с тем, что газы примерно одинаково хорошо сжимаемы, поэтому в обладающем очень низкой плотностью гелии по сравнению с воздухом происходит увеличение скорости звука, и понижение — в гексафториде серы с очень высокой для газов плотностью, размеры же ротового резонатора человека остаются неизменными, в итоге меняется резонансная частота, так как чем выше скорость звука, тем выше резонансная частота при остальных неизменных условиях.

О скорости звука в воде можно визуально получить представление в опыте дифракции света на ультразвуке в воде. В воде по сравнению с воздухом, скорость звука выше, так как даже при существенно более высокой плотности воды (что должно было бы привести к падению скорости звука), вода настолько плохо сжимаема, что в итоге в ней скорость звука оказывается всё равно в несколько раз выше.

В 2014 году была представлена установка, которая звуковыми волнами поднимает сантиметровые предметы[8].

См. также[править | править код]

  • Акустика / Музыкальная акустика
  • Гранулярный синтез
  • Эффект Доплера
  • Второй звук в жидком гелии
  • АЧХ / Логарифмический масштаб

Примечания[править | править код]

  1. И. П. Голямина. Звук // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия (т. 1—2); Большая Российская энциклопедия (т. 3—5), 1988—1999. — ISBN 5-85270-034-7.
  2. Слух — общая информация. Дата обращения: 25 августа 2010. Архивировано из оригинала 12 января 2013 года.
  3. Архив журнала «Звукорежиссёр», 2000, #8 Архивная копия от 27 февраля 2007 на Wayback Machine
  4. Архив журнала «Звукорежиссёр», 2000, #9 Архивировано 27 февраля 2007 года.
  5. Jacob B. Khurgin. Phonon lasers gain a sound foundation (англ.) // Physics. — 2010. — Vol. 3. — P. 16.
  6. Мезенцев В. А. В тупиках мистики. М.: Московский рабочий, 1987.
  7. Демонстрация изменения голоса с гексафторидом серы на YouTube
  8. Акустический «силовой луч» притягивает предметы на расстоянии Архивная копия от 17 мая 2014 на Wayback Machine // Популярная механика

Литература[править | править код]

  • Звук // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Радзишевский А. Ю. Основы аналогового и цифрового звука. — М.: Вильямс, 2006. — С. 288. — ISBN 5-8459-1002-1.

Ссылки[править | править код]

  • Sounds Amazing; a KS3/4 learning resource for sound and waves Архивная копия от 13 марта 2012 на Wayback Machine (uses Flash)
  • HyperPhysics: Sound and Hearing Архивная копия от 2 февраля 2009 на Wayback Machine
  • Introduction to the Physics of Sound Архивная копия от 23 декабря 2008 на Wayback Machine
  • Hearing curves and on-line hearing test Архивная копия от 21 января 2009 на Wayback Machine
  • Audio for the 21st Century
  • Conversion of sound units and levels Архивная копия от 18 января 2009 на Wayback Machine
  • Sound calculations Архивная копия от 18 января 2009 на Wayback Machine
  • Audio Check: a free collection of audio tests and test tones playable on-line Архивная копия от 3 октября 2019 на Wayback Machine
  • More Sounds Amazing; a sixth-form learning resource about sound waves Архивная копия от 10 февраля 2019 на Wayback Machine

Содержание:

Звук:

Мы живём в мире звуков: слышим голоса людей, пение птиц, звучание музыкальных инструментов, шум леса, гром во время грозы и т. п.

Раздел физики, в котором изучают звуковые явления, называют акустикой.

С помощью глаза, воспринимающего свет, мы можем наблюдать волны на поверхности воды как движущиеся последовательные горбы и впадины. Волны, распространяющиеся в газе, внутри жидкости или твердого тела, человек при определённых условиях воспринимает с помощью уха. Ухо человека — прекрасный приёмник звуковых колебаний (рис. 29). Оно состоит из трёх частей: внешнего, среднего и внутреннего уха. Элементами внешнего уха являются ушная раковина 1 и внешний слуховой проход 2. Они служат для того, чтобы направить звуковые волны к барабанной перепонке 4. Барабанная перепонка и соединённые с ней три слуховые косточки — это среднее ухо. Они передают звуковые колебания к элементу внутреннего уха являются: через перепонку овального окна — жидкости, заполняющей улитку 3. Здесь звуковые колебания с помощью слуховых рецепторов превращаются в последовательность нервных импульсов, которые передаются в мозг слуховым нервом.

Опыт 1. Закрепим длинную стальную линейку в тисках или плотно прижмём её к краю стола. Отклоняя свободный конец линейки от положения равновесия, заставим её колебаться (рис. 30). Если линейка довольно длинная, мы ничего не услышим. Укоротим выступающий конец линейки – она начнет «звучать».

Колеблющаяся стальная линейка сжимает слои прилегающего к ней с одной из сторон воздуха и одновременно создаёт разрежение с другой стороны (рис. 31). Эти сжатия и разрежения чередуются во времени и распространяются в обе стороны в виде звуковой волны подобно расходящимся волнам на водной поверхности озера от места, где упал камень. Звуковая волна достигает нашего уха и вызывает колебания барабанной перепонки 4 в среднем ухе.

Человеческое ухо воспринимает в виде звука колебания, частота которых лежит в пределах от 16—17 до 20 ООО Гц. Такие колебания называют звуковыми, или акустическими. В предыдущем опыте мы наблюдали, что чем короче конец линейки, тем выше частота колебаний. Поэтому мы и начинали слышать звук, укоротив конец линейки.
Звук в физике и его характеристики, виды, формулы и определения с примерами

Любое твёрдое, жидкое или газообразное тело, совершающее колебания со звуковой частотой, создаёт в окружающей среде звуковую волну.

Звуки, которые мы ежедневно слышим, очень разнообразны. Они делятся на музыкальные звуки и шумы. К первым относятся пение, звучание натянутых струн скрипки, гитары или виолончели (рис. 32), духовых или других музыкальных инструментов, свист и т. п.

Звук в физике и его характеристики, виды, формулы и определения с примерами

Шумы возникают во время грозы, создаются работающими двигателями, шелестящей листвой. С помощью органов речи люди могут воссоздавать музыкальные звуки и шумы. Но почему с точки зрения физики музыкальные звуки могут быть такими различными и чем они отличаются от шума ?

Опыт 2. Возьмём камертон (от немецкого: камм — гребень) и ударим шариком по одной из его ножек (рис. 33).

Звук в физике и его характеристики, виды, формулы и определения с примерами

Мы услышим музыкальный звук «ля» с частотой 440 Гц. Постепенно вследствие затухания колебаний ножек звук слабеет. Итак, звуковая волна возбуждается ножками камертона, совершающими колебания. Характер этих колебаний можно определить, если прикрепить к ножке камертона грифель карандаша и, возбудив колебания камертона, равномерно провести им по поверхности листа бумаги. На бумаге появится волнистая линия (рис. 34), подобная уже знакомой нам синусоиде. В этом случае говорят, что ножки камертона совершают гармонические колебания.

Звук, производимый гармонически колеблющимся телом, называют музыкальным тоном, или тоном.

Звук в физике и его характеристики, виды, формулы и определения с примерами

Музыкальные тоны отличаются на слух громкостью и высотой. Громкость звука зависит от амплитуды колебаний. Чем сильнее удар молоточка по камертону, тем громче он звучит, поскольку сильный удар вызывает колебания большей амплитуды.

Громкость звука зависит от амплитуды колебаний в звуковой волне.

О звуках различной громкости говорят, что один громче другого не во столько -то раз, а на столько-то единиц.

Единицей громкости в СИ является один децибел (1 дБ). Она названа в честь американского учёного Александера Грейама Белла – изобретателя телефона и слуховых аппаратов для глухих.

Громкость звука измеряют специальным прибором — сонометром (рис. 35).

Громкость шелеста листвы составляет 10 дБ, шёпота — 20 дБ, уличного шума – 70 дБ и т. п. (рис. 36)
Звук в физике и его характеристики, виды, формулы и определения с примерами

Чувствительность уха зависит от частоты звука. Звуковые колебания одинаковых амплитуд кажутся неодинаково громкими, если их частоты разные. Человеческое ухо наиболее чувствительно к колебаниям с частотой около 3500 Гц.

Опыт 3. Возьмём несколько камертонов разных размеров. Поочерёдно заставим их звучать и каждый раз грифелем, прикреплённым к ножке камертона, будем проводить вдоль листа бумаги. Сравнивая полученные результаты, увидим, что чем выше звук камертона, тем меньше период колебаний и, соответственно, тем больше частота колебаний ножек камертона.

Высота звука зависит от частоты колебаний.

То же самое можно наблюдать на примере колеблющейся струны. Натягивая сильнее струну гитары или скрипки, мы увеличиваем частоту колебаний, высота звука возрастает.

Звуковые колебания, производимые камертонами (например, у камертона «ля» частота колебаний — 440 Гц) или музыкальными инструментами, можно наблюдать с помощью компьютера или осциллографа (рис. 37 а, б).
Звук в физике и его характеристики, виды, формулы и определения с примерами

А что же такое шум? Шум отличается от музыкального тона тем, что у него нет определённой частоты колебаний, а значит — определённой высоты звука.

Шум- это хаотическая смесь многих звуковых колебаний разных частот и амплитуд.

Какой вид имеют эти колебания, также можно увидеть, используя микрофон и компьютер или осциллограф.

Кстати:

Наиболее «громким» в мире животных является голубой кит. Он может издавать звуки громкостью 188 дБ, которые слышны на расстоянии до 850 км от кита.

Скорость распространения звука

Звуковые волны подобно всем другим волнам распространяются с определённой скоростью.

Наблюдение 1. Каждый замечал, что на поверхности воды в озере от места падения камня с определённой скоростью расходятся волны в виде колец из горбиков и впадин, а через некоторое время они достигают берега и набегают на него. Что же такое волна?

Удар камня возбуждает колебания частичек воды, они передаются соседним участкам жидкости, которые в свою очередь начинают колебаться и передавать колебания дальше.

Механической волной называют распространение колебаний в упругой среде.

За время, равное периоду колебаний Т, горбик волны, двигаясь со скоростью Звук в физике и его характеристики, виды, формулы и определения с примерами, пройдёт путь, который обозначают греческой буквой Звук в физике и его характеристики, виды, формулы и определения с примерами и называют длиной волны, т. е.     Звук в физике и его характеристики, виды, формулы и определения с примерами
Длина волны – это расстояние, на которое распространяется данное состояние колебания (горбик, впадина) за время, равное периоду колебания.

Звук в физике и его характеристики, виды, формулы и определения с примерами

На воде длину волны нетрудно измерить: она равна расстоянию между соседними горбиками или соседними впадинами (рис. 38, а). Чтобы определить скорость распространения волны Звук в физике и его характеристики, виды, формулы и определения с примерами, надо длину волны Звук в физике и его характеристики, виды, формулы и определения с примерами разделить на период колебаний Т (или умножить на частоту Звук в физике и его характеристики, виды, формулы и определения с примерами поскольку Звук в физике и его характеристики, виды, формулы и определения с примерами) :     Звук в физике и его характеристики, виды, формулы и определения с примерами

Наблюдение 2. Вы, наверное, замечали, что вспышка молнии предшествует удару грома. Если гроза далеко, то запаздывание грома может достигать десятков секунд. Это запаздывание обусловлено тем, что звуковой волне нужно время, чтобы достигнуть уха от места вспышки молнии.

Звуковая волна — это распространение слоёв сгущённого и разрежённого воздуха, которые чередуются в пространстве и вызываются колебаниями источника, например ножек камертона. На рис. 38, б видно, что длина волны Звук в физике и его характеристики, виды, формулы и определения с примерами в этом случае равна расстоянию между соседними участками сгущений или разрежений воздуха. Так же, как в случае волн на воде, скорость звуковой волны можно определить по формуле:
Звук в физике и его характеристики, виды, формулы и определения с примерами

где Звук в физике и его характеристики, виды, формулы и определения с примерами — скорость распространения звуковой волны в среде; Звук в физике и его характеристики, виды, формулы и определения с примерами — длина волны; Т— период колебаний; Звук в физике и его характеристики, виды, формулы и определения с примерами — частота колебаний.

Скорость звука зависит от среды, в которой он распространяется. С помощью опытов Д. Ф. Араго, Прони и Ж. Гей-Люссак в 1822 г. установили, что в воздухе при температуре 10 0С скорость распространения звуковых волн равна 337,2 Звук в физике и его характеристики, виды, формулы и определения с примерами. Зная скорость распространения звука, можно по приведённым формулам определить длины волн в воздухе, соответствующие границам слышимости человеческого уха:

В воде скорость распространения звука больше, чем в воздухе. Впервые её измерили в 1827 г. на Женевском озере в Швейцарии. На одной лодке зажигали порох и синхронно ударяли в подводный колокол (рис. 39). Вторая лодка была на расстоянии 14 км от первой. Звук улавливали с помощью опушенного в воду рупора. По интервалу времени между вспышкой света и поступлением звукового сигнала определили скорость распространения звука. При температуре 8 °С скорость распространения звука в воде равна 1435 Звук в физике и его характеристики, виды, формулы и определения с примерами .

В твёрдых телах скорость распространения звука еще больше, чем в жидкостях. В таблице 2 приведены значения скорости распространения звуковых волн в разных средах.

Звук в физике и его характеристики, виды, формулы и определения с примерами

В таблице 2 указаны значения скорости распространения звука в разных средах при определённой температуре, поскольку скорость распространения звука в среде зависит от её температуры. Например, скорость распространения звука в жидкостях (за исключением воды) с повышением температуры уменьшается, а в газах скорость распространения звука при неизменном давлении с повышением температуры увеличивается.

Современная техника даёт возможность измерить скорость распространения звука с высокой точностью (рис. 40).

Скорость распространения звука в среде зависит от её температуры.

Опыт. Разместим источник звука под колпаком воздушного насоса (рис. 41), и начнём выкачивать из него воздух. По мере того, как количество воздуха под колпаком уменьшается, звук слабеет, а потом вообще исчезает.

Такой опыт впервые выполнил в 1660 г. Роберт Бойль, показав, что в безвоздушном пространстве, которое называют вакуумом, звук совсем не распространяется. Тем самым он доказал необходимость среды для существования звуковых волн. Есть материалы, которые плохо проводят звук, поскольку колебания в них быстро затухают. Например, пористые панели, пенопласт используют для звукоизоляции, т. е. для защиты помещений от проникновения в них посторонних звуков. Если звуковая волна распространяется в некоторой среде (например, воде), то со временем она достигнет её границы, к которой примыкает другая среда (например, воздух). 
Звук в физике и его характеристики, виды, формулы и определения с примерами

Эта вторая среда состоит из других частиц и отличается строением, поэтому скорость распространения звука в ней иная. На границе двух различных сред происходит отражение звуковой волны подобно отражению света на границе воздуха и зеркала.

Почему отражается звуковая волна? Происходит это потому, что колебания звуковой волны передаются частицам другой среды. Эти частицы сами становятся источниками новой (вторичной) звуковой волны. Вторичная волна распространяется не только во второй среде, но и в первой, откуда поступила первичная волна. Это и есть отражённая волна.

С отражением звука связано известное всем явление — эхо. Оно заключается в том, что звук от источника доходит до некоторого препятствия (а препятствием и есть вторая, отличная от воздуха среда — стена дома, край леса и т. п.), отражается от его поверхности и возвращается к месту, где возникли звуковые колебания.

Если первичный звук и звук отражённый доходят к слушателю не одновременно, то он слышит звук дважды. Бывают случаи многократных отражений звука, тогда и услышать его можно несколько раз (например, раскаты грома).

Явление отражения звуковых волн от препятствий используют для определения расстояний до разных предметов и их местонахождения. Предположим, что в определённый момент времени источник звука создаёт звуковые колебания. Звук распространяется, и, встретив препятствие, отражается от него. Если возле источника звука разместить ещё и приемник, то через определённый интервал времени он может зафиксировать отражённый звук. Измерив этот интервал времени и зная скорость распространения звука в данной среде, определяют расстояние до препятствия, учитывая, что звук дважды проходит искомое расстояние (до препятствия и обратно) по формуле:

Звук в физике и его характеристики, виды, формулы и определения с примерами

где Звук в физике и его характеристики, виды, формулы и определения с примерами — расстояние до препятствия; Звук в физике и его характеристики, виды, формулы и определения с примерами — скорость распространения звука в среде; Звук в физике и его характеристики, виды, формулы и определения с примерами — интервал времени, за которое звук дошел от источника до препятствия и возвратился к приемнику звука.

Инфразвук и ультразвук

Вы уже знаете, что колебания с частотой от 16 до 20 ООО Гц воспринимает человеческое ухо, поэтому их называют звуковыми.

Колебания с частотами, которые меньше чем наинизшая звуковая частота называют инфразвуком (от латинского слова инфра — ниже, под).

Инфразвуковые колебания (инфразвук) – это колебания, частота которых меньше 16 Гц – самой низкой частоты звуковых колебаний.

Человеческое ухо инфразвук не воспринимает. Он возникает во время штормов, гроз, землетрясений. Человеческий организм в целом ощущает на себе вредное действие инфразвука, человек очень страдает от морской и воздушной болезней, возникающих вследствие укачивания в инфразвуковом диапазоне колебаний. Медицинские исследования влияния на человека продолжительного воздействия инфразвука от специальных генераторов свидетельствуют, что оно может привести к непоправимым последствиям.

Инфразвук слабо поглощается средой и может распространяться на большие расстояния. Инфразвук используют в приборах, которые называют сейсмографами. Они предназначены для прогнозирования землетрясений, изучения строения Земли, разведки полезных ископаемых (рис. 42).

Колебания с частотами, которые больше, чем наивысшая звуковая частота, называют ультразвуком (от латинского слова ультра – дальше, больше, над). Ультразвуковые колебания (ультразвук) – это колебания, частота которых больше 20 ООО Гц – самой высокой частоты звуковых колебаний.
Ультразвуковые колебания применяют для обработки твёрдых и сверхтвердых материалов. К обрабатываемым деталям подаётся смесь воды с мелким порошком-абразивом, частички которого под действием ультразвукового излучателя колеблются с большой частотой, бомбардируя обрабатываемую поверхность, благодаря чему в ней можно делать отверстия сложной формы. Так получают изображения на камне, металле, фарфоре и т. п.

Мы уже знаем, что с помощью звукового эха можно определить расстояние до препятствия, на практике также нужно знать, в каком направлении оно расположено. Обычный звук для этого непригоден, поскольку он распространяется по всем направлениям от источника, поэтому и отражённые сигналы поступают с разных сторон.

С целью определения местонахождения объектов методом эха используют не обычный звук, а ультразвук. Он имеет значительно высшую частоту колебаний, чем звук, т. е. очень малую длину волны, что даёт возможность сформировать узкие ультразвуковые пучки, подобные световым, и определить кроме расстояния до объекта ещё и направление на него.
Звук в физике и его характеристики, виды, формулы и определения с примерами

Звук в физике и его характеристики, виды, формулы и определения с примерами

Этот принцип положен в основу действия эхолота и эхолокатора — приборов для измерения глубины морей, океанов или поиска различных предметов под водой. На днищах судов устанавливают ультразвуковые излучатели, которые периодически посылают импульсы в направлении дна (рис. 43, а). Отражённые колебания принимаются (рис. 43, б), и на экране компьютера появляется рельеф дна. Когда на пути ультразвука возникает, например, косяк рыбы, он также отображается на экране. Для многих технических целей нужны смеси жидкостей, которые не смешиваются в обычных условиях (например, ртуть и вода). Но если колбу с водой и ртутью облучать на протяжении определенного времени ультразвуком, то образуется устойчивая смесь, которая может сохраняться в течение продолжительного времени. На промышленных предприятиях с помощью ультразвуковых колебаний смешивают воду и масло.

Учёные установили, что простейшие живые существа быстро гибнут под действием ультразвука. Это свойство используют для стерилизации воды, молока и других пищевых продуктов. Ультразвук является причиной паралича и гибели холоднокровных животных — рыб, жаб. головастиков.

В медицине ультразвук используют с лечебной (рис. 44, а) и диагностической целями (рис. 44. б).

Кстати:

Свыше 80 лет тому назад французский ученый Поль Ланжевен получил патент на первый в мире ультразвуковой локатор. Но природа опередила его лучшие мыши и китообразные, ориентируясь в пространстве, действуют как живые эхолокаторы, так как способны излучать и воспринимать ультразвук в широком диапазоне. Дельфин четко отличает скалу от косяка рыб. Собаки слышат ультразвук, поэтому им можно подавать неслышные для людей команды с помощью специальных свистков.

Влияние акустических колебаний на живые организмы

Среди физических факторов, отрицательно влияющих на здоровье человека, одним из наиболее вредных является звуковой шум. Он воспринимается как неприятные, нежелательные звуки, мешающие нормально работать, получать нужную информацию, отдыхать. Учёные установили, что шум даже малой интенсивности приводит к снижению трудоспособности, остроты слуха, изменению функциональных возможностей коры главного мозга, сердечно-сосудистой и центральной нервной систем. Шум действует на человека возбуждающе, вызывает выделение в кровь большого количества гормонов, вызывающих чувство страха, опасности, агрессии и т. п.

Шум — сложное физическое явление: он образуется вследствие наложения колебаний различных частот, то есть состоит из звуков разной высоты. Он является одной из форм физического (волнового) загрязнения окружающей среды, адаптация организмов к которому практически невозможна. Поэтому шум относится к серьёзным загрязнителям, которые должны быть под контролем государства на основе специальных законов.

Правовую основу защиты населения от шума представляют Законы Украины «Об обеспечении санитарного и эпидемического благополучия населения», «Об охране естественной окружающей среды», «Об охране атмосферного воздуха», «Об экологической экспертизе» и др.

Борьба с шумом состоит в создании шумоулавливаюших экранов, поглощающих фильтров, бесшумных механизмов, в изменении технологии производства и динамики транспортных потоков. Даже озеленение территории снижает уличный шум на 25 % и более.

Уровень шума, его сила (интенсивность) измеряется в децибелах (дБ). Интенсивность всех звуков диапазона слухового восприятия выражают в относительных единицах от 0 до 130 дБ (болевого порога). Измеряют шум специальной аппаратурой – шумомерами.

Допустимые границы силы звука в разных условиях составляют 45—85 дБ. В случае постоянного шума до 70 дБ возникают нарушения эндокринной и нервной систем, при 90 дБ нарушается слух, при 120 дБ возникает физическая боль, становящаяся невыносимой.

Рекомендованные диапазоны шумов внутри помещений разного назначения такие:

  • •для сна, отдыха — 30—40 дБ;
  • •для умственного труда – 40—50 дБ;
  • •для лабораторных исследований, работы с ЭВМ и т. п. – 50—60 дБ;
  • •для производственных цехов, гаражей, магазинов и т. п. – 50—70 дБ.

Источниками шумов являются все виды транспорта, промышленные объекты, громкоговорящие устройства, лифты, телевизоры, радиоприёмники, музыкальные инструменты, собрания людей и отдельные лица (табл. 3). Чрезмерный шум влияет на организм человека подобно яду, который в организме медленно накапливается. Он сокращает продолжительность жизни на 8-12 лет.

Медицинские исследования свидетельствуют, что у лиц, имеющих «шумные» профессии, желудочные заболевания (гастриты, язвы и т. п.) возникают в четыре раза чаще, чем у других. Среди них также намного больше глухих. От продолжительного сильного шума производительность у людей умственного труда снижается на 60 %, физического – на 30 %.

Оказалось, что молодежь до 27 лет выдерживает намного более интенсивный шум, чем люди возрастом более 40—50 лет. Однако со временем, как свидетельствует статистика, у молодых людей, увлекающихся громкой музыкой (на концертах и дома), после 30 лет возникают расстройства слуха, нервной системы и другие болезни.
Звук в физике и его характеристики, виды, формулы и определения с примерами

Наблюдение специалистов свидетельствуют, что в концертных залах, где выступают современные рок-ансамбли, в первых рядах интенсивность звука достигает 118—120 дБ, в последних — 100—110 дБ. Врачи считают, что после каждого такого концерта почти у 10 % слушателей возникают необратимые повреждения внутреннего уха (нервных окончаний), которые не восстанавливаются. Установлено, что очень громкая музыка негативно влияет на вегетативную нервную систему человека, сердце, кровообращение, органы дыхания.

Положительное влияние гармонической, спокойной, мягкой музыки было известно с давних времён. Существует так называемая музыкальная терапия, когда различные оздоровительные процедуры сопровождаются нежными монотонными напевами, спокойным журчаньем воды, мягким шумом морских волн, птичьим пением, спокойной симфонической музыкой.

  • Заказать решение задач по физике

Пример №1

Услышим ли взрыв, который произошёл на Луне?

Ответ: нет, так как на Луне отсутствует атмосфера. Звук в безвоздушном пространстве не распространяется.

Пример №2

Выпишите названия музыкальных инструментов в порядке возрастания высоты тона (в скобках указана частота звуковых колебаний): скрипка (640 Гц), виолончель (216 Гц), контрабас (196 Гц), альт (415 Гц).

Ответ: контрабас (196 Гц), виолончель (216 Гц), альт (415 Гц), скрипка (640 Гц).

Пример №3

Эхо услышали через 2 с после вскрика мальчика перед лесом. На каком расстоянии от леса был мальчик?

Дано:    

Звук в физике и его характеристики, виды, формулы и определения с примерами= 2с

Звук в физике и его характеристики, виды, формулы и определения с примерами= 331Звук в физике и его характеристики, виды, формулы и определения с примерами

Звук в физике и его характеристики, виды, формулы и определения с примерами= ?

Решение:

Используем формулу:Звук в физике и его характеристики, виды, формулы и определения с примерами

Подставим значения: Звук в физике и его характеристики, виды, формулы и определения с примерами м.

Ответ: Звук в физике и его характеристики, виды, формулы и определения с примерами =331 м.

Что такое звук

Особенно важное место среди всех типов упругих волн занимают звуковые волны (звуки). Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и можем безошибочно отличить пение птиц от шума городской улицы.

Рассмотрим в качестве примера источника звука барабан (рис. 25).

Звук в физике и его характеристики, виды, формулы и определения с примерами

Мембрана барабана создает попеременно сжатие и разрежение в прилегающей к ней области воздуха, и образуется продольная волна, которая распространяется в воздухе. Графически ее можно представить как зависимость плотности молекул воздуха от координаты (рис. 26).

Таким образом, в процессе распространения звуковой волны с течением времени изменяются такие характеристики среды, как плотность и давление.

Для распространения звуковых волн необходимы среды с упругими свойствами.

Если поместить источник звука (звонок) под колокол воздушного насоса и постепенно откачивать воздух, то звук становится все слабее и слабее, а затем исчезает. Следовательно, звуковые волны в безвоздушном пространстве не распространяются.

Если окружить звонок слоем пористого материала (поролона, ваты, войлока и т. п.), то звуковые волны в нем быстро затухают. Поэтому такие материалы широко используются для звукоизоляции.

Упругие волны, вызывающие у человека слуховые ощущения, называются звуковыми волнами или просто звуком. Человеческое ухо воспринимает звук в частотном диапазоне от 16 до 20 ООО Гц. 

Раздел физики, В котором изучаются звуковые явления называется акустикой.
Звуковые волны классифицируются по частоте следующим образом. ( рис 27):

  • инфразвук Звук в физике и его характеристики, виды, формулы и определения с примерами
  • слышимый человеком звук Звук в физике и его характеристики, виды, формулы и определения с примерами
  • ультразвук Звук в физике и его характеристики, виды, формулы и определения с примерами
  • гиперзвук Звук в физике и его характеристики, виды, формулы и определения с примерами

Многие животные могут воспринимать ультразвуки. Например, собаки могут слышать звуки частотой до 50 000 Гц, а летучие мыши — до 100 000 Гц. Инфразвук, распространяясь в воде на сотни километров, помогает китам и многим другим морским животным ориентироваться в толще воды.
Основными физическими характеристиками звука являются интенсивность и спектральный состав (спектр).

Для характеристики энергии, переносимой волнами, используется понятие интенсивности волны Звук в физике и его характеристики, виды, формулы и определения с примерами определяемое как энергия Звук в физике и его характеристики, виды, формулы и определения с примерами переносимая волной в единицу времени Звук в физике и его характеристики, виды, формулы и определения с примерами через поверхность площадью Звук в физике и его характеристики, виды, формулы и определения с примерами расположенную перпендикулярно к направлению распространения волны:

Звук в физике и его характеристики, виды, формулы и определения с примерами

Другими словами, интенсивность представляет собой мощность Звук в физике и его характеристики, виды, формулы и определения с примерами переносимую волнами через поверхность единичной площади перпендикулярно к направлению распространения волны.

Единицей интенсивности в СИ является 1 ватт на метр в квадрате Звук в физике и его характеристики, виды, формулы и определения с примерами

Уровень интенсивности звука Звук в физике и его характеристики, виды, формулы и определения с примерами определяют обычно, используя шкалу, единицей которой является 1 бел Звук в физике и его характеристики, виды, формулы и определения с примерами или ее дольная единица — 1 децибел (дБ) (одна десятая бела). Уровень интенсивности самого слабого звука, который воспринимает наше ухо, соответствует 1 белу (1 Б). Единица названа в честь изобретателя телефона Александра Белла.

Так, поезд метро создает уровень интенсивности звука 100 дБ, мощные усилители — 120 дБ, а реактивный самолет — 150 дБ. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Интенсивность звука, улавливаемого ухом человека, лежит в очень широких пределах: от Звук в физике и его характеристики, виды, формулы и определения с примерами (порог слышимости) до Звук в физике и его характеристики, виды, формулы и определения с примерами (порог болевого ощущения) (рис. 28). м    м

Минимальная интенсивность, при которой ухо человека перестает воспринимать звук, называется порогом слышимости. Кривая порога слышимости для всего звукового диапазона приведена на рисунке 28 (в логарифмическом 
Звук в физике и его характеристики, виды, формулы и определения с примерами

масштабе). Наиболее чувствительно наше ухо к волнам частотой примерно 3 кГц, так как интенсивности порядка Звук в физике и его характеристики, виды, формулы и определения с примерами уже достаточно, чтобы ухо восприняло звук. А для того, чтобы услышать звук на частоте 50 Гц, его интенсивность должна быть примерно в 100 000 раз больше, т. е. порядка Звук в физике и его характеристики, виды, формулы и определения с примерами

При значительной интенсивности колебаний ухо перестает воспринимать колебания как звук, испытывая при этом болевое ощущение. Такая интенсивность, выше которой отмечается боль, называется порогом болевого ощущения. Порог болевого ощущения соответствует интенсивности, равной примерно Звук в физике и его характеристики, виды, формулы и определения с примерами 

Реактивный самолет может создать звук интенсивностью порядка Звук в физике и его характеристики, виды, формулы и определения с примерами(мощные усилители на концерте в закрытом помещении — до Звук в физике и его характеристики, виды, формулы и определения с примерами поезд метро — Звук в физике и его характеристики, виды, формулы и определения с примерами

В технике предпочитают измерять изменение интенсивности звука не по изменению энергии волны (на диаграмме справа), а в других единицах — децибелах (на диаграмме слева).

Таким образом, для возникновения звуковых ощущений необходимо: наличие источника звука;

наличие упругой среды между источником звука и ухом; частота колебаний источника звука должна находиться в пределах 16—20 000 Гц; мощность звуковых волн должна быть достаточной для того, чтобы вызывать ощущение звука.

Спектром называется набор звуков различных частот, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.

Сплошной спектр означает, что в данном наборе присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.

Дискретный спектр означает наличие конечного числа волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал. По типу спектра звуки разделяются на шумы и музыкальные тоны.

Шум — совокупность разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т. п.) — представляет собой наложение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр).

Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты. На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию на различных музыкальных инструментах. Интервал частот музыкальных звуков, на границах которого звуки по частоте отличаются в 2 раза, называют октавой.

Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов, из которых можно выделить основной тон, соответствующий наименьшей частоте. Основной тон называется также первой гармоникой. Все остальные тоны называются обертонами. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр.

Физическим характеристикам звука соответствуют определенные (субъективные) характеристики, связанные с восприятием его конкретным человеком. Это обусловлено тем, что восприятие звука — процесс не только физический, но и физиологический. Человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей (это объективные, не зависящие от человека характеристики звука) по-разному, в зависимости от «характеристик приемника» (здесь влияют субъективные индивидуальные черты каждого человека).

Основными физиологическими характеристиками звука являются громкость, высота и тембр.

Громкость (степень слышимости звука) определяется как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1 ООО до 5000 Гц.

С возрастом порог слышимости человека возрастает. Следует отметить, что болевой порог изменяется в зависимости от часто™ не столь существенно, как порог слышимости.

При увеличении интенсивности в 10 раз уровень громкости увеличивается на 20 дБ. Вследствие этого звук в 50 дБ оказывается в 100 раз интенсивнее звука в 30 дБ.

Высота звука определяется частотой звуковых колебаний, обладающих наибольшей интенсивностью в спектре.

Тембр (оттенок звука) зависит от того, сколько обертонов присоединяются к основному тону и какова их интенсивность и частота. По тембру мы легко отличаем звуки скрипки и рояля, флейты и гитары, голоса людей (табл. 2) и т. д.

Звук в физике и его характеристики, виды, формулы и определения с примерами

Модуль скорости звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому модуль скорости звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах (табл. 3).

Звук в физике и его характеристики, виды, формулы и определения с примерами

Модуль скорости звука в идеальных газах с ростом температуры растет пропорционально Звук в физике и его характеристики, виды, формулы и определения с примерами где Звук в физике и его характеристики, виды, формулы и определения с примерами — абсолютная температура. В воздухе модуль скорости звука Звук в физике и его характеристики, виды, формулы и определения с примерами — при температуре Звук в физике и его характеристики, виды, формулы и определения с примерами — при температуре Звук в физике и его характеристики, виды, формулы и определения с примерами В жидкостях и металлах модуль скорости звука, как правило, уменьшается с ростом температуры (исключение — вода).

Впервые модуль скорости звука в воздухе был определен в 1640 г. французским физиком Мареном Мерсенном. Он измерял промежуток времени между моментами появления вспышки и звука при ружейном выстреле. Мерсенн определил, что модуль скорости звука в воздухе равен Звук в физике и его характеристики, виды, формулы и определения с примерами

Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией, а соответствующие приборы — эхолокаторами.

Эхолокацию используют различные китообразные (дельфины), а также летучие мыши, птицы гуахаро, гнездящиеся в глубоких пещерах Венесуэлы и на острове Тринидад, стрижи-салаганы, живущие в пещерах Юго-Восточной Азии. Волны ультразвуковых частот широко используются в медицине в диагностических целях. УЗИ-сканеры позволяют исследовать внутренние органы человека.

Пример №4

Стальные детали проверяются ультразвуковым дефектоскопом. Определите толщину Звук в физике и его характеристики, виды, формулы и определения с примерами детали и глубину Звук в физике и его характеристики, виды, формулы и определения с примерами расположения дефекта, если после излучения ультразвукового сигнала получены два отраженных сигнала через промежутки времени Звук в физике и его характеристики, виды, формулы и определения с примерами Модуль скорости распространения ультразвука Звук в физике и его характеристики, виды, формулы и определения с примерами

Дано: 

Звук в физике и его характеристики, виды, формулы и определения с примерами

Звук в физике и его характеристики, виды, формулы и определения с примерами

Решение

Так как сигнал проходит деталь туда и обратно, то толщину детали определим по формуле:

Звук в физике и его характеристики, виды, формулы и определения с примерами

Аналогично определяется глубина, на которой находится дефект:

Звук в физике и его характеристики, виды, формулы и определения с примерами

Ответ: Звук в физике и его характеристики, виды, формулы и определения с примерами

Итоги:

Периодическим называется движение, при котором физические величины, характеризующие колебательную систему, через равные промежутки времени принимают одинаковые значения.

Колебательным называется движение (процесс), при котором любая характеризующая это движение (процесс) физическая величина поочередно изменяется то в одну, то в другую сторону от ее значения в положении устойчивого равновесия.

Периодическим колебательным движением (колебаниями) называют любой процесс, который обладает свойством повторяемости во времени. Колебания любой физической природы, описываемые уравнением

Звук в физике и его характеристики, виды, формулы и определения с примерами

являются гармоническими, а система, совершающая такие колебания, — гармонической колебательной системой, или гармоническим осциллятором.

Колебания, при которых зависимость координаты (смещения) тела от времени определяется соотношениями

Звук в физике и его характеристики, виды, формулы и определения с примерами

или

Звук в физике и его характеристики, виды, формулы и определения с примерами

называются гармоническими.

Зависимость координаты от времени Звук в физике и его характеристики, виды, формулы и определения с примерами называется кинематическим законом гармонических колебаний (законом движения).

Колебания материальной точки являются гармоническими, если они происходят под действием возвращающей силы, модуль которой прямо пропорционален смещению точки из положения равновесия Звук в физике и его характеристики, виды, формулы и определения с примерами направленной к положению равновесия колеблющегося тела.

Амплитуда колебаний Звук в физике и его характеристики, виды, формулы и определения с примерами — максимальное смещение Звук в физике и его характеристики, виды, формулы и определения с примерами тела или системы тел из положения равновесия.

Фаза колебаний Звук в физике и его характеристики, виды, формулы и определения с примерами определяет состояние колебательной системы (координаты, скорость, ускорение) в любой момент времени при заданной амплитуде. В начальный момент времени Звук в физике и его характеристики, виды, формулы и определения с примерами она равна начальной фазе Звук в физике и его характеристики, виды, формулы и определения с примерами Единицей фазы является 1 радиан (1 рад).

Циклическая частота Звук в физике и его характеристики, виды, формулы и определения с примерами — число полных колебаний за промежуток времени Звук в физике и его характеристики, виды, формулы и определения с примерами секунд:

Звук в физике и его характеристики, виды, формулы и определения с примерами

Период колебания Звук в физике и его характеристики, виды, формулы и определения с примерами — время одного полного колебания:

Звук в физике и его характеристики, виды, формулы и определения с примерами

Частота колебаний Звук в физике и его характеристики, виды, формулы и определения с примерами — число полных колебаний, совершаемых в единицу времени:

Звук в физике и его характеристики, виды, формулы и определения с примерами

Колебательная система, состоящая из тела с прикрепленной к нему пружиной, называется пружинным маятником. Его период колебаний:

Звук в физике и его характеристики, виды, формулы и определения с примерами

Колебательная система, состоящая из небольшого тела, подвешенного на легкой нерастяжимой нити, называется математическим маятником.

Период малых колебаний математического маятника определяется по формуле Гюйгенса:

Звук в физике и его характеристики, виды, формулы и определения с примерами
Собственные (свободные) колебания — это колебания, происходящие в отсутствие внешних воздействий на систему. Они происходят со строго определенной частотой, называемой частотой собственных колебаний системы.

Затухающими называются колебания, энергия которых уменьшается с течением времени.

Вынужденными называются колебания системы, вызываемые действием на нее периодических внешних сил.

Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний, когда частота периодической внешней силы совпадает с собственной частотой колебаний системы.

Механической волной называется процесс распространения колебаний в упругой среде, который сопровождается передачей энергии от одной точки среды к другой.

Длина волны — расстояние, пройденное волной в среде за промежуток времени, равный периоду колебаний частиц:

Звук в физике и его характеристики, виды, формулы и определения с примерами

Скорость распространения волны — это скорость распространения гребня волны или любой другой точки волны с определенной фазой, модуль которой

Звук в физике и его характеристики, виды, формулы и определения с примерами

Волна называется продольной, если колебания частиц среды происходят вдоль направления распространения волны.

Волна называется поперечной, если частицы среды колеблются в плоскости, перпендикулярной направлению распространения волны.

Упругие волны, вызывающие у человека слуховые ощущения, называются звуковыми волнами или просто звуком.

Основными физическими характеристиками звука являются интенсивность и спектральный состав (спектр).

Звук в физике и его характеристики, виды, формулы и определения с примерами

  • Звуковые и ультразвуковые колебания
  • Инерция в физике
  • Масса тела в физике
  • Сила в физике
  • Прохождение света через плоскопараллельные пластинки и призмы
  • Поляризация света
  • Линзы в физике
  • Глаз как оптическая система

План урока:

Источники звука. Звуковые колебания. Ультразвук и инфразвук

Высота и тембр звука. Чистый тон, основной тон. Камертон

Громкость. Амплитуда звуковых колебаний

Распространение звука. Звуковые волны. Скорость звука

Отражение звука. Эхо

Звуковой резонанс

Источники звука. Звуковые колебания. Ультразвук и инфразвук

Звук – это механические волны, которые являются колебаниями среды. А у колебаний среды обязательно должен быть источник – колеблющееся тело. Значит, источник звука – это колеблющееся тело.

Действительно, можно вспомнить много примеров для подтверждения этого факта. Один из них – школьная забава, когда металлическую или пластмассовую линейку кладут на край стола так, чтобы один конец ее был на столе (его нужно придерживать), а второй свисал с него (см. рисунок 1). Если по свободному концу линейки ударить пальцем, она начнет колебаться и издавать звук, высота которого будет зависеть от длины свободного конца линейки.

1 lineika
Рисунок 1 – Опыт с линейкой

За частоту звука считается частота колебаний источника звука.

Однако не каждое тело, совершающее колебания в среде, может служить источником звука. Например, нитяной маятник при колебаниях звуков не издает. Пружинный тоже.

Экспериментальным путем было установлено, что человеческое ухо может воспринимать колебания в диапазоне частот от 16 Гц до 20 000 Гц. Поэтому колебания из этого диапазона называют звуковыми колебаниями или просто звуком.

Стоит заметить, что границы этого диапазона не такие уж четкие. Например, дети имеют слух острее и могут воспринимать колебания с частотой свыше 20 кГц, а вот у стариков наоборот диапазон восприятия звука заметно снижается.

Итак, 16 Гц – 20 кГц – это звуковой диапазон частот, а что с остальными?

Механические колебания, частота которых менее 16 Гц называются инфразвуком, а колебания с частотой более 20 000 Гц – ультразвуком.

И ультразвук, и инфразвук широко используются в технике, а также часто встречаются в дикой природе (например, дельфины общаются друг с другом с помощью ультразвука).

Высота и тембр звука. Чистый тон, основной тон. Камертон

Высота звука прямо пропорциональна его частоте (и, следовательно, частоте источника). То есть, чем больше частота, тем выше будет звук (можно в домашних условиях провести упомянутый ранее опыт с линейкой – чем короче конец линейки, свисающей над полом, тем больше будет частота колебаний и выше звук – и убедиться в сказанном самостоятельно).

Если источник звука колеблется с неизменной частотой по гармоническому закону, говорят, что он издает чистый тон.

Чистый тон – звук источника, совершающего гармонические колебания, в которых присутствует только одна частота.

Одним из самых распространенных источников чистого тона является такое устройство, как камертон (см. рисунок 2). Он состоит из изогнутого U-образного металлического стержня на ножке, установленном на коробочке, называемом резонаторном ящиком. При ударе молоточком по металлическому стержню, тот начинает колебаться и издавать звук. Колебания камертона являются гармоническими, а звук камертона имеет в своем составе колебания только одной частоты.

2 kamertonРисунок 2 – Камертон

Но чаще всего окружающие человека звуки представляет собой сумму колебаний нескольких частот. Любой из этих звуков можно представить в виде нескольких чистых тонов (фактически, разложить звук на составляющие его части). Из этих чистых тонов, составляющих звук,звуковую волну  с самой низкой частотой называют основным тоном, а соответствующую ему частоту – основной частотой. А все остальные тона называются обертонами.

Важно отметить, что частота составного звука определяется именно по частоте его основного тона.

А вот обертона отвечают за такую характеристику, как тембр звука. По нему человек отличает друг от друга звуки различных источников (например, звук музыкального инструмента и голос человека можно отличить, даже если они имеют примерно одинаковую частоту).

Громкость. Амплитуда звуковых колебаний

Громкость звука – понятие, постоянно употребляемое в жизни. Действительно, все когда-нибудь слышали фразы «Слишком громко, сделай тише!» или наоборот «Говори громче, не слышно!». А что же такое громкость звука?

Громкость – это характеристика силы звука. В случае с человеческим ухом – это субъективная величина, ведь кто-то слышит лучше, кто-то хуже.

Для объективности была введена универсальная единица измерения громкости – сон. Однако в практических задачах соны почти не используются. Вместо громкости звука на практике чаще всего используется величина, называемая уровнем звукового давления. Он измеряется в белах (Б) или дБ (децибелах).

Уровни звукового давления, соответствующие звукам различных предметов или ситуаций, представлены на диаграмме рисунка 3. Звуки с уровнем звукового давления свыше 140 дБ крайне болезненны для человека, они разорвать барабанную перепонку. А звук с характеристикой свыше 200 дБ смертельно опасен.

3 urovni zvukovogo davlenia
Рисунок 3 – Диаграмма уровней звукового давления

От чего же зависит уровень громкости?

На самом деле она зависит от нескольких факторов, но основной из них – амплитуда звуковых колебаний. Если представить струну гитары и гитариста, который сначала аккуратно и не сильно дергает струну, а потом резко и сильно бьет по той же струне. Во втором случае звук будет явно сильнее, потому что струна будет колебаться с большей амплитудой.

Громкость увеличивается с увеличением амплитуды.

Однако следует помнить, что в восприятии звука человеческим ухом есть свои особенности: помимо амплитуды на него влияет так же частота звуковой волны (более высокие звуки будут восприниматься как более громкие), длительность, тембр и многое другое.

Распространение звука. Звуковые волны. Скорость звука

Звук, распространяющийся в газах и жидкостях, представляет собой продольную волну (так как в неупругих средах могут распространяться только такой вид волн). То есть звуковая волна – это чередование областей уплотнения и разряжения частиц среды, идущих от источника.

Как и любой другой вид волн, звуковые волны характеризуются скоростью распространения. Например, во время грозы человек сначала видит вспышку молнии, а потом уже слышит гром. Причем интересно, что скорость распространения звука в разных средах будет различна.

Экспериментально измерить скорость звука можно, например, в эксперименте со стрелком, делающим выстрел в воздух. Если встать от стрелка на расстоянии 500 метров и засечь время между вспышкой, которую мы видим при выстреле и звуком, который до нас доходит с опозданием, можно рассчитать скорость по формуле:

4 formula skorosti

где v – скорость звука в среде, S – расстояние до стрелка, t – время между вспышкой и звуком.

По экспериментальным данным скорость звука в воздухе равна примерно 330 м/с.

Однако это величина не постоянная. Скорость звука в газах зависит от температуры: при увеличении температуры молекулы газа начинают двигаться быстрее и, тем самым, увеличивается степень из взаимодействия (то есть молекулы чаще сталкиваются друг с другом), а значит и скорость распространения волн тоже увеличится.

330 м/с  – это скорость звука при нормальном атмосферном давлении и 0° по шкале Цельсия.

График зависимости скорости распространения звуковых волн от температуры воздуха представлен на рисунке 4.

5 zavisimost skorosti rasprostranenia zvukovyh voln ot temperatury vozduha
Рисунок 4 – График зависимости скорости распространения звуковых волн от температуры воздуха

А что же насчет распространения звуков в других средах – жидкостях или твердых телах? Жидкости и твердые тела имеют плотность больше, чем газы, значит, молекулы в них взаимодействуют друг с другом активнее. А чем сильнее взаимодействуют молекулы вещества, тем быстрее распространяется волна в нем. Значит, звук распространяется в жидкостях и твердых телах быстрее, чем в газах.

И стоит помнить, что для звуковых волн, как и для любых других, действуют формулы:

6 formula

Где v – частота звуковых колебаний, T– период звуковой волны,  – длина колебаний звуковой волны, v – скорость распространения звуковых колебаний.

Отражение звука. Эхо

Каждый человек когда-либо сталкивался с таким явлением, как эхо – когда произнесенное слово или звук слышатся не один раз, а несколько. Это происходит потому, что звуковые волны отражаются от различных поверхностей (рис.5).

7 razlichnye zvuki
Рисунок 5 – Схема отражения звуковых волн от различных поверхностей (1 – источник звука, 2 – направление исходной звуковой волны, 3 – отражающий предмет, 4 – направление отраженной волны)

Эхо можно услышать, например, в пустой комнате, если она достаточно просторная, или просто в очень большом помещении. Почему же мы не слышим эха, находясь в любом помещении? Чтобы услышать эхо, человеческий мозг должен воспринять отраженный сигнал отдельно от исходного. В маленьких помещениях отраженный звуковой сигнал доходит до уха почти одновременно с исходным, поэтому мозг не успевает их различить.

Например, если ученик стоит на расстоянии 2-х метров от стены, отраженная звуковая волна достигнет его уха через:

8 formula vremeni

Для того, чтобы мозг воспринял исходный и отраженный сигналы отдельно друг от друга, необходимо, чтобы разница во времени была не менее 0,6 секунды.

На возникновение эха так же влияют предметы, находящиеся в комнате: гладкие стены хорошо отражают звук, а вот мягкая мебель и ткани – поглощают звуковые волны, тем самым препятствуя их распространению.

Явление отражения волн часто используется в технике. Например, корабли могут измерять глубин моря используя отражение ультразвука. На дне судна располагают источник и приемник ультразвука. Источник порождает сигналы, которые доходят до дна, а затем отражается от него и доходят до приемника, фиксирующего их (см. рисунок 6). В этом случае глубину моря можно рассчитать по формуле:

9 formula glubiny uchastka

где h– глубина измеряемого участка, vзвука – скорость звука в воде, t–время с момента отправления сигнала до его фиксации приемником.

*Данная формула выводится из закона равномерного движения:

10 formula ravnomernogo dvizhenia

где  – перемещение при равномерном движении,  – скорость движения,  – время. Число 2 в знаменателе появляется потому, что за время t в данном случае сигнал успевает пройти путь до дна и обратно до корабля – то есть двойной путь.

11 yavlenie otrazhenia ultrazvuka

Рисунок 6 – Измерение глубины с помощью явления отражения ультразвука от дна (1 – корабль, 2 – источник ультразвука, 3 – приемник ультразвука, 4 – испускаемая источником волна, 5 – отраженная от дна волна)

Звуковой резонанс

Резонанс – это явление резкого усиления амплитуды вынужденных колебаний при совпадении (равенстве) собственной частоты колебаний и частоты вынуждающей силы.

Звуковые волны тоже могут вызвать резонанс, и это явление часто используется в музыкальных инструментах. Например, в гитаре корпус играет роль резонаторного ящика. Звук от колеблющейся струны многократно отражается в полом корпусе гитары и, тем самым, звуковые колебания усиливаются.

В камертоне (см. рисунок 2) резонаторный ящик тоже предназначен именно для усиления звука.

В теле человека роль резонатора играет гортань, а роль источника звука – голосовые связки.

Добавить комментарий