Модель атома Бора позволяет описать процессы излучения и поглощения света атомом. Как это происходит? Как фотон «появляется на свет»? Что меняется в атоме после поглощения фотона? |
Вследствие того что энергия атома квантована, она характеризуется определенным набором энергетических уровней En. Испускание излучения происходит при самопроизвольном переходе атома с высших энергетических уровней Ek на один из низших энергетических уровней En (Ek > En) Атом излучает фотон (квант электромагнитной энергии) с энергией .
Частота излучения при этом:
. | (1) |
Подчеркнем, что наряду с прямым переходом атом может переходить из возбужденного состояния в основное поэтапно, через промежуточные состояния. При этом излучаются соответствующие промежуточным переходам кванты света. Набор таких частот образует линейчатый спектр излучения атома.
Поглощение света — процесс, обратный испусканию. Атом, поглощая фотон hνkn = En – Ek переходит из низшего k состояния в более высокое n (Ek < En) состояние. Частота поглощенного фотона:
(2) |
Подобные переходы дают линейчатый спектр поглощения атома.
Подчеркнем, что частоты переходов с испусканием и поглощением, происходящие между одними и теми же энергетическими уровнями, совпадают.
Таким образом, спектры атомов позволяют определять изменения энергии атома при испускании или поглощении ими излучения.
Спектры, полученные от самосветящихся тел, называются спектрами испускания. Они бывают трех типов: линейчатые, полосатые и сплошные.
Линейчатые спектры имеют все вещества в газообразном атомарном состоянии. Обычно (например, при нормальных условиях) атомы газа находятся в основном состоянии и не излучают света. Если такой газ нагревается, некоторые атомы переходят на более высокие энергетические уровни. Именно эти атомы при переходе в более низкие энергетические состояния и испускают фотоны. В результате атомарные спектры состоят из отдельных узких линий различного цвета, разделенных темными промежутками (рис. 199).
Изучение линейчатых спектров показало, что каждый химический элемент обладает своим строго индивидуальным спектром. Такие спектры отличаются друг от друга цветом отдельных светящихся линий, их положением и числом.
Полосатые спектры имеют газы, состоящие из молекул. Для объяснения молекулярных спектров необходимо принимать во внимание большую сложность структуры молекул. В молекулах, кроме движения электронов, происходят колебательное движение ядер около положения равновесия и вращательное движение молекулы как целого. Согласно квантовой механике энергия всех видов движения может принимать только определенные дискретные значения (квантуется). Полная энергия молекулы определяется тремя видами ее внутренних движений. Электронному, колебательному и вращательному движениям молекулы соответствуют три типа уровней энергии: электронные, колебательные и вращательные. При соединении атомов в молекулы каждый атомный уровень превращается в ряд близких уровней, соответствующих колебательным и вращательным движениям. Так как расстояние между этими уровнями очень мало, особенно в случае вращательных уровней (характерное расстояние между уровнями составляет эВ), то в результате переходов между этими уровнями возникает множество очень близких спектральных линий.
В таких спектрах в отличие от атомных спектров совокупность тесно расположенных спектральных линий образуют полосы, разделенные темными промежутками (рис. 200). Спектры молекул можно использовать для идентификации молекул и их структуры.
Непрерывные (сплошные) спектры имеют нагретые тела, находящиеся в твердом и жидком состоянии, а также газы при высоком давлении и плазма. Вследствие интенсивного взаимодействия между молекулами индивидуальные черты, присущие отдельным частицам, в таких спектрах неразличимы. В них представлены все длины волн, нет темных промежутков и на экране видна сплошная разноцветная полоса (рис. 201).
Прозрачные вещества поглощают часть падающего на них излучения, и в спектре, полученном после прохождения белого света через такие вещества, появляются темные линии, или полосы поглощения. Такой спектр называется спектром поглощения (рис. 202).
Так, вещество в газообразном состоянии поглощает наиболее сильно свет тех длин волн, которые оно испускает в нагретом состоянии.
Это означает, что темные линии в спектре поглощения будут находиться как раз в тех местах, где находятся светящиеся линии в спектре испускания данного химического элемента. Эти строго установленные закономерности в линейчатых спектрах дают возможность обнаружить те или иные элементы в данном веществе.
Для определения качественного и количественного состава вещества применяется метод, основанный на получении и исследовании его спектров. Этот метод называется спектральным анализом. Это самый быстрый и простой способ определения состава различных химических соединений.
Спектр поглощения атома водорода при нормальных условиях содержит только одну серию линий, частоты которых находятся в ультрафиолетовой области.
Наиболее изученным спектром поглощения является спектр Солнца. Его сплошной спектр содержит значительное количество черных линий. Эти линии являются линиями поглощения, возникающими при прохождении света через газовую оболочку Солнца и атмосферу Земли. Они получили название фраунгоферовых линий, так как Фраунгофер впервые наблюдал спектр Солнца и установил, что закономерность их расположения не случайна и линии поглощения (темные линии) появляются всегда только на определенных местах.
Основатели спектрального анализа немецкие физики Роберт Бунзен и Густав Кирхгоф, исследуя спектры паров соединений щелочных металлов лития, натрия и калия, обнаружили новые элементы — рубидий и цезий, названные так по цвету наиболее ярких линий в их спектрах. У рубидия — красная линия, у цезия — синяя.
Спектральный анализ базируется на двух основных положениях:
1) каждый химический элемент или химическое соединение характеризуется определенным спектром;
2) интенсивность линий и полос в спектре зависит от концентрации того или иного элемента в веществе.
К достоинствам спектрального анализа исследования можно отнести:
– высокую чувствительность (обнаруживает элементы с относительной концентрацией , т. е. один атом вещества на сто миллионов других атомов);
– малое время измерения;
– малые количества исследуемого вещества (достаточно г и даже до г) вплоть до возможности детектирования отдельных молекул;
– дистанционность измерений (можно проводить исследования, например, состава атмосферы далеких планет).
По спектрам определяют, из каких химических элементов состоит вещество и в каких количествах.
Белорусский физик академик Михаил Александрович Ельяшевич разработал основы теории колебаний многоатомных молекул и их колебательных спектров. Он внес значительный вклад в теорию спектров редкоземельных элементов и низкотемпературной плазмы.
Фотон
Фотон — это частица света или квант света; частица с которой можно делать расчёты.
Фотоны всегда находятся в движении и в вакууме движутся с постоянной скоростью 2,998 x 10^8 м/с (это называется скоростью света и обозначается буквой c).
В марте 1905 года Эйнштейн создал квантовую теорию света, это была идея о том, что свет существует в виде крошечных частиц, которые он назвал фотонами.
Позже в том же году была расширена специальная теория относительности, в которой Эйнштейн доказал, что энергия (E) и материя (масса – m) связаны, и это соотношение стало самым знаменитым в физике: E=mc²; (напомним: c — скорость света).
Формулы фотона
Эти формулы являются наиболее важными.
Формула энергии кванта/фотона (формула Планка или Энергия кванта)
Энергия — это постоянная Планка, умноженная на частоту колебаний
Где:
- E — энергия фотона/кванта (в Дж – джоуль),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц).
Масса фотона
Где:
- m — масса фотона (в кг),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц),
- c = 3.10^8 (это скорость света в м/с),
- λ — длина световой волны (в метрах).
Фотоны всегда движутся со скоростью света. В состоянии покоя фотоны не существуют (т.е. можно сказать, что масса покоя равна нулю).
Формула массы фотона (m = h/cλ) была выведена из формулы эквивалентности массы и энергии (E = mc²), при этом было использовано также равенство с энергией Кванта (E = h×v).
Импульс фотона
Где:
- p — импульс фотона (в Н•с – ньютон-секунда),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц),
- c = 3.10^8 (это скорость света в м/с),
- λ — длина световой волны (в метрах).
Длина волны света, период и частота
Это ещё одно соотношение, которое может быть полезным в расчётах.
Где:
- λ — длина световой волны (в метрах),
- c = 3.10^8 (это скорость света в м/с),
- T — период световых колебаний (в секундах),
- ν — частота колебаний света (в Гц – герц).
Пример решения задачи с данными формулами
Определите энергию фотонов красного (λк = 0,76 мкм) света.
λк = 0,76 мкм = 0,76 × 10^(–6) м
Формула энергии фотонов: E = h×v
h — постоянная Планка,
v — частота света; из равенства λ = c/v выходит, что v = с/λ.
Таким образом, составляем равенство:
E = h × (с/λ) = hc / λ
Вспоминаем другие данные:
c = 3.10^8 (это скорость света в м/с)
h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду)
E = hc / λ = ((6,6.10^(–34) Дж.с) × (3.10^8 м/с)) / (0,76 × 10^(–6) м) = 2,6 × 10^(–19) Дж
Фотон является волной?
Фотон является одновременно частицей и волной. Согласно квантовой теории света Эйнштейна, энергия фотонов (E) равняется их частоте колебаний (v), умноженной на постоянную Планка (h); т.е. эта формула выглядит так: E = h×v.
Так он доказал, что:
- свет — это поток фотонов,
- энергия этих фотонов — это высота их частоты колебаний,
- интенсивность света соответствует количеству фотонов.
Таким образом, учёный объяснил, что поток фотонов действует и как волна, и как частица.
Видимый свет: свойства, диапазон, спектр, источники
Видимый свет – это видимая часть электромагнитного излучения, т.е. видимое излучение, воспринимаемое сетчаткой человеческого глаза.
Видимый свет – единственный тип электромагнитных волн, известный людям с незапамятных времен, хотя его природа была неизвестна до 1860-х годов. Люди были очарованы оптическими явлениями, такими как радуга, видимая на фотографии. На протяжении веков спорили о том, имеет ли свет конечную скорость или распространяется мгновенно.
Из этой статьи вы узнаете, как стала понятна природа света и почему мы видим мир в цветах.
В 1861 году Джеймс Максвелл опубликовал уравнения, в которых доказал, что электричество и магнетизм являются двумя видами одного и того же явления – электромагнетизма. Уравнения Максвелла не только связно объяснили все электрические и магнитные явления, но и предсказали существование электромагнитных волн, распространяющихся со скоростью света c = 3 * 10 8 м / с. Естественным выводом было предположить, что свет – это электромагнитная волна.
Свойства
Электромагнитная волна характеризуется:
- частотой ν, которая представляет собой число полных циклов изменения магнитного или электрического поля в секунду, выраженное в герцах (Гц), 1 Гц = 1 с -1 .
- длиной волны λ, которая является расстоянием между ближайшими точками, где электрическое или магнитное поле находится в одной и той же фазе цикла.
Эти величины связаны между собой: чем выше частота, тем короче длина волны: ν = c / λ , где где c – скорость света.
Диапазон.
Видимый свет охватывает очень узкий диапазон в спектре электромагнитных волн, от 380 до 780 нм. Излучение меньшей длины волны является ультрафиолетовым, а излучение большей длины волны – инфракрасным.
Поэтому мы видим только очень ограниченную часть электромагнитного спектра, для остальной части электромагнитного спектра у нас нет сенсорных клеток, и мы вынуждены прибегать к техническим средствам. Часто информация, которую мы регистрируем с помощью технических средств, таких как инфракрасные камеры, затем “переводится” в цвета, которые мы видим.
Спектр
Человеческий глаз воспринимает свет разной длины волны как впечатление различных цветов (рис. 1).
- фиолетовый от 380 нм до 436 нм;
- синий от 436 нм до 495 нм;
- зеленый от 495 нм до 566 нм;
- желтый, от 566 нм до 589 нм;
- оранжевый 589 нм – 627 нм;
- красный от 627 нм до 780 нм.
Белый свет – это смесь всех цветов. Вы можете увидеть это, разложив свет в призме или посмотрев на радугу, которая возникает в результате дисперсии белого света на капельках воды в облаках.
Как получается, что мы видим мир в красках? Когда белый свет падает на тело, часть излучения поглощается, а часть отражается от его поверхности. Если тело поглощает свет от красного до зеленого и отражает синий и фиолетовый свет, то при рассмотрении в белом свете оно будет иметь оттенок синего или фиолетового, в зависимости от соотношения этих цветов в отраженном свете.
Видимый свет лишь слегка поглощается как атмосферой Земли, так и водой. Эта особенность чрезвычайно важна для жизни на Земле. Ему мы обязаны не только способностью видеть окружающее нас пространство, но и самим происхождением жизни на Земле. Жизнь не могла бы существовать без фотосинтеза, для которого необходим свет.
Свет имеет волновую природу, т.е. он подвержен различным физическим явлениям, характерным для волн, таким как дифракция или интерференция. Но в то же время он имеет корпускулярную природу – он состоит из фотонов, элементарных частиц с нулевым зарядом и массой покоя. Отсутствие массы покоя означает, что фотон не существует в состоянии покоя, он может двигаться только со скоростью света.
Энергия фотона прямо пропорциональна частоте волны и обратно пропорциональна длине электромагнитной волны:
E = h * ν = ( h * c ) / λ, где
где ν – частота волны, λ – длина волны, c = 3 * 10 8 – скорость света, h – постоянная Планка, h = 6,63*10- 34 Дж*с = 4,14*10 -15 эВ·c.
Смешивая вместе красные, синие и зеленые лучи света, можно получить любой цвет. Смешивание света равной интенсивности этих трех цветов дает белый свет (рис. 2). Изменяя пропорцию каждого цвета, можно получить другой цвет. Явление создания новых цветов путем наложения лучей видимого света разной длины называется аддитивным синтезом.
Рис. 2. Аддитивный синтез цвета
Чувствительность человеческого глаза к цветам обусловлена наличием в сетчатке трех типов фоторецепторов, называемых колбочками. Каждый тип колбочек чувствителен к разным цветам света: красному, зеленому и синему. В зависимости от соотношения этих трех цветов, регистрируемых колбочками, в мозге формируется впечатление о полученном цвете.
Центр области видимого света находится на длине волны около 555 нм, что соответствует желто-зеленому цвету. К свету этого цвета чувствительность глаза наиболее высока. Кривая чувствительности глаза стремится к нулю как на длинноволновой, так и на коротковолновой стороне (рис. 3).
Рис. 3. Чувствительность глаз к свету разной длины волны
Все современные мониторы, телевизоры, цифровые камеры и подобные устройства работают по принципу аддитивного смешивания цветов. Комбинируя цвета RGB (красный, зеленый, синий) в любом количестве комбинаций, можно получить широкий спектр производных цветов на экране.
Источники.
Источником видимого света может быть пламя свечи, газ в люминесцентной лампе или зажженная лампочка, а также отражающий солнечный свет объект.
Спектр частот света или спектр волн света?
Прежде чем читать и разбираться с этой статьёй, необходимо ознакомиться со статьёй ”Что такое волна?“.
http://samlib.ru/n/nikolaew_s_a/chtotakoewolna.shtml
Эта статья Ссылки находятся внизу в разделе РЕЦЕНЗИИ
А теперь давайте разбираться, что такое частотный спектр света и как в данном вопросе нас специально дурачат? В астрономии от светящегося объекта наблюдатель принимает спектр частот. Вот пример. Солнечный луч света – это множество цветных линий, которые мы наблюдаем как радугу. Каждая тоненькая линия – это монохроматическая частота (одна частота). Каждую монохроматическую частоту приносят частицы фотоны, обладающие этой одной частотой. Вы заметили, что наблюдать можно только линии частот (радуга), а наблюдать длину волны невозможно потому, что её у фотонов просто нет. Фотоны – это частицы, а у частиц волн нет. Частицы могут только совершать колебания. А это не одно и тоже. У фотонов нет также и характеристики длина волны. У фотонов речь может идти только о частотах или спектрах частот.
Необходимо понимать, что эффект зрения основан на частотах, которые переносятся частицами фотонами и которые колеблются, а не волнуются.
Но везде, где речь заходит о частотах света или спектрах частот, то обязательно сразу в качестве единиц измерения применяют единицы длины волны.
Например. Для человека видимый спектр: от 380нм — фиолетовый цвет до 760нм — красный цвет. Вне этого диапазона наше зрение не видит. Но задумайтесь, ведь глаза видят частоты в виде монохроматических частот, либо смеси частот в виде спектра. А никаких длин волн глаза не видят.
Вот ещё пример. Везде, где графики со спектрами частот, размерность должна быть в Гц. Однако Вас везде обманывают и специально вместо частот всегда пишут размерность длины волны, которой на самом деле у фотонов нет. Например, график солнечного спектра частот, а по оси абсцисс пишут размерность длин волн. Кроме того, одна из главных характеристик солнечного спектра специально называется максимальная длина волны (л) излучения (формула Вина л = b/T) вместо максимальной частоты излучения.
ПРИМЕЧАНИЕ. Назовите прибор, который измеряет длину волны? Таких приборов нет, даже для акустических измерений. В акустике и электромеханике измеряется только частота. Затем все обязаны по акустической формуле V=лv рассчитать длину волны и для акустики и для электромеханики, где V — скорость звука, а л — длина волны. Применение формулы С=лv для излучения, где C — скорость света. Это обман и просто невежественно. Сжимается только акустическая волна V=лv. Фотон – это частица с поперечными колебаниями, и сжать фотон невозможно.
Фотон – частица света. Характеристиками фотонов являются: масса, частота, амплитуда и инерция (энергия).
На рисунке изображена спектральная кривая солнечного излучения. Рисунок взят из справочника. Во всех остальных справочниках и учебниках то же самое. Вы нигде не найдёте рисунок спектра с единицами измерения частоты в Гц, везде по оси абсцисс будут единицы измерения в единицах длины.
Этот обман нужен для того, чтобы подтверждались математические теории Эйнштейна, в которых свет (фотоны) является волной. И, чтобы Вы не забывали, везде Вас обманывают. Где только можно. Везде, где излучение упоминание о частотах будет исключено. Например, микроволновка и так далее.
ПРИМЕЧАНИЕ. На всех графиках, где изображаются частотные спектры, в данном случае, частотный спектр Солнца, по оси абсцисс пишут вместо частот размерность длины волны, которой на самом деле у фотонов нет. Это делается всегда и везде (с 1905 года, года вы-хода в свет СТО Эйнштейна) и специально, чтобы этим подтверждались математические теории Эйнштейна, в которых свет (фотоны) является волной. А свет не волна и пересчитывать всегда частоту в длину волны по акустической формуле С=лv просто обман. Спектр частотный, а не волновой. Спектр частот, но не волн.
Посмотрите на частоты видимого света от 750 ТГц (380нм) до 385 ТГц (760нм). Некоторые видят их впервые потому, что негласно их писать запрещено. Зато в единицах длины все помнят. Как это делается. В утверждённой программе образования можно писать только длины волн и это обязательно для всех. Подумайте, нужна Вам такая утверждённая про-грамма образования?
Не разрешайте себя зомбировать утверждённой программой образования, думайте о том, что Вас заставляют заучивать. Там очень много ошибочного, специально для Вас под-сунутого.
Об ошибках в физике здесь более 100 статей
http://samlib.ru/n/nikolaew_s_a/
Документы по борьбе с инакомыслием в науке.
1. Постановление ЦК ВКП(б) от 25.01.1931г.
Запрещение рассмотрения проблем физических взаимодействий на механической, ма-териалистической основе.
2. Специальное постановление ЦК ВКП(б) от 1934г.
О дискуссии о релятивизме.
Жертвами этого постановления стали Н.А.Козырев и Н.П.Бронштейн.
3. Постановление ЦК ВКП(б) от 05.12.1942г.
4. Постановление Президиума АН от 1964г.
В этом постановлении предписывалось объявлять параноиками всех, кто критикует теории относительности Эйнштейна.
Сразу было выявлено 24 параноика среди учёных.
5. Постановление Президиума РАН от 1998г.
О создании комиссии по борьбе с лженаукой и фальсификации научных исследований во главе с академиком Э.П.Кругляковым.
Комиссия исправно функционирует.
Комиссия не скрывает, что следует принципу: ”Всё, что противоречит теориям Эйнштейна и теории ”Большого Взрыва“, является лженаукой“.
Главные идеологи этого мракобесия С.И.Вавилов, А.Ф.Иоффе, В.Л.Гинзбург.
ДОПОЛНЕНИЕ. Кроме того, частоту собственных колебаний фотонов невозможно экспериментально измерить ни в одном диапазоне.
Во-первых, нет эффектов, позволяющих измерить собственную частоту фотонов (света).
Во-вторых, нет таких частотомеров, которые могли бы измерить, например, собственную частоту фотонов видимого света, которая равна 10 в 15 степени Гц.
Есть только прибор пирометр, который определяет электрическим способом цвет, а да-лее по цвету и выдуманной фальшивой формуле Вина, пожалуйста, Вам и частота.
Все частоты в шкале электромагнитных излучений фальшивые. Например, в радиодиапазоне вместо собственной частоты радиофотонов подсунута частота следования фотонов. Однако это не одно и то же.
Это очень ёмкий вопрос и он изложен в книге С.А.Николаева “Ложь об электромагнит-ной волне и шкале электромагнитных излучений”, СПб, 2014г.
А также в 8 издании книги С.А.Николаева “Эволюционный круговорот материи во Вселенной”, СПб, 2015г.
Планетарная модель атома, предложенная Резерфордом, – это попытка применения классических представлений о движении тел к явлениям атомных масштабов. Она оказалась несостоятельной. Классический атом неустойчив. Электроны, движущиеся по орбите с ускорением, должны неизбежно упасть на ядро, растратив всю энергию на излучение электромагнитных волн (см. рисунок ниже). При этом спектр излучения атома должен быть непрерывным, а не линейчатым. Это никак не вязалось с тем, что ученые наблюдали на практике.
Следующий шаг в развитии представлений об устройстве атома в 1913 году сделал выдающийся датский физик Н. Бор. Проанализировав всю совокупность опытных фактов, Бор пришел к выводу, что при описании поведения атомных систем следует отказаться от многих представлений классической физики. Он сформулировал постулаты, которым должна удовлетворять новая теория о строении атомов.
Квантовые постулаты Бора – предположения (утверждения), сделанные Н. Бором для того, чтобы модель строения атома Резерфорда соответствовала реальному поведению атомов водорода.
Первый постулат Бора
Первый постулат Бора также носит название постулата стационарных состояний:
Атомная система может находиться только в стационарных, или квантовых, состояниях, каждому из которых соответствует определенная энергия En. В стационарном состоянии атом не излучает электромагнитные волны.
Этот постулат находится в явном противоречии с классической механикой, согласно которой энергия движущегося электрона может быть любой. Он находится в противоречии и с электродинамикой, так как допускает возможность ускоренного движения электронов без излучения электромагнитных волн.
Согласно первому постулату Бора, атом характеризуется системой энергетических уровней, каждый из которых соответствует определенному стационарному состоянию (см. рисунок ниже). Механическая энергия электрона, движущегося по замкнутой траектории вокруг положительно заряженного ядра, отрицательна. Поэтому всем стационарным состояниям соответствуют значения энергии En < 0. При En ≥ 0 электрон удаляется от ядра, т. е. происходит ионизация. Величина |E1| называется энергией ионизации.
Второй постулат Бора
Второй постулат Бора также носит название правила частот:
Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излученного фотона равна разности энергий стационарных состояний.
Разность энергий стационарных состояний можно вычислить по формуле:
E=hν
hνkn=Ek−En
Внимание! В квантовой физике энергию принято измерять не в Джоулях, а в электрон-вольтах, обозначаемых «эВ». 1 эВ равен энергии, приобретаемой электроном при прохождении разницы потенциалов 1 В. 1 эВ = 1,6∙10–19 Дж.
Отсюда можно выразить частоту излучения:
νkn=Ek−Enh
Наименьшей энергии En соответствует состояние атома, которое называется основным, а наибольшей энергии Ek — возбужденное состояние атома. В основном состоянии электрон может находиться неограниченно долго, а в остальных состояниях не более 10-8 с.
Если атом переходит из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией (Ek > En), происходит излучение фотона. Если атом переходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией (Ek < En), происходит поглощение фотона.
Второй постулат Бора позволил объяснить линейчатую структуру атомных спектров. Ведь атом, как оказалось, может поглощать и излучать свет только определенных частот.
Этот постулат Бора также противоречит электродинамике Максвелла, так как частота излучения определяется только изменением энергии атома и никак не зависит от характера движения электрона.
Пример №1. Определите длину волны света, испускаемого атомом водорода при его переходе из стационарного состояния с энергией E4 = –0,85 эВ (k = 4) в состояние с энергией E2 = –3,4 эВ (n = 2).
Длина волны определяется формулой:
λ=cν
Частоту найдем по формуле:
νkn=Ek−Enh
Следовательно, длина волны равна:
Теория Бора при описании поведения атомных систем не отвергла полностью законы классической физики. В ней сохранились представления об орбитальном движении электронов в кулоновском поле ядра. Классическая ядерная модель атома Резерфорда в теории Бора была дополнена идеей о квантовании электронных орбит. Поэтому теорию Бора иногда называют полуклассической.
Задание EF17570
На рисунке представлен фрагмент диаграммы энергетических уровней атома. Какой из отмеченных стрелками переходов между энергетическими уровнями сопровождается излучением фотона с максимальной энергией?
Ответ:
а) с уровня 1 на уровень 5
б) с уровня 5 на уровень 2
в) с уровня 5 на уровень 1
г) с уровня 2 на уровень 1
Алгоритм решения
- Сформулировать второй постулат Бора.
- Определить, при переходе с какого на какой уровень выделяется фотон с максимальной энергией.
Решение
Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излученного фотона равна разности энергий стационарных состояний.
Причем чем на более высоком уровне находится электрон, тем с более высокой энергией фотон он испускает при переходе на 1 уровень. Поэтому на рисунке нам подходит переход с уровня 5 на уровень 1.
Ответ: в
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17650
В сосуде находится разреженный атомарный водород. Атом водорода в основном состоянии (Е1 = – 13,6 эВ) поглощает фотон частотой 3,7⋅1015 Гц. С какой скоростью υ движется вдали от ядра электрон, вылетевший из атома в результате ионизации? Энергией теплового движения атомов водорода пренебречь.
Ответ:
а) 80 км/с
б) 380 км/с
в) 760 км/с
г) 1530 км/с
Алгоритм решения
1.Записать исходные данные.
2.Записать второй постулат Бора в математической форме.
3.Выполнить решение в общем виде.
4.Подставить известные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• Энергия стационарного состояния: En = –13,6 эВ.
• Частота поглощенного фотона: νkn = 3,7∙1015 Гц.
Запишем второй постулат Бора в математической форме:
hνkn=Ek−En
Скорость электрона мы можем посчитать, если примем энергию электрона в возбужденном состоянии за его кинетическую энергию. Тогда формула примет вид:
hνkn=mv22−En
Сделаем несколько преобразований, чтобы выразить скорость электрона:
mv22=hνkn+En
v2=2(hνkn+En)m
v=√2(hνkn+En)m
Учтем, что:
• Масса электрона: m = 9,1∙10–31 кг.
Тогда:
Ответ: в
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17726
Покоящийся атом излучает фотон с энергией 16,32·10–19 Дж в результате перехода электрона из возбуждённого состояния в основное. Атом в результате отдачи начинает двигаться поступательно в противоположном направлении с кинетической энергией 8,81·10–27 Дж. Найдите массу атома. Скорость атома считать малой по сравнению со скоростью света.
Алгоритм решения
1.Записать исходные данные.
2.Записать закон сохранения импульса.
3.Выполнить решение в общем виде.
4.Подставить известные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• Энергия излученного фотона: Eф = 16,32∙10–19 Дж.
• Кинетическая энергия атома после излучения фотона: Eа = 8,81∙10–27 Дж.
Так как до излучения фотона атом покоился, то его импульс был равен нулю. Поэтому после излучения фотона суммарный импульс согласно закону сохранения импульса тоже должен быть равен нулю. Поэтому импульс атома равен по модулю импульсу излученного фотона:
pа=pф
Импульс тела и его кинетическая энергия — связанные величины. Но скорость атома много меньше скорости света. Поэтому для атома связь импульса с кинетической энергией будет описываться нерелятивистским выражением:
Eа=p2а2mа
Отсюда импульс, обретенный атомом, равен:
pа=√2mаEа
Фотон двигается со скоростью света, и его импульс может быть выражен из следующей его связи с энергией:
Eф=pфc
Тогда импульс фотона равен:
pф=Eфc
Приравняем импульсы атома и фотона:
√2mаEа=Eфc
Возведем обе части выражения в квадрат, выразим и посчитаем массу атома:
2mаEа=E2фc2
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 3.5k
Фотон
– квант света с энергией
,
где h
= 6,63∙10–34
Дж∙с – постоянная Планка,
– частота света.
Импульс
фотона
,
где с
= 3∙108
м/с – скорость света в вакууме,
– длина волны света.
Электрон
– отрицательно заряженная частица,
модуль заряда которой равен е
= 1,6∙10–19
Кл, а масса равна mе
= 9,1∙10–31
кг.
Испускание
электронов веществом под действием
света называется фотоэффектом.
При этом можно записать соотношение,
называемое формулой Эйнштейна:
, (8.1)
где
– работа выхода электрона из вещества,
– кинетическая энергия электрона после
отрыва его от повехности вещества.
Если
частоту падающего света уменьшить до
кр
(или увеличить длину волны до кр),
то фотоэффект перестает наблюдаться.
Такая частота кр
или длина волны кр
называются красной
границей фотоэффекта.
При этом формула Эйнштейна выглядит
следующим образом:
(8.2)
Схема
для исследования фотоэффекта.
Свет
проникает через кварцевое окошко Кв
в откачанный баллон и освещает катод
К,
изготовленный из исследуемого материала.
При фотоэффекте из катода вырываются
электроны и попадают в электрическое
поле созданное батареей ЭДС, движутся
к аноду и созают фототок,
который регистрируется гальванометром
Г.
Напряжение U
между
анодом и катодом можно регулировать с
помощью потенциометра П.
Фототок
существует даже при U
= 0. Чтобы фототок прекратился, надо
приложить к аноду отрицательный
задерживающий
потенциал Uз.
При этом
(8.3)
Тогда
формула Эйнштейна изменяется:
(8.4)
При
столкновении фотона с длиной волны
с покоящимся электроном фотон изменит
направление своего движения на угол ,
и его длина станет равной ’.
Это явление называется эффектом
Комптона.
При
этом
,
(8.5)
где
м
= 2,42 пм – называется комптоновской
длиной волны электрона.
Задача
12
Найти
энергию фотонов (в эВ), вырывающих
фотоэлектроны из металла, работа выхода
которого равна А
= 1 эВ, если максимальный импульс,
передаваемый поверхности этого металла
при вылете электрона равен Р
=
10–24
кг∙м/с.
Решение:
Величина
импульса, переданного поверхности
металла при вылете электрона, равен
импульсу ре
этого
электрона, кинетическая энергия которого
равна
.
Из (8.1) найдем энергию фотона
эВ.
Ответ:
4,43 эВ
Задача
13
Определить
длину волны рентгеновского излучения,
если при комптоновском рассеянии на
покоящемся электроне этого излучения
под углом θ = 60о
частота фотона становится равной
= 1019
Гц. (ответ дать в пм).
Решение:
Найдем
длину волны рассеянного фотона:
м (8.6)
Подставляя
(8.6) в (8.5) найдем длину волны налетающего
фотона:
м
Ответ:
28,8 пм
9.
Законы теплового излучения.
Спектральная
излучательная способность
(или
)
(спектральная плотность энергетической
светимости) – энергия, излученная
нагретым телом в единицу времени с
единицы площади в единичном диапазоне
частот
(или в единичном диапазоне длин волн
)
Энергетическая
светимость
–
энергия, излученная нагретым телом в
единицу времени с единицы площади во
всем диапазоне частот (или длин волн).
Графически интегрирование спектральной
излучательной способности – это
нахождение площади под кривой
или
.
Спектральная
поглощательная способность аТ
(степень черноты) –
отношение поглощенной телом энергии к
энергии, падающей на тело (в единичном
интервале частот). У абсолютно черного
тела аТ
=
1.
Закон
Стефана-Больцмана: энергетическая
светимость абсолютно черного тела
пропорциональна абсолютной температуре
в четвертой степени, т.е.
, (9.1)
где
σ = 5,67∙10–8
Вт/(м2К4)
– постоянная Стефана-Больцмана.
Для
серого тела можно записать аналогичное
выражение:
, (9.2)
где
А
–
коэффициент черноты (или коэффициент
серости).
Закон
Вина:
длина волны, на которую приходится
максимум спектральной излучательной
способности абсолютно черного тела,
обратно пропорциональна абсолютной
температуре этого тела, т.е.
, (9.3)
где
b
= 2,9∙10–3
м∙К – постоянная Вина.
Задача
14
Поток
энергии, излучаемой из смотрового окошка
плавильной печи площадью S
равен Ф. Принимая, что отверстие печи
излучает, как черное тело определить
температуру печи. . Ф
= 100 Вт;
S
= 10 см2.
Решение:
Поток
излученной энергии Ф – это энергия,
излученная телом за одну секунду. Тогда
энергетическая светимость – это
плотность потока излученной энергии,
т.е
.
Используя закон Стефана-Больцмана
(9.1), найдем температуру в печи:
К
Ответ:
1152 К
Задача
15
Исследование
спектра излучения некоторой звезды
показывает, что максимум спектральной
плотности энергетической светимости
соответствует длине волны λ = 100 нм.
Принимая звезду за абсолютно черное
тело определить ее энергетическую
светимость. (ГВт/м2).
Решение:
Из
закона смещения Вина (9.3) найдем абсолютную
тепреатуру поверхности звезды:
К (9.4)
Подставляя
(9.4) в (9.1) получим энергетическую
светимость:
Вт/м2
Ответ:
40,1 ГВт/м2
9-22.
Энергия излучения шара площадью S
за время t
равна W.
Найти температуру шара, считая, что
отношение энергетических светимостей
шара и абсолютно черного тела для этой
температуры равным n.
(Ответ дать в К). S
= 1 см2;
W
= 1 кДж; t
= 1с;
n
= 0,1
Ответ:
6480 К
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Фотон
Фотон — это частица света или квант света; частица с которой можно делать расчёты.
Фотоны всегда находятся в движении и в вакууме движутся с постоянной скоростью 2,998 x 10^8 м/с (это называется скоростью света и обозначается буквой c).
В марте 1905 года Эйнштейн создал квантовую теорию света, это была идея о том, что свет существует в виде крошечных частиц, которые он назвал фотонами.
Позже в том же году была расширена специальная теория относительности, в которой Эйнштейн доказал, что энергия (E) и материя (масса – m) связаны, и это соотношение стало самым знаменитым в физике: E=mc²; (напомним: c — скорость света).
Формулы фотона
Эти формулы являются наиболее важными.
Формула энергии кванта/фотона (формула Планка или Энергия кванта)
Энергия — это постоянная Планка, умноженная на частоту колебаний
E = h×v
Где:
- E — энергия фотона/кванта (в Дж – джоуль),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц).
Масса фотона
m = hv/c² = h/cλ
Где:
- m — масса фотона (в кг),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц),
- c = 3.10^8 (это скорость света в м/с),
- λ — длина световой волны (в метрах).
Примечание:
Фотоны всегда движутся со скоростью света. В состоянии покоя фотоны не существуют (т.е. можно сказать, что масса покоя равна нулю).
Формула массы фотона (m = h/cλ) была выведена из формулы эквивалентности массы и энергии (E = mc²), при этом было использовано также равенство с энергией Кванта (E = h×v).
Импульс фотона
p = hv/c = h/λ
Где:
- p — импульс фотона (в Н•с – ньютон-секунда),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц),
- c = 3.10^8 (это скорость света в м/с),
- λ — длина световой волны (в метрах).
Длина волны света, период и частота
Это ещё одно соотношение, которое может быть полезным в расчётах.
λ = cT = c/v
Где:
- λ — длина световой волны (в метрах),
- c = 3.10^8 (это скорость света в м/с),
- T — период световых колебаний (в секундах),
- ν — частота колебаний света (в Гц – герц).
Пример решения задачи с данными формулами
Определите энергию фотонов красного (λк = 0,76 мкм) света.
Известно:
λк = 0,76 мкм = 0,76 × 10^(–6) м
Решение:
Формула энергии фотонов: E = h×v
Где:
h — постоянная Планка,
v — частота света; из равенства λ = c/v выходит, что v = с/λ.
Таким образом, составляем равенство:
E = h × (с/λ) = hc / λ
Вспоминаем другие данные:
c = 3.10^8 (это скорость света в м/с)
h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду)
E = hc / λ = ((6,6.10^(–34) Дж.с) × (3.10^8 м/с)) / (0,76 × 10^(–6) м) = 2,6 × 10^(–19) Дж
Фотон является волной?
Фотон является одновременно частицей и волной. Согласно квантовой теории света Эйнштейна, энергия фотонов (E) равняется их частоте колебаний (v), умноженной на постоянную Планка (h); т.е. эта формула выглядит так: E = h×v.
Так он доказал, что:
- свет — это поток фотонов,
- энергия этих фотонов — это высота их частоты колебаний,
- интенсивность света соответствует количеству фотонов.
Таким образом, учёный объяснил, что поток фотонов действует и как волна, и как частица.
Узнайте также про:
- Нейтрино
- Теорию относительности
- Магнитную индукцию
- Полимер
- Теорию струн