Как найти частоту переменного тока формула

     Пульсирующий переменный ток      Постоянный ток      Произвольно изменяющийся переменный ток      Синусоидальный переменный ток

Переме́нный ток — электрический ток, который с течением времени изменяется по величине, обычно и по направлению в электрической цепи[1].

Хотя переменный ток часто переводят на английский как alternating current, эти термины не эквивалентны. Термин alternating current (AC) в узком смысле означает синусоидальный ток, в широком смысле — периодический знакопеременный ток (то есть периодический двунаправленный ток). Условное обозначение на электроприборах: thicksim или thickapprox (знак синусоиды), или латинскими буквами AC.

Общее понятие о переменном токе[править | править код]

Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи условно считают положительным, а другое отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.

Сила переменного тока — величина скалярная, знак её определяется тем, в каком направлении ток протекает в цепи в рассматриваемый момент времени — в положительном или отрицательном.

Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока.

Максимальное мгновенное значение переменного тока, которого он достигает в процессе своего изменения, называется амплитудой тока I_{m}.

График зависимости силы переменного тока от времени называется развёрнутой диаграммой переменного тока.

Развёрнутая диаграмма переменного синусоидального тока

На рисунке приведена развёрнутая диаграмма переменного тока, изменяющегося с течением времени по величине и направлению. На горизонтальной оси — оси времени — в определённом масштабе отложены отрезки времени, а по вертикальной оси — сила тока, причём в направлении вверх выбрано положительное направление, а вниз — отрицательное.

В начальный момент времени t=0 сила тока равна нулю (i=0). Затем она с течением времени растёт в положительном направлении, в момент времени t={frac  {T}{4}} достигает максимального значения, после чего убывает и в момент времени t={frac  {T}{2}} становится равной нулю. Затем, пройдя через нулевое значение, ток меняет своё направление на противоположное, то есть сила тока становится отрицательной, затем она растёт по абсолютной величине (стремясь вниз), достигает максимума (по абсолютной величине) при t={{frac  {3}{4}}}T, а после этого убывает (по абсолютной величине), стремясь к нулю, и при t=T становится равной нулю.

Периодический переменный ток[править | править код]

Развёрнутая диаграмма периодического переменного тока

Периодическим переменным током называется такой электрический ток, который через равные промежутки времени повторяет полный цикл своих изменений, возвращаясь к своей исходной величине.

На представленной диаграмме через равные промежутки времени T график тока воспроизводится полностью без каких-либо изменений.

Время T, в течение которого переменный периодический ток совершает полный цикл своих изменений, возвращаясь к своей исходной величине, называется периодом переменного тока.

Величина, обратная периоду, называется частотой переменного тока:

f={frac  {1}{T}}, где:
f — частота переменного тока;
T — период переменного тока.

Если выразить время T в секундах (s), то будем иметь:

{displaystyle f={frac {1}{T}}left[{frac {1}{operatorname {s} }}right]}, то есть размерность частоты переменного тока равна T−1, а в СИ выражается в с−1.

Частота переменного тока численно равна числу периодов по отношению к промежутку времени.

За единицу измерения частоты переменного тока принят 1 герц (Гц) — в честь Генриха Герца. Через основные единицы СИ герц выражается следующим образом: 1 Гц = 1 с−1. Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Частота переменного тока равна одному герцу, если период тока равен одной секунде (один полный цикл за одну секунду).

Стандарты частоты[править | править код]

В большинстве стран в электротехнике применяются частоты 50 или 60 Гц (вторая из них принята в США и Канаде). В некоторых странах — например, в Японии — используются оба стандарта (см. «Промышленная частота переменного тока»).

Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария), частота 25 Гц — на старых железнодорожных линиях США (см. статью).

В авиации и военной технике, чтобы снизить массу устройств или повысить частоту вращения электродвигателей переменного тока, применяется частота 400 Гц.

Число оборотов ротора {displaystyle n [operatorname {s} ^{-1}]} синхронного электродвигателя определяется по формуле:

{displaystyle n={tfrac {f}{p}}}, где

{displaystyle f [operatorname {s} ^{-1}]} — частота переменного тока;

p — число пар полюсов.

Так как минимальное число пар полюсов равно единице, то синхронный электродвигатель, работающий на переменном токе частотой 50 герц, разовьёт 3 000 оборотов в минуту, а электродвигатель, работающий на переменном токе частотой 400 герц, — 24 000 об/мин. Частота вращения ротора асинхронного электродвигателя меньше, чем частота питающего его тока и зависит от нагрузки. Скольжение — разность между частотой вращения вращающегося магнитного поля и частотой вращения ротора.

В технике передачи информации (в частности, в радиотехнике) применяются частоты более высокие — порядка миллионов и миллиардов герц.

Переменный синусоидальный ток[править | править код]

Синусоидальным током называется периодический переменный ток, который с течением времени изменяется по гармоническому закону.

Синусоидальный ток считается элементарным, то есть его невозможно разложить на другие более простые переменные токи[2].

Переменный синусоидальный ток выражается формулой:

i=I_{m}sin omega t, где

I_{m} — амплитуда синусоидального тока;

omega t — некоторый угол, называемый фазой синусоидального тока.

Фаза синусоидального тока omega t изменяется пропорционально времени t.

Множитель omega , входящий в выражение фазы {displaystyle omega t,} — это угловая (круговая) частота переменного тока, которая является постоянной.

Угловая частота omega синусоидального тока зависит от частоты f этого тока и определяется формулой:

omega =2pi f={frac  {2pi }{T}}, где

omega  — угловая частота синусоидального тока;

f — частота синусоидального тока;

T — период синусоидального тока;

2pi  — полный угол, выраженный в радианах.

Зависимость синусоидального тока от времени

Зависимость синусоидального тока от угла ωt

Периоду T соответствует угол 2pi , половине периода {frac  {T}{2}} угол pi и так далее…

Исходя из формулы omega =2pi f={frac  {2pi }{T}}, можно определить размерность угловой (круговой) частоты:

{displaystyle dim omega =dim {2pi  over T}=operatorname {T} ^{-1}}, где

{displaystyle operatorname {T} ^{-1}} — размерность времени в минус первой степени,

2pi  — угол в радианах, являющийся безразмерной величиной.

Фаза omega t синусоидального тока измеряется радианами.

1 радиан = 57,29° = 57°17′, угол 90° = {pi  over 2} радиан, угол 180° = pi радиан, угол 270° = {3pi  over 2} радиан, угол 360° = 2pi радиан,
где {displaystyle pi =3{,}14} радиан; pi  — число «пи», ° — угловой градус и  — угловая минута.

Формула i=I_{m}sin omega t описывает случай, когда наблюдение за изменением переменного синусоидального тока начинается с момента времени t = 0. Если начальный момент времени не равен нулю, тогда формула для определения мгновенного значения переменного синусоидального тока принимает следующий вид:

i=I_{m}sin(omega t+psi ), где

(omega t+psi ) — фаза переменного синусоидального тока;

psi  — угол, называемый начальной фазой переменного синусоидального тока.

Начальная фаза переменного тока psi >0
left(psi ={frac  {pi }{2}}right)

Начальная фаза переменного тока psi <0
left(psi =-{frac  {pi }{2}}right)

Если в формуле i=I_{m}sin(omega t+psi ) принять t = 0, то будем иметь

omega t=0, omega t+psi =psi и i_{{t=0}}=I_{m}sin psi .

Начальная фаза — это фаза синусоидального тока в момент времени t = 0.

Начальная фаза переменного синусоидального тока может быть положительной (psi >0) или отрицательной (psi <0) величиной. При psi >0 мгновенное значение синусоидального тока в момент времени t = 0 положительно, при psi <0 — отрицательно.

Если начальная фаза psi ={frac  {pi }{2}}, то ток определяется по формуле i=I_{m}sin(omega t+{frac  {pi }{2}}). Мгновенное значение его в момент времени t = 0 равно

i_{{t=0}}=I_{m}sin {frac  {pi }{2}}=I_{m}, то есть равно положительной амплитуде тока.

Если начальная фаза psi =-{frac  {pi }{2}}, то ток определяется по формуле i=I_{m}sin(omega t-{frac  {pi }{2}}). Мгновенное значение его в момент времени t = 0 равно

i_{{t=0}}=I_{m}sin(-{frac  {pi }{2}})=-I_{m}, то есть равно отрицательной амплитуде тока.

Многофазный переменный ток[править | править код]

Два синусоидальных тока совпадают по фазе друг с другом

Синусоидальные токи сдвинуты по фазе на угол {frac {pi }{2}}

Два переменных синусоидальных тока совпадают по фазе, если они имеют одинаковые фазы и, следовательно, одновременно достигают своих нулевых и максимальных значений одинакового знака.

На левой иллюстрации представлены развёрнутые диаграммы токов i_1 и i_2.
Токи i_{1}=I_{{1m}}sin omega t и i_{2}=I_{{2m}}sin omega t совпадают по фазе.

Два переменных синусоидальных тока сдвинуты по фазе относительно друг друга, если они имеют различные фазы.

На правой иллюстрации токи i_{1}=I_{{1m}}sin(omega t+{frac  {pi }{2}}) и i_{2}=I_{{2m}}sin {omega t} сдвинуты по фазе на угол {frac {pi }{2}}, так как

(omega t+{frac  {pi }{2}})-{omega t}={frac  {pi }{2}}.

Ток i_1 опережает по фазе ток i_2 на угол {frac {pi }{2}}, или, иначе, ток i_2 отстаёт по фазе относительно тока i_1 на угол {frac {pi }{2}}.

Трёхфазный ток[править | править код]

Развёрнутая диаграмма трёхфазного тока.      Фаза «A» (или U1), сдвиг по фазе 0°      Фаза «B» (или U2), сдвиг по фазе 120°      Фаза «C» (или U3), сдвиг по фазе 240°

Трёхфазная электрически связанная система, соединение «звездой» с нейтральным проводом: генератор G слева, нагрузка M справа.

Трёхфазная электрически связанная система, и генератор G и нагрузка M соединены «треугольником».

Среди многофазных систем переменного синусоидального тока наиболее широкое применение получила трёхфазная система электроснабжения.

Трёхфазной системой называется совокупность трёх однофазных электрических цепей, в которых действуют три электродвижущие силы одинаковой частоты, сдвинутые по фазе относительно друг друга на угол 120^{circ } left({frac  {2}{3}}pi right).

Статор трёхфазного генератора переменного тока имеет три совершенно одинаковые катушки, размещённые на общем кольцеобразном (тороидальном) магнитопроводе, сдвинутые относительно друг друга на 120°. В обмотках индуктируются синусоидальные электродвижущие силы, сдвинутые по фазе относительно друг друга на 120°.

Если в первой катушке индуктируется электродвижущая сила e_{1}=E_{{1m}}sin(omega t),

то во второй катушке будет индуктироваться электродвижущая сила e_{2}=E_{{2m}}sin(omega t-{frac  {2}{3}}pi ),

в третьей катушке — электродвижущая сила e_{3}=E_{{3m}}sin(omega t-{frac  {4}{3}}pi ),

где e_{1}, e_{2} и e_{3} — мгновенные значения электродвижущих сил в отдельных катушках;

E_{{1m}}, E_{{2m}} и E_{{3m}} — амплитуды электродвижущих сил в отдельных катушках.

Если к каждой катушке подключить нагрузку, то в этих цепях будут протекать следующие токи:

~{mathrm  {{begin{matrix}{mbox{i}}_{1}=I_{{1m}}sin(omega t-psi _{1})\{mbox{i}}_{2}=I_{{2m}}sin(omega t-{frac  {2}{3}}pi -psi _{2})\{mbox{i}}_{3}=I_{{3m}}sin(omega t-{frac  {4}{3}}pi -psi _{3})\end{matrix}}{Bigg }}}},

где i_1, i_2 и i_3 — мгновенные значения токов в первой, второй и третьей катушках;

I_{{1m}}, I_{{2m}} и I_{{3m}} — амплитуды токов в катушках;

psi _{1}, psi _{2} и psi _{3} — углы сдвига фаз между электродвижущими силами и токами в катушках.

Трёхфазная система называется симметричной, если амплитуды электродвижущих сил в отдельных фазах генератора одинаковы по величине, то есть: E_{{1m}}=E_{{2m}}=E_{{3m}}=E_{m}.

Если в трёхфазной системе отдельные фазы представляют собой совершенно независимые друг от друга электрические цепи, то такая система называется электрически не связанной, имеет мало преимуществ по сравнению с однофазной системой, практического применения не находит.

Трёхфазная система называется электрически связанной, если её отдельные фазы соединены между собой электрически.

Трёхфазная электрически связанная система обладает преимуществами по сравнению с однофазной системой, так как она требует меньшей затраты металла на провода при передаче одной и той же мощности.

Другое преимущество трёхфазной системы — возможность получения вращающегося магнитного поля, с помощью которого осуществляется работа простых по конструкции и удобных в эксплуатации асинхронных двигателей.

Для работы конденсаторных, однофазных и двухфазных асинхронных двигателей также используется вращающееся магнитное поле, однако их характеристики уступают трёхфазным асинхронным двигателям.

Трёхфазные системы как генератора, так и потребителя могут быть соединены «звездой» с нейтральным проводом, «звездой» без нейтрального провода или «треугольником».

  • Соединение «звездой» с нейтральным проводом — четырёхпроводное, нейтральный провод обеспечивает независимость работы только одной фазы потребителя от другой фазы, так как при малом падении напряжения в проводах напряжения на фазах потребителя относительно мало изменяются с изменением нагрузки фаз. Применяется при неравномерной нагрузке на фазы.
  • Соединение «звездой» без нейтрального провода — трёхпроводное, если результирующий ток в нейтральном проводе равен нулю, то отпадает необходимость в нём, что даёт экономию цветных металлов при передаче одной и той же мощности потребителю. Трёхфазная трёхпроводная система, соединённая «звездой», может применяться там, где нагрузка на фазы равномерна, например, при подключении трёхфазного асинхронного двигателя.
Если при трёхфазной трёхпроводной системе, соединённой «звездой», нагрузка оказывается неравномерной, то это ведёт к перераспределению напряжений на фазах потребителя в соответствии с их нагрузками и система перестаёт быть симметричной.
Например, если одну фазу потребителя «закоротить», то есть её напряжение станет равным нулю, то на остальных фазах напряжение возрастёт в sqrt{3} против нормального. Это явление называется «перекос фаз». В бытовых условиях «перекос фаз» происходит, например, когда в домашнем распределительном щите по какой-то причине отсоединяется нулевой провод.
  • Соединение «треугольником» — трёхпроводное. Применяется в основном потребителями с целью увеличения крутящего момента трёхфазного асинхронного двигателя, соответственно увеличивается его электрическая мощность при неизменном числе оборотов. Обмотки переключаются с «звезды» на «треугольник».
Или наоборот, когда необходимо электродвигатель (соединение обмоток «звезда»), рассчитанный, например, на напряжение 380 В включить под напряжение 220 В, в этом случае (обмотки также переключаются с «звезды» на «треугольник») его электрическая мощность и крутящий момент остаются неизменными.

Двухфазный ток[править | править код]

Двухфазным электрическим током называется совокупность двух однофазных токов, сдвинутых по фазе относительно друг друга на угол {frac  {pi }{2}} или на 90°.

Если две обмотки расположить в пространстве так, чтобы их оси были взаимно перпендикулярны и эти обмотки питать двухфазным синусоидальным током, то в системе возникнут два взаимноперпендикулярных магнитных потока. Вектор суммарного магнитного поля будет вращаться с постоянной угловой скоростью, равной частоте питающего напряжения. При этом возникает вращающееся магнитное поле. Ротор выполненный в виде короткозамкнутого «беличьего колеса» или представляющий собой металлический цилиндр связанный с валом, будет вращаться, производя механическую работу.

Частота вращения двухфазного асинхронного двигателя, как и асинхронного трёхфазного двигателя, будет несколько меньше частоты вращения вращающегося магнитного поля и зависит от нагрузки на валу — при её увеличении скорость вращения двигателя снижается. Разность частот питающего тока и частотой вращения называют частотой скольжения.

Действующее значение переменного синусоидального тока[править | править код]

Если все положительные и отрицательные мгновенные значения переменного синусоидального тока сложить, то их сумма будет равна нулю. Но если алгебраическая сумма всех мгновенных значений за период равна нулю, то и среднее значение этого тока за период также равно нулю: I_{{avg}}(T)=0.

Среднее значение синусоидального тока за период не может служить для измерения этого тока.

Чтобы судить о величине переменного синусоидального тока, переменный ток сравнивают с постоянным током по их тепловому действию.

Закон Джоуля — Ленца

Количество теплоты Q, выделяемое в единицу времени t в рассматриваемом участке электрической цепи, пропорционально произведению квадрата силы тока I на этом участке и электрического сопротивления R участка цепи.

Количество теплоты в Джоулях: Q=I^{2}{Rt};

Количество теплоты в калориях: Q={0,24}times I^{2}{Rt}, где

I — сила тока, Ампер;

R — электрическое сопротивление, Ом;

t — время в секундах.

Два тока, один из которых синусоидальный, а другой постоянный, эквивалентны по тепловому действию, если они, протекая по одинаковым сопротивлениям, за одинаковые отрезки времени выделяют одинаковое количество тепла.
Действующее значение переменного синусоидального тока численно равно току постоянному, эквивалентному данному синусоидальному току, то есть выделяющему порознь с ним в одинаковом сопротивлении за одинаковый отрезок времени одинаковое количество тепла.

Найдено экспериментально, а затем подтверждено теоретически, что величина действующего значения переменного синусоидального тока находится в строго определённой зависимости от амплитуды этого тока: I={frac  {I_{m}}{{sqrt  {2}}}}, то есть действующее значение I переменного синусоидального тока в {sqrt {2}} раз меньше амплитуды этого тока.

Амперметр электромагнитной или электродинамической системы, включенный в цепь переменного синусоидального тока, показывает действующее значение тока.

Аналогично действующему значению переменного синусоидального тока можно говорить о действующем значении переменной синусоидальной электродвижущей силы или переменного синусоидального напряжения.

Действующее значение напряжения в {sqrt {2}} меньше его амплитуды: U={frac  {U_{m}}{{sqrt  {2}}}} или U_{m}={sqrt  {2}}times U.

Вольтметр электромагнитной или электродинамической системы, включенный в сеть переменного синусоидального тока, показывает действующее значение синусоидального напряжения.

Например, в электрической розетке электрическое напряжение thicksim {220}~B, так как это действующее значение, амплитудное напряжение будет {220}times {1,41}={311} Вольт.

Данные формулы справедливы только для синусоидального тока, если импульсы будут треугольной, пилообразной, прямоугольной или иной формы — требуется другая методика вычисления.


Методом математического анализа можно определить среднее значение переменного синусоидального тока за половину периода, например за положительную полуволну синусоиды.

Среднее значение переменного синусоидального тока за половину периода равно {frac  {I}{I_{{avg}}left({frac  {T}{2}}right)}}={{{frac  {2}{pi }}}I_{m}}={0,637};I_{m}.

Также можно определить отношение k действующего значения тока к среднему за половину периода (положительную полуволну). Это отношение для синусоидального тока равно:

k={frac  {I}{I_{{avg}}left({frac  {T}{2}}right)}}={frac  {{frac  {I_{m}}{{sqrt  {2}}}}}{{{frac  {2}{pi }}}I_{m}}}={frac  {pi }{2{sqrt  {2}}}}={1,11}.

Генерирование переменного тока[править | править код]

Принцип действия генератора переменного тока основан на законе электромагнитной индукции — индуцировании электродвижущей силы в проволочном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле.


Электродвижущая сила e генератора переменного тока определяется по формуле:

e=w2Bl{frac  {alpha }{2}}omega sin omega t, где

w — количество витков;

B — магнитная индукция магнитного поля в вольт-секундах на квадратный метр (Тл, Тесла);

l — длина каждой из активных сторон контура в метрах;

omega  — угловая скорость синусоидальной электродвижущей силы, в данном случае равная угловой скорости вращения магнита в контуре;

omega t — фаза синусоидальной электродвижущей силы.


Частота переменного тока, вырабатываемого генератором, определяется по формуле:

f=p{frac  {n}{60}}, где

f — частота в герцах;

n — число оборотов ротора в минуту;

p — число пар полюсов.


По количеству фаз генераторы переменного тока бывают:

  • трёхфазные генераторы — основной тип мощных промышленных генераторов;
    См. также трёхфазная система электроснабжения, трёхфазный двигатель, автомобильный генератор трёхфазного переменного тока.
  • однофазные генераторы, применяются, как правило, на маломощных бензиновых электростанциях, встроены в двигатели внутреннего сгорания мопедов, лёгких мотоциклов, снегоходов, гидроциклов, подвесные лодочные моторы;
    См. также конденсаторный двигатель, однофазный двигатель.
  • двухфазные генераторы, встречаются значительно реже по сравнению с однофазными и трёхфазными.
    См. также двухфазная электрическая сеть, двухфазный двигатель.

Инверторы[править | править код]

Постоянный ток может быть преобразован в переменный с помощью инвертора.

Недорогие модели инверторов имеют на выходе переменный ток несинусоидальной формы, обычно прямоугольные импульсы или модифицированная синусоида. Для получения синусоидального тока инвертор должен иметь задающий генератор (как правило, специализированная микросхема, формирующая электрический сигнал синусоидальной формы, который затем управляет работой тиристорных или транзисторных электронных ключей).

Фазорасщепитель[править | править код]

Трёхфазный ток может быть получен из однофазного при помощи фазорасщепителя. Эти электрические машины применяются, в частности, на электровозах, таких как ВЛ60, ВЛ80.

Сети переменного тока[править | править код]

Схема разводки трёхфазной сети в многоквартирных жилых домах.

Производители электроэнергии (ГЭС, ТЭС, ТЭЦ, атомные и другие электростанции) генерируют переменный ток промышленной частоты (в России — 50 Гц), напряжением порядка 10 — 20 кВ.

Затем электрический ток поступает на трансформаторные подстанции, которые находятся рядом с электростанциями, где происходит повышение электрического напряжения.

Переменный ток высокого напряжения передаётся потребителям по линиям электропередачи (ЛЭП). Повышение напряжения необходимо для того, чтобы уменьшить потери в проводах ЛЭП (см. Закон Джоуля — Ленца, при увеличении электрического напряжения уменьшается сила тока в электрической цепи, соответственно уменьшаются тепловые потери).

Самая высоковольтная в мире ЛЭП Экибастуз-Кокчетав работала под напряжением 1 миллион 150 тысяч вольт.

На другом конце линии электропередачи находится понижающая трансформаторная подстанция, где высоковольтный переменный ток понижается трансформаторами до нужного потребителю значения.

В подавляющем большинстве случаев по линиям электропередачи передаётся трёхфазный ток, однако существуют линии электропередачи постоянного тока, например высоковольтная линия постоянного тока Волгоград-Донбасс, высоковольтная линия постоянного тока Экибастуз-Центр, материковая Южная Корея — остров Чеджудо и другие. Использование постоянного тока позволяет увеличить передаваемую электрическую мощность, передавать электроэнергию между энергосистемами, использующими переменный ток разной частоты, например, 50 и 60 герц, а также не синхронизировать соседние энергосистемы, как это сделано на границе Ленинградской области с Финляндией (см. вставка постоянного тока Выборг — Финляндия).

В России в электрических сетях общего назначения используется трёхфазный ток с межфазным напряжением 380 Вольт.

Качество электрической энергии — её электрическое напряжение и частота должны строго соблюдаться.

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод) линии электропередачи (воздушные или кабельные ЛЭП) с межфазным напряжением 380 вольт (с 2003 года 400 Вольт по ГОСТ 29322-2014). В отдельную квартиру (или в сельский дом) подводится фазовый провод и нулевой провод, электрическое напряжение между «фазой» и «нулём» составляет 220 вольт (с 2003 года 230 Вольт по ГОСТ 29322-2014). Определить, где какой провод можно с помощью индикатора фазы.

Например, в первую квартиру подводится фаза «A», во вторую квартиру — фаза «B», в третью квартиру — фаза «C» и так далее…

Электрификация железных дорог на переменном токе[править | править код]

В России и в республиках бывшего СССР около половины всех железных дорог электрифицировано на однофазном переменном токе частотой 50 Гц. Напряжение ~ 25 кВ (обычно до 27,5 кВ, с учётом потерь) подаётся на контактный провод, вторым (обратным) проводом служат рельсы. Также проводится электрификация по системе 2 × 25 кВ (два по двадцать пять киловольт), когда на отдельный питающий провод подаётся напряжение ~ 50 кВ (обычно до 55 кВ, с учётом потерь), а на контактный провод от автотрансформаторов подаётся половинное напряжение от 50 кВ (то есть 25 кВ). Электровозы и электропоезда переменного тока при работе на участках 2 × 25 кВ в переделке не нуждаются.

Проводится политика на дальнейшее расширение полигона тяги переменного тока как за счёт вновь электрифицируемых участков, так и за счёт перевода некоторых линий с постоянного тока на переменный ток. Переведены в 1990-е — 2000-е годы:

  • на Восточно-Сибирской железной дороге: участок Слюдянка — Иркутск — Зима;
  • на Октябрьской железной дороге: участок Лоухи — Мурманск;
  • на Приволжской железной дороге: Саратовский и Волгоградский железнодорожные узлы;
  • на Северо-Кавказской железной дороге: участки Минеральные Воды — Кисловодск и Бештау — Железноводск.

Также выпускаются двухсистемные электровозы, способные работать как на переменном, так и на постоянном токе (см. ВЛ61Д, ВЛ82 и ВЛ82М, ЭП10, ЭП20).

См. также[править | править код]

  • Электрический ток
  • Постоянный ток
  • Действующее значение переменного тока
  • Список параметров напряжения и силы электрического тока
  • Трёхфазный ток
  • Реактивное сопротивление
  • Токи высокой частоты
  • Векторная диаграмма
  • Стандарты напряжений и частот в разных странах

Примечания[править | править код]


  1. Д. Г. Максимов. Курс электротехники. — Издание третье, переработанное. — Москва: Военное издательство Министерства обороны Союза ССР, 1958. — С. 298. — 786 с.
  2. Теоретическая и практическая важность синусоидального гармонического тока обусловлена тем, что он имеет минимальную ширину спектра. Любой периодический несинусоидальный ток может быть представлен в виде комбинации гармонических составляющих, имеющих соответствующие амплитуды, частоты и фазы. См. Гармонические колебания#Применение, Ряд Фурье.

Ссылки[править | править код]

  • Что такое переменный ток и чем он отличается от тока постоянного
  • Переменный ток
  • Основные понятия и определения о переменном токе

Как определить частоту переменного тока

Содержание

  • 1 Что такое частота
  • 2 Как определяется
    • 2.1 Измерение частоты
    • 2.2 Расчёт частоты тока
  • 3 Заключение
  • 4 Видео по теме

В силу различных преимуществ большинство энергетических систем — от общегосударственных до бытовых, функционируют на переменном токе. Однако мало кто считается с тем, что кроме параметров напряжения и тока системы, важную роль играет также частота тока. Например, в функционале популярных мультитестеров измерение частоты переменного тока отсутствует. Между тем значения этой величины, которые выходят за требуемые пределы, грозят тяжёлыми последствиями. Мгновенно происходит разбалансированность системы энергоснабжения с неминуемыми катастрофическими последствиями для целых регионов.

Графическое отображение переменного тока

Графическое отображение переменного тока

Что такое частота

Производство электроэнергии в подавляющем большинстве ситуаций называют контролируемым. Эту работу проделывают генераторы, преобразующие механическую энергию ротора турбины в электрическую. Как показано на схеме, на поверхности ротора имеется обмотка из медной проволоки, поэтому он представляет собой непрерывно вращающийся электромагнит.

Схематическое изображение генератора

Схематическое изображение генератора

Во время вращения ротора, созданное вокруг него магнитное поле, наводит электрический ток. Его направление периодически изменяется на противоположное, поскольку месторасположение полюсов электромагнита чередуется после каждого оборота ротора. Соответственно, ток тоже меняет своё направление два раза за цикл вращения.

Следствием и мерой скорости этих изменений является частота, которая измеряется количеством изменений месторасположения полюсов в секунду. Единица частоты получила наименование герц и обозначается двумя буквами — Гц. Таким образом, можно сказать, что генератор, который снабжён парой магнитных полюсов, вращающихся с угловой скоростью 3000 мин-1, будет производить ток частотой 50 Гц.

Мощность переменного тока изменяется по синусоидальному закону с чередованием положительных и отрицательных полюсов. При переходе каждого цикла из положительной области в отрицательную происходит соответствующее перемещение электронов. В конечном счете, эти циклы создают электрический нагрев или рассеивание мощности. Независимо от направления движения тока (т. е., положительного или отрицательного), если силы тока (напряжения) достаточно для удовлетворения требований электрического устройства, оно будет работать.

Синусоида переменного тока

Синусоида переменного тока

Таким образом, количество полных циклов за секунду, когда переменный ток переходит от положительного полюса к отрицательному, называется частотой, а сам временной отрезок называется периодом. С точки зрения электрического тока частотой принято считать количество повторений синусоиды, а другими словами — это полное колебание, состоящее из положительной и отрицательной составляющих. Следовательно, частота и период связаны между собой обратно пропорциональной зависимостью:

Определение частоты

Определение частоты

Частота и период переменного тока варьируются в зависимости от страны, причём не обязательно привязываются к местному стандарту напряжения. Например, в США, Канаде и других странах со стандартным линейным напряжением 110…120 В эталоном частоты является 60 Гц. В большинстве стран, где значения переменного напряжения равняются 220…240 В (в том числе и в нашей стране), за стандартную частоту принято 50 Гц, однако Южная Корея, Филиппины и многие страны Карибского бассейна используют 220…240 В с частотой 60 Гц. А есть ещё и Япония, где напряжение в сети достигает 100 В, но стандартная частота переменного тока в разных районах составляет 50 и 60 Гц.

Большинство электронных устройств могут работать, потребляя переменный ток, если его частота 50 или 60 Гц. Но, для электроприборов, использующих довольно мощные приводы, рассчитанные на конкретную частоту (холодильники, морозильники, стиральные и сушильные машины), разница в 10 Гц уже значительна. В первую очередь это касается устройств, включающихся периодически. Их электромоторам приходится вращаться то быстрее, то медленнее, что отрицательно сказывается на их долговечности. В таких случаях необходимо использовать преобразователи частоты или трансформаторы напряжения.

Внешний вид преобразователя частоты

Внешний вид преобразователя частоты

Как определяется

Существует два способа установить, чему равна частота и амплитуда переменного тока — применять специальные приборы либо воспользоваться результатами расчётов.

Измерение частоты

Для измерения частоты переменного тока используется принцип механического резонанса. Он является достаточно простым, хотя и не очень точным. Основывается на том факте, что для каждого физического объекта, обладающего упругими свойствами, существует определенное значение частоты, при которой он начинает вибрировать.

Примером подобного устройства является камертон. Если по нему ударить, он будет довольно продолжительное время вибрировать со звуком, зависящим от его длины. Чем длиннее камертон, тем ниже будет резонансная частота и наоборот.

Если представить себе ряд камертонов с постепенно увеличивающимися размерами, установленными на общем основании, то это основание станет вибрировать с частотой измеряемого напряжения или тока. Для этого устройство следует снабдить электромагнитом.

Измерения частоты тока выполняются с помощью набора «камертонов», в качестве которых используются полоски листового металла. Это устройство называется частотомером вибрирующего геркона.

Схема вибрационного частотомера

Схема вибрационного частотомера

Используя частотомер, можно наглядно увидеть, как концы всех полосок встряхиваются в зависимости от того, как меняется величина переменного напряжения, приложенного к катушке. Тот из лепестков, который будет ближе всего к резонансной частоте переменного тока, станет вибрировать наиболее интенсивно.

Особой точностью вибрационные частотомеры не отличаются, зато характеризуются простотой своего изготовления. Их применяют в небольших электроремонтных мастерских, а также в быту с целью калибровки частоты вращения двигателя.

Хотя подобный прибор будет иметь малую точность, этого нельзя сказать о самом принципе измерения. Заменив механический резонатор на электрический, можно получить частотомер на основе катушки индуктивности и параллельно включённого конденсатора. Вместе они образуют колебательный контур.

Один или оба компонента этого контура могут быть регулируемыми. В цепь включается измерительный блок, который показывает максимальную амплитуду напряжения на конденсаторе и катушке. Ручки регулировки предварительно откалибровываются, чтобы иметь возможность выставлять резонансную частоту для любого варианта настройки. Частота считывается после настройки устройства на максимальное показание шкалы измерителя.

Схема электрического частотомера

Схема электрического частотомера

Фактически частотомер реализует схему настраиваемого фильтра, после чего отсчёт показаний происходит как в мостовой схеме (она вначале балансируется для условного нулевого состояния, после чего выполняется отсчёт). До тех пор, пока катушка и/или конденсатор смогут перехватывать достаточное поле магнитного или электрического рассеивания от тестируемой цепи, устройство будет сохранять свою работоспособность.

Метод не требует прямого подключения к цепи, поэтому часто применяется в бытовых условиях. Наиболее точные результаты дают электронные частотомеры.

Внешний вид электронного частотомера

Внешний вид электронного частотомера

Расчёт частоты тока

Для расчёта требуется знать период или временной отрезок, в течение которого значение переменного тока повторяется и образует одну полную волну. Между периодом и частотой переменного тока имеется зависимость, которую отражает следующая формула:

Определение частоты электротока

Определение частоты электротока

Если известно значение циклической частоты ɷ и амплитуда А, то по схожей зависимости можно вычислить силу тока I:

Определение силы электротока

Определение силы электротока

Определение угловой частоты выполняется с помощью такого уравнения:

Формула угловой скорости

Формула угловой скорости

Заключение

Учитывая тенденцию к постепенному уменьшению производства электроэнергии с использованием традиционных видов топлива, всё чаще возникают вопросы оптимального управления частотными параметрами систем энергетики. Идеальным выходом их положения считают такой, при котором данные функции будут реализованы вследствие применения более стабильных и доступных форм генерации. К ним стоит отнести атомную энергетику, использование энергии солнца и ветра.

Видео по теме



Период, частота, амплитуда и фаза переменного тока

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Период переменного тока

Рисунок 1. Период и амплитуда синусоидального колебания. Период – время одного колебания; Аплитуда – его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10-3сек.

1 мкс=0,001 мс = 0,000001сек =10-6сек.

1000 мкс = 1 мс.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 103 Гц = 1 кГц;

1000 000 Гц = 106 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 109 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Формула частота переменного токаФормула период переменного тока

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2pi.

Радиан

Рисунок 2. Радиан.

Тогда,

1рад = 360°/2pi

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2pi). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ?.

Итак,

?= 6,28*f = 2fpi

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Фаза переменного тока

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Переменный электрический ток


Переменный ток (AC – Alternating Current) – электрический ток, меняющий свою величину и направление с течением времени.

Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC.
Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.

DC – Direct Current – постоянный ток, не меняющий своей величины и направления.

В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.

При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.

Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.

Величина тока будет равна квадратному корню из суммы квадратов двух величин – значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.

Термины AC и DC применимы как для тока, так и для напряжения.

Параметры переменного тока и напряжения


Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T – время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота  f – величина, обратная периоду, равная количеству периодов за одну секунду.

Один период в секунду это один герц (1 Hz). Частота f = 1/T


Циклическая частота  ω – угловая частота, равная количеству периодов за секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза  ψ – величина угла от нуля (ωt = 0) до начала периода.
Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение – величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

i = i(t);   u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = Iampsin(ωt);   u = Uampsin(ωt)

С учётом начальной фазы:

i = Iampsin(ωt + ψ);   u = Uampsin(ωt + ψ)

Здесь Iamp и Uamp – амплитудные значения тока и напряжения.

Амплитудное значение – максимальное по модулю мгновенное значение за период.

Iamp = max|i(t)|;   Uamp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля.

Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) – максимальное отклонение от нулевого значения.

Среднее значение (avg) – определяется как среднеарифметическое всех мгновенных значений за период T.

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение – среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) – определяется как квадратный корень из среднеарифметического квадратов всех
мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой Iamp (Uamp)
среднеквадратичное значение определится из расчёта:

Среднеквадратичное – это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов.
Является объективным количественным показателем для любой формы тока.

В активной нагрузке переменный ток совершает такую же работу за время периода,
что и равный по величине его среднеквадратичному значению постоянный ток.


Коэффициент амплитуды и коэффициент формы

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой
амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды – отношение амплитудного значения к среднеквадратичному.

Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы – отношение среднеквадратичного значения к средневыпрямленному.

Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1


Замечания и предложения принимаются и приветствуются!

Частота электрического тока 3

Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частота переменного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.

Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом — в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду.

Васильев Дмитрий Петрович

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

В качестве единицы измерения частоты во всем мире принят 1 Гц (в честь немецкого ученого Г.Герца), который соответствует 1 периоду колебания за 1 секунду.

В республиках бывшего СССР стандартной считается частота тока в 50 Гц.

Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 — в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.

Частота электрического тока 1

Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:

Метод дискретного счета;

Метод перезаряда конденсатора;

Резонансный метод измерения частот.

Метод сравнения частот; в качестве:

Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.

Частота электрического тока 2

Более подробно о частоте переменного тока Вы можете узнать из видео:

Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.

Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.

Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.

Абрамян Евгений Павлович

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.

Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.

Ещё одно интересное видео о частоте переменного тока:

Добавить комментарий