Тема: Найти частоту падающего света (Прочитано 11112 раз)
0 Пользователей и 1 Гость просматривают эту тему.
При освещении вакуумного фотоэлемента светом частоты ν фотоэлектроны задерживаются при включении обратного напряжения Uзад = 3 В. Частота излучения, соответствующая красной границе фотоэффекта для этого металла, νmin = 6∙1014 Гц. Найти частоту падающего света.
« Последнее редактирование: 03 Декабря 2014, 22:09 от Сергей »
Записан
Решение.
Для решения задачи используем формулу Эйнштейна для фотоэффекта:
[ E=A+{{E}_{K}} (1). ]Где: Е – энергия фотона, А – работа выхода электрона из метала.
Энергия фотона определяется по формуле:[ E=hcdot nu (2). ]
Где: h = 6,63∙10-34 Дж∙с – постоянная Планка, с – скорость света в вакууме, с = 3∙108 м/с.
Работа выхода электрона из метала определяется по формуле:
[ A=hcdot {{nu }_{min }} (3). ]
Максимальная кинетическая энергия и задерживающее напряжение связаны между собой соотношением:
EК = е∙Uзад (4).
е – модуль заряда электрона, е = 1,6 10-19 Кл.
Подставим(4) (3) и (2) в (1) выразим частоту падающего света:
[ nu =frac{hcdot {{nu }_{min }}+ecdot U}{h}. ]
ν = 6,72∙1015 Гц.
Ответ: 6,72∙1015 Гц.
« Последнее редактирование: 09 Декабря 2014, 06:26 от alsak »
Записан
Помогите пожалуйста найти частоту падающего света
Rod Stewart
Ученик
(66),
закрыт
10 лет назад
Дополнен 10 лет назад
Во время наблюдения фотоэффекта с поверхности металла вылетают электроны. Работа выхода лития 4,3 эВ, задерживающий потенциал = 1,2 В. Найти частоту падающего света.
Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь похожее условие и решить свою по аналогии. Загрузка страницы может занять некоторое время в связи с большим количеством рисунков. Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.
Явление фотоэффекта заключается в испускании веществом электронов под действием падающего света. Теория фотоэффекта разработана Эйнштейном и заключается в том, что поток света представляет собой поток отдельных квантов(фотонов) с энергией каждого фотона hn. При попадании фотонов на поверхность вещества часть из них передает свою энергию электронов. Если этой энергия больше работы выхода из вещества, электрон покидает металл. Уравнение эйнштейна для фотоэффекта: где — максимальная кинетическая энергия фотоэлектрона.
Длина волны красной границы фотоэффекта для некоторого металла составляет 307 нм. Максимальная кинетическая энергия фотоэлектронов – 1 эВ. Найти отношение работы выхода электрона к энергии падающего фотона.
Частота света красной границы фотоэффекта для некоторого металла составляет 6*1014 Гц, задерживающая разность потенциалов для фотоэлектронов – 2В. Определить частоту падающего света и работу выхода электронов.
Работа выхода электрона из металла составляет 4,28эВ. Найти граничную длину волны фотоэффекта.
На медный шарик радает монохроматический свет с длиной волны 0,165 мкм. До какого потенциала зарядится шарик, если работа выхода электрона для меди 4,5 эВ?
Работа выхода электрона из калия составляет 2,2эВ, для серебра 4,7эВ. Найти граничные длину волны фотоэффекта.
Длина волны радающего света 0,165 мкм, задерживающая разность потенциалов для фотоэлектронов 3В. Какова работа выхода электронов?
Красная граница фотоэффекта для цинка 310 нм. Определить максимальную кинетическую энергию фотоэлектронов, если на цинк падает свет с длиной волны 200нм.
На металл с работой выхода 2,4эВ падает свет с длиной волны 200нм. Определить задерживающую разность потенциалов.
На металл падает свет с длиной волны 0,25 мкм, задерживающая разность потенциалов при этом 0,96В. Определить работу выхода электронов из металла.
При изменении длины волны падающего света максимальные скорости фотоэлектронов изменились в 3/4 раза. Первоначальная длина волны 600нм, красная граница фотоэффекта 700нм. Определить длину волны после изменения.
Работы выхода электронов для двух металлов отличаются в 2 раза, задерживающие разности потенциалов – на 3В. Определить работы выхода.
Максимальная скорость фотоэлектронов равно 2,8*108 м/с. Определить энергию фотона.
Энергии падающих на металл фотонов равны 1,27 МэВ. Найти максимальную скорость фотоэлектронов.
Максимальная скорость фотоэлектронов равно 0,98с, где с – скорость света в вакууме. Найти длину волны падающего света.
Энергия фотона в пучке света, падающего на поверхность металла, равно 1,53 МэВ. Определить максимальную скорость фотоэлектронов.
На шарик из металла падает свет с длиной волны 0,4 мкм, при этом шапик заряжается до потенциала 2В. До какого потенциала зарядится шарик, если длина волны станет равной 0,3 мкм?
После изменения длины волны падающего света в 1,5 раза задерживающая разность потенциалов изменилась с 1,6В до 3В. Какова работа выхода?
Красная граница фотоэффекта 560нм, частота падающего света 7,3*1014 Гц. Найти максимальную скорость фотоэлектронов.
Красная граница фотоэффекта 2800 ангстрем, длина волны падающего света 1600 ангстрем. Найти работу выхода и максимальную кинетическую энергию фотоэлектрона.
Задерживащая разность потенциалов 1,5В, работа выхода электронов 6,4*10-19 Дж. Найти длину волны падающего света и красную границу фотоэффекта.
Работа выхода электронов из металла равна 3,3 эВ. Во сколько раз изменилась кинетическая энергия фотоэлектронов. если длина волны падающего света изменилась с 2,5*10-7м до 1,25*10-7м?
Найти максимальную скорость фотоэлектронов для видимого света с энергией фотона 8 эВ и гамма излучения с энергией 0,51 МэВ. Работа выхода электронов из металла 4,7 эВ.
Фототок прекращается при задерживающей разности потенциалов 3,7 В. Работа выхода электронов равна 6,3 эВ. Какая работа выхода электронов у другого металла, если там фототок прекращается при разности потенциалов, большей на 2,3В.
Работа выхода электронов из металла 4,5 эВ, энергия падающих фотонов 4,9 эВ. Чему равен максимальный импульс фотоэлектронов?
Красная граница фотоэффекта 2900 ангстрем, максимальная скорость фотоэлектронов 108 м/с. Найти отношение работы выхода электронов к энергии палающих фотонов.
Длина волны падающего света 400нм, красная граница фотоэффекта равна 400нм. Чему равна максимальная скорость фотоэлектронов?
Длина волны падающего света 300нм, работа выхода электронов 3,74 эВ. Напряженность задерживающего электростатического поля 10 В/см.Какой максимальный путь фотоэлектронов при движении в направлении задерживающего поля?
Длина волны падающего света 100 нм, работа выхода электронов 5,30эВ. Найти максимальную скорость фотоэлектронов.
При длине волны радающего света 491нм задерживающая разность потенциалов 0,71В. Какова работа выхода электронов? Какой стала длина волны света, если задерживающая разность потенциалов стала равной 1,43В?
Кинетическая энергия фотоэлектронов 2,0 эВ, красная граница фотоэффекта 3,0*1014 Гц. Определить энергию фотонов.
Красная граница фотоэффекта 0,257 мкм, задерживающая разность потенциалов 1,5В. Найти длину волны падающего света.
Красная граница фотоэффекта 2850 ангстрем. Минимальное значение энергии фотона, при котором возможен фотоэффект?
Ниже вы можете посмотреть обучаюший видеоролик на тему фотоэффекта и его законов.
Содержание
- 1 Описание опыта
- 2 Flash-анимация опыта
- 3 Законы фотоэффекта
-
4 История физики
- 4.1 Описание опыта Столетовым А.Г.
- 4.2 Выводы Столетова А.Г.
- 5 Литература
- 6 Видео по теме Опыт Столетова А.Г.
Описание опыта
Внешний фотоэффект был открыт в 1887 г. Г. Герцем, а исследован детально в 1888-1890 гг. А. Г. Столетовым.
Для того чтобы получить о фотоэффекте более полное представление, нужно выяснить, от чего зависит число вырванных светом с поверхности вещества электронов (фотоэлектронов) и чем определяется их скорость или кинетическая энергия. С этой целью были проведены экспериментальные исследования, которые состояли в следующем. В стеклянный баллон, из которого выкачан воздух (для того, чтобы столкновения электронов с молекулами газа не вносили осложнения в наблюдаемые явления, а также для того, чтобы предохранить пластинки от окисления), помещаются два электрода (рис. 1).
Рис. 1
Внутрь баллона на один из электродов поступает свет через кварцевое «окошко», прозрачное не только для видимого света, но и для ультрафиолетового излучения. На электроды подается напряжение, которое можно менять с помощью потенциометра R и измерять вольтметром V. К освещаемому электроду (катод К) присоединяют отрицательный полюс батареи. Под действием света этот электрод испускает электроны, которые при движении в электрическом поле образуют электрический ток. При малых напряжениях не все вырванные светом электроны достигают другого электрода (анод А). Если, не меняя интенсивности излучения, увеличивать разность потенциалов между электродами, то сила тока так же увеличивается. При некотором напряжении она достигает максимального значения, после чего перестает изменяться (рис. 2).
Рис. 2
Из графика следует, что:
1. При некотором значении напряжения между электродами Uн сила фототока перестает зависеть от напряжения.
Максимальное значение силы тока Iн называется током насыщения. Сила тока насыщения (I_H = dfrac {q_{max}}{t}), где qmах — максимальный заряд, переносимый фотоэлектронами. Он равен (q_{max} = n cdot e cdot t), где n — число фотоэлектронов, вылетающих с поверхности освещаемого металла за 1 с, е — заряд электрона. Следовательно, при фототоке насыщения все электроны, покинувшие за 1 с поверхность металла, за это же время попадают на анод. Поэтому по силе фототока насыщения можно судить о числе фотоэлектронов, вылетающих с катода в единицу времени.
2. Сила фототока отлична от нуля и при нулевом напряжении. Это означает, что часть вырванных светом электронов достигает анода А (см. рис. 1) электрода и при отсутствии напряжения, т.е. фотоэлектроны при вылете обладают кинетической энергией.
3. Если катод соединить с положительным полюсом источника тока, а анод — с отрицательным, то в электростатическом поле между электродами фотоэлектроны будут тормозиться, а сила фототока уменьшаться при увеличении значения этого отрицательного напряжения. При некотором значении отрицательного напряжения Uз (его называют задерживающим напряжением) фототок прекращается. Это значит, что электрическое поле тормозит вырванные электроны до полной остановки, а затем возвращает их на электрод.
Согласно теореме о кинетической энергии, работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов:
(A = -e cdot U_3; Delta W_k = dfrac {m cdot upsilon_{max}^2}{2}),
следовательно,
(e cdot U_3 = dfrac {m cdot upsilon_{max}^2}{2}).
Это выражение получено при условии, что скорость υ « с, где с — скорость света.
Следовательно, зная Uз, можно найти максимальную кинетическую энергию фотоэлектронов.
На рисунке 3, а приведены графики зависимости Iф(U) для различных световых потоков, падающих на фотокатод при постоянной частоте света. На рисунке 3, б приведены графики зависимости Iф(U) для постоянного светового потока и различных частот падающего на катод света.
а
б
Рис. 3.
Анализ графиков на рисунке 3, а показывает, что сила фототока насыщения увеличивается с увеличением интенсивности падающего света. Если по этим данным построить график зависимости силы тока насыщения от интенсивности света, то получим прямую, которая проходит через начало координат (рис. 4, а). Следовательно, сила фотона насыщения пропорциональна интенсивности света, падающего на катод: Iф ~ I.
Как следует из графиков на рисунке 3, б, величина задерживающего напряжения увеличивается с увеличением частоты падающего света. При уменьшении частоты падающего света Uз уменьшается, и при некоторой частоте ν0) задерживающее напряжение Uз0 = 0. При ν < ν0 фотоэффект не наблюдается. Минимальная частота ν0 (максимальная длина волны ν0) падающего света, при которой еще возможен фотоэффект, называется красной границей фотоэффекта. На основании данных графика 3, б можно построить график зависимости Uз(ν) (рис. 4, б).
а
б
Рис. 4.
На основании этих экспериментальных данных были сформулированы законы фотоэффекта.
Flash-анимация опыта
Вы можете повторить описанный выше опыт при помощи flash-анимации (автор Александр Коновалов). В этой программе вы можете:
- наблюдать движение электронов;
- менять материал (металл) катода, интенсивность и частоту излучения, полярность источника;
- увидеть значения работы выхода, красная граница фотоэффекта, длины волны излучения, энергии фотона и напряжения источника.
<swf age=”13″ bgcolor=”#F8F8FF” dummy=”Dummy_pic1.jpg”>fot_7.swf</swf> Опыт Столетова А.Г.
Увеличить Flash
Рис. 5.
Законы фотоэффекта
- Число фотоэлектронов, вырываемых за 1 с с поверхности катода, пропорционально интенсивности света, падающего на это вещество.
- Кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а зависит линейно от его частоты.
- Красная граница фотоэффекта зависит только от рода вещества катода.
- Фотоэффект практически безинерционен, так как с момента облучения металла светом до вылета электронов проходит время ≈ 10–9 с.
История физики
Описание опыта Столетовым А.Г.
«Два металлических диска («арматуры», «электроды») в 22 см диаметром были установлены вертикально и друг другу параллельно перед электрическим фонарем Дюбоска, из которого вынуты все стекла. В фонаре имелась лампа с вольтовой дугой А. Один из дисков, близлежащий к фонарю, сделан из тонкой металлической сетки, латунной или железной, иногда гальванопластически покрытой другим металлом, которая была натянута в круглом кольце; другой диск сплошной (металлическая пластинка)» [4, с. 193].
Измерения производились зеркальным гальванометром G, источником тока В служили гальванические батареи из разного числа элементов. В опытах ученый менял знак заряда на металлической пластине с отрицательного на положительный, на пути световых лучей помещал непрозрачный экран (пластинку из картона, металла и др.), стеклянную пластинку. При этих производимых друг за другом исследованиях фотоэффект не наблюдался. Экраны из кварца, льда вследствие поглощения длинноволновой части излучения только ослабляли наблюдаемый эффект. Отсюда ученый делает вывод, что фотоэффект вызывается главным образом ультрафиолетовыми лучами. При прочих равных условиях фототок возрастал при зачистке поверхности отрицательного электрода и повышении его температуры. Для изучения зависимости фотоэффекта от освещенности поверхности электрода Столетов использовал метод прерывистого освещения. К описанной ранее экспериментальной установке был добавлен картонный круг с вырезанными окошками. Круг помещался между источником света S и конденсатором G. Площади окошек и промежутков между ними были одинаковы. Когда круг приводился во вращение (скорость вращения можно было изменять), на конденсатор падало наполовину меньше света, чем при неподвижном круге. При этом сила фототока также уменьшалась в два раза. Следовательно, сила фототока прямо пропорциональна величине светового потока. Такой же результат ученый получил, изменяя площадь освещаемой части отрицательной пластины. Эксперименты, кроме того, позволили установить, что световые лучи действуют мгновенно: фототок возникал и прекращался практически одновременно с началом и прекращением освещения конденсатора. Увеличение напряжения вело к возрастанию силы фототока до определенного значения (ток насыщения), затем он оставался постоянным.
Выводы Столетова А.Г.
В результате проведенных в воздухе экспериментов Столетов пришел к следующим выводам:
«1. Лучи вольтовой дуги, падая на поверхность отрицательно заряженного тела, уносят с него заряд…
2. Это действие лучей есть строго униполярное, положительный заряд лучами не уносится.
3. Разряжающим действием обладают — если не исключительно, то с громадным превосходством перед прочими — лучи самой высокой преломляемости, недостающие в солнечном спектре (λ = 295•10–6 мм). Чем спектр обильнее такими лучами, тем сильнее действие.
4. Для разряда лучами необходимо, чтобы лучи поглощались поверхностью тела…
5. Разряжающее действие лучей обнаруживается даже при весьма кратковременном освещении, причем между моментом освещения и моментом соответственного разряда не протекает заметного времени.
6. Разряжающее действие, при одинаковых условиях, пропорционально энергии активных лучей, падающих на разряжаемую поверхность.
7. Каков бы ни был механизм активно-электрического разряда, мы вправе рассматривать его как некоторый ток электричества…
8. Активно-электрическое действие усиливается с повышением температуры» [4, с. 238, 239].
Литература
- Аксенович Л.А. Физика в средней школе. — Мн.: Адукацыя i выхаванне, 2004. — С. 556-559.
- Вольштейн С. Л. и др. Методы физической науки в школе: Пособие для учителя / С. Л. Вольштейн, С. В. Позойский, В. В. Усанов; Под ред. С. Л. Вольштейна.— Мн.: Нар. асвета, 1988.— С. 124-126.
- Мякишев Г.Я., Буховцев Б.Б. Физика: Учеб. для 11 кл. общеобразоват. учреждений. — М.: Просвещение, 1998. — С. 162-163.
- Столетов А. Г. Избранные сочинения / Под ред. А. К. Тимирязева.— М.; Л.: Гос. изд. техн.-теор. лит., 1950. — 660 с.
Видео по теме Опыт Столетова А.Г.
Помогаю со студенческими работами здесь
Разработать модель, описывающую поведение луча света, падающего на объект
Разработать модель, описывающая поведение луча света, падающего на объект произвольной формы и…
Определите длину волны монохроматического света, падающего нормально на дифракционную решетку
решите пожалуйста задачу.Определите длину волны монохроматического света, падающего нормально на…
Опыт Юнга: чему равна длина волны света, падающего на щели?
расстояние между щелями в опыте Юнга b=0,5 мм.экран удален от щелей на 91 см.две соседние темные…
Найти частоту букв и частоту слов в предложении
Друзья! Нужна помощь. нужно найти частоту каждого слова и частоту каждой буквы. Т.е. пишем…
Искать еще темы с ответами
Или воспользуйтесь поиском по форуму:
2