Выпрямитель. Казалось бы, что может быть проще? Основные схемы выпрямителей (без умножения напряжения) известны давно и во всех подробностях.
Схемы выпрямления могут использоваться не только с трансформатором, но и без трансформатора (кроме схемы со средней точкой).
Данная статья носит по большей части описательный и теоретический характер. И рассчитана на начинающих любителей электроники и тех, кто не имеет профильного образования, но хочет получше узнать о процессах происходящих в выпрямителе при различных условиях работы. Профессионалам и студентам радиотехнических и электротехнических специальностей ВУЗов она будет не интересна. Практические методики расчета выпрямителей я приведу в следующей статье, которая будет сугубо практической.
Сначала рассмотрим, как эти схемы выпрямителей работают на активную нагрузку. Рассмотрение будет довльно кратким, так это, действительно хорошо известно. Затем рассмотрю работу выпрямителя (мостовую схему) на активно-индуктивную и активно-емкостную нагрузки. Это соответствует двум способам сглаживания, уменьшения пульсаций, выпрямленного напряжения. Не обойду стороной и влияние сопротивления источника на работу выпрямителя.
Но сначала напомню пару общих моментов. Коэффициент пульсаций Кп на выходе выпрямителя определяется как отношение амплитуда первой (основной) гармоники U1 к постоянной составляющей выпрямленного напряжения
Постоянная составляющая U0 выпрямленного напряжения представляет собой среднее значение выпрямленного напряжения за период Т
Все временные диаграммы в статье, для упрощения, получены на симуляторе TINA версии 9.3.200.277 SF-TI, а не сняты осциллографом с реальных схем.
Однополупериодный выпрямитель
В течении положительной полуволны входного переменного напряжения диод открыт и напряжение на нагрузке равно по величине входному напряжению, за вычетом падения напряжения на диоде, и совпадает с ним по форме. В течении обратной полуволны диод закрыт и напряжение на нагрузке можно считать нулевым.
На этой иллюстрации входное напряжение показано фиолетовом цветом, его амплитуда 10 В, а частота 50 Гц. Выпрямленное напряжение показано синим цветом. Хорошо видно, что амплитуда выпрямленного напряжения меньше, чем входного. Однако, здесь не видно одной тонкости. Диод открыт только когда к нему приложено достаточное напряжение (разное для Si и Ge). Я увеличил этот момент, что бы было видно. Линейный участок на графике выпрямленного напряжения, при приближении к нулевому уровню, не ошибка моделирования. Он отражает процесс, в данном случае, закрывания диода.
Постоянная составляющая выпрямленного напряжения, без учета падения напряжения на диоде
Обратите внимание, здесь Uвх это амплитудное напряжение, а не действующее. Интегрирование выполняется на интервале 0-π, так как выходное напряжение отлично от 0 только в течении половины периода.
Коэффициент пульсаций Kп=1.57. Вывод амплитуды первой гармоники выпрямленного напряжения я оставлю за скобками, так как это уже упражнение в математике и к теме статьи отношения не имеет.
Обратите внимание, что к диоду в закрытом состоянии прикладывается полное амплитудное напряжение. Например, для привычного действующего напряжения 220 В бытовой сети переменного тока амплитудное составит 310 В.
Кроме больших пульсаций выпрямленного напряжения однополупериодная схема обладает еще одним недостатком – она создает подмагничивание сердечника трансформатора (если он используется) постоянным током, так как ток в обмотке протекает только в одном направлении. И это надо учитывать при расчете трансформатора.
Двухполупериодный выпрямитель со средней точкой
Фактически, является объединением двух однополупериодных выпрямителей, входной сигнал которых сдвинут на половину периода за счет использования вторичной обмотки трансформатора с отводом от средней точки. Диоды в этой схеме открываются поочередно, каждый в свою половину периода.
Параметры входного напряжения и цвета кривых точно такие же, как и для однополупериодного выпрямителя. Хорошо видно, частота пульсаций выпрямленного напряжения равна удвоенной частоте выходного переменного напряжения. Видно, что амплитуда выпрямленного напряжения меньше амплитуды входного из-за падения напряжения на диодах, как и для однополупериодного выпрямителя. Я не буду приводить увеличенного участка диаграммы, что бы показать моменты открывания и закрывания диодов. Тут все в точности, как и в однополупериодном выпрямителе.
Постоянная составляющая выпрямленного напряжения для двухполупериодной схемы, без учета падения напряжения на диодах.
Обратите внимание, здесь Uвх это амплитудное напряжение каждой из половин вторичной обмотки трансформатора. Интегрирование выполняется на интервале 0-π, так как каждый из диодов открыт только половину периода. Коэффициент пульсаций Кп=0.67.
Двухполупериодная схема обеспечивает в два раза меньшие пульсации выпрямленного напряжения и исключает подмагничивание сердечника трансформатора постоянным током, но имеет два существенных недостатка. Во первых, в два раза увеличиваются затраты на изготовление вторичной обмотки, да и места она занимает в два раза больше. Во вторых, к закрытому диоду приложено удвоенное амплитудное напряжение.
Мостовой двухполупериодный выпрямитель
Очень популярная схема выпрямителя. Входное переменное напряжение подается в одну диагональ моста, а выпрямленное снимается с другой
Временная диаграмма работы мостового выпрямителя похожа на диаграмму для двухполупериодного со средней точкой. Но в мостовой схеме ток нагрузки протекает через два диода, поэтому амплитуда выпрямленного напряжения меньше. И это хорошо видно на иллюстрации.
Постоянная составляющая выпрямленного напряжения, без учета падения напряжения на диодах, такая же, как для схемы со средней точкой
Обратите внимание, здесь Uвх это амплитудное напряжение каждой из половин вторичной обмотки трансформатора. Коэффициент пульсаций Кп=0.67.
К закрытым диодам в мостовой схеме приложено полное амплитудное напряжение. Мостовая схема не подмагничивает сердечник трансформатора (если он используется) постоянным током и не требует дополнительных затрат на вторичную обмотку. Но в ней используется в два раза больше диодов, чем в схеме со средней точкой. И потери на диодах в два раза больше.
Работа выпрямителя на активно-индуктивную нагрузку
Работа выпрямителя на активную нагрузку встречается не часто. Давайте сначала посмотрим, что изменится, если нагрузка активно-индуктивная. Например, обмотка реле, или последовательно с активной нагрузкой включен сглаживающий дроссель. Для краткости я буду рассматривать лишь мостовую схему.
Сначала приведу временные диаграммы для напряжений
Здесь коричневым цветом показано напряжение на активной составляющей нагрузки, Rн, а синим напряжение на выходе выпрямителя, то есть, на последовательно включенных Lн и Rн.
А теперь диаграммы токов
Здесь зеленым цветом показан ток в нагрузке (Lн+Rн). А красным ток во вторичной обмотке трансформатора, то есть, входной ток выпрямителя с нагрузкой. Там, где красная линия пропадает, она совпадает с зеленой. На значения токов можно не обращать внимания, но если кому то интересно, то для моделирования выбрано сопротивление нагрузки 10 Ом и индуктивность 20 мГн.
Интересная картина, правда? Почему же так получилось? Во время положительного полупериода входного напряжения открыты диоды VD1 и VD4, а диоды VD2 и VD3 закрыты. Когда полярность входного напряжения меняется диоды VD1 и VD4 закрываются, а VD2 и VD3 открываются. Но при этом ток в нагрузке сохраняет прежнее направление.
Если нагрузка активная, то ток в ней повторяет по форме напряжение, а ток вторичной обмотки, входной ток выпрямителя, имеет синусоидальную форму.
Однако, наличие индуктивности препятствует изменению тока и ток нагрузки будет отставать от напряжения. Кроме того, пульсации тока будут сглаживаться, что видно на графике токов (зеленая линия). Если реактивное сопротивление индуктивности большое, примерно XL=ωпLн>10Rн (ωп частота пульсаций), ток нагрузки можно считать постоянным (пульсации отсутствуют), а следовательно и напряжение на активной составляющей нагрузки постоянно. При этом ток через диоды и ток вторичной обмотки трансформатора принимают практически прямоугольную форму.
При активно-индуктивной нагрузке длительность проводящего состояния диодов равна длительности полупериода входного переменного напряжения.
Если принять потери в индуктивности нулевыми, ток нагрузки идеально сглаженным, то напряжение на активном сопротивлении нагрузки будет равно постоянной составляющей выпрямленного напряжения для двухполупериодной схемы выпрямителя. При этом к закрытым диодам прикладывается полное амплитудное входное напряжение, как и в обычной мостовой схеме.
Таким образом, индуктивность в цепи нагрузки выпрямителя можно использовать для сглаживания пульсаций выпрямленного напряжения. Однако, форма входного тока в таком случае не будет синусоидальной.
Работа выпрямителя на активно-емкостную нагрузку
Это гораздо более часто встречающийся случай. Почти всегда пульсации выпрямленного напряжения сглаживаются подключенным параллельно нагрузке конденсатором
Давайте посмотрим на напряжения и токи в этом случае. Я приведу две диаграммы одну за другой. Сначала напряжения, затем входной ток выпрямителя
Как всегда, фиолетовая линия показывает входное напряжение выпрямителя, а синяя линия выпрямленное напряжение.
Хорошо видно, что входной ток выпрямителя, как и в случае активно-индуктивной нагрузки, перестал быть синусоидальным. Только теперь стремится не к прямоугольной, а к треугольной форме. В чем же дело в том случае?
В случае работы выпрямителя на емкостную нагрузку диоды будут открываться только тогда, когда входное напряжение превысит напряжение на конденсаторе. При этом, в начальный момент времени, амплитуда тока будет определяться разностью входного напряжения и напряжения на конденсаторе приложенной к сумме сопротивлений диодов и приведенного суммарного сопротивления обмоток трансформатора. А если трансформатора нет, то только к сопротивлению диодов. По мере заряда конденсатора и изменения напряжения на входе выпрямителя ток будет спадать. Когда входное напряжение станет ниже напряжения на конденсаторе диоды закроются и конденсатор начнет разряжаться на нагрузку.
Амплитудное значение тока тока через диоды из-за малого времени открытого состояния может значительно (обычно до 10 раз) превосходить среднее значение. При включении выпрямителя, когда емкость нагрузки разряжена, амплитуда тока может быть очень большой, поэтому может потребоваться использовать дополнительное сопротивление для ограничения броска тока.
Чем больше постоянная времени цепи разряда конденсатора, тем меньше пульсации выходного напряжения. Однако, форма входного тока в этом случае значительно отличается от синусоидальной. При этом амплитудное значение тока может быть весьма значительным, однако длительность этого пика мала.
Влияние сопротивления источника на работу выпрямителя
Во всех описанных выше случаях предполагалось, что источник напряжения, к которому подключен выпрямитель, обладает низким внутренним сопротивлением. А в случае трансформатора, что он способен отдать любой достаточный ток. Но что будет, если внутренне сопротивление источника не столь мало? Рассматривать эту ситуацию я буду на примере однополупериодного выпрямителя.
Здесь Rи это сопротивление источника или балластного резистора. Для определенности примем, что сопротивление нагрузки 1 кОм, а емкость конденсатора 100 мкФ. Сначала установим малое сопротивление источника, например, 1 Ом
Здесь зеленым цветом показано входное напряжение выпрямителя, а красным напряжение на нагрузке. Хорошо видно, что максимальное (пиковое) напряжение на нагрузке почти равно амплитудному значению входного напряжения и составляет 9.5 В. Разница объясняется падением напряжения на диоде.
А теперь увеличим сопротивление источника до 100 Ом, что составляет 10% от сопротивления нагрузки. Можно ожидать, что максимальное напряжение на нагрузке снизится тоже примерно на 10%, так как Rи и Rн образуют делитель напряжения. Однако
Сюрприз! Напряжение снизилось значительно сильнее и его максимальное значение составило всего 6.5 В вместо 9.5 В. В чем же дело? Давайте вспомним, что я писал о работе выпрямителя на активно-емкостную нагрузку. Начальная амплитуда тока заряда емкости, в каждый полупериод, определяется сопротивлением диодов, обмоток трансформатора и напряжением на конденсаторе (точнее, разницей входного напряжения и напряжения на конденсаторе). Если немного перефразировать, то получится, что начальная амплитуда тока заряда емкости определяется напряжением на конденсаторе и сопротивлением источника.
Вот мы и подошли к самому главному, к влиянию сопротивления источника. Если присмотреться внимательно, то напряжение на конденсаторе будет определяться скоростью заряда и скоростью разряда. Или, постоянной времени цепи заряда и постоянной времени цепи разряда. А мы увеличили постоянную времени заряда в 100 раз, что и оказало гораздо более значимое влияние, чем получившийся делитель (10%), на напряжение на конденсаторе.
Для двухполупериодного выпрямителя влияние сопротивления источника будет немного меньше, так как конденсатор подзаряжается два раза за период, а не один.
Ситуация с влиянием сопротивления источника показывает, что нужно понимать происходящие в схемах процессы. Хотя мозг иногда срабатывает “на автомате”, упуская из виду значимые детали процессов в виду кажущейся шаблонности анализируемой схемы.
И я сам попался на эту уловку мозга допустив ошибку в анализе двух схем в статье Ругать или предлагать анализ и решение? О критике старых электронных схем, не обратив внимание на то, что сопротивление балластного резистора уже не позволяло его игнорировать. В той статье я сохранил ошибочный вариант указав верный в примечаниях в тексте сразу после ошибки. Что бы наглядно показать читателям, сколь легко допустить глупую ошибку буквально на ровном месте.
Заключение
В данной статье я постарался показать процессы в выпрямителях при работе на разные нагрузки, но так, что бы это было наглядно и понятно начинающим и не специалистам. Математики в статье мало и она очень простая. В следующей статье я приведу практические методики расчета.
Пульсации выпрямленного напряжения
Как было отмечено в лекции 3, выходное напряжение выпрямителя представляет собой пульсирующую величину, изменяющуюся от 0 до U2m. Частота пульсаций выпрямленного напряжения для однополупериодной схемы равна частоте питающей сети (50 Гц), а для двухполупериодной и мостовой – удвоенной частоте (100 Гц).
В табл. 3.1 в последнем столбце приведено значение коэффициента пульсации КП(1). Коэффициент пульсации определяется как отношение амплитуды первой гармоники пульсирующего напряжения на выходе выпрямителя к его среднему значению Ud. Для однополупериодной схемы амплитуда первой гармоники выходного напряжения (50 Гц)
, (4.1)
а для двухполупериодной и мостовой (100 Гц)
. (4.2)
Среднее значение выпрямленного напряжения для однополупериодной схемы Ud = 0,45×U2, а для двухполупериодной и мостовой Ud = 0,9×U2. Тогда коэффициент пульсаций:
для однополупериодной схемы ;
для двухполупериодной и мостовой .
Такие коэффициенты пульсации являются слишком большими для радиоэлектронной аппаратуры, применяемой в системах управления движением поездов и электроснабжением. Поэтому в схемах источников питания после выпрямителя устанавливается сглаживающий фильтр.
Источник
Пульсации выпрямленного напряжения
Работа выпрямителя на различную нагрузку
Рассмотренные схемы выпрямителей давали возможность получить на нагрузке выпрямленное, но пульсирующее напряжение. Недопустимо большие пульсации напряжения нарушают нормальный режим работы электронной аппаратуры создают фон на ее выходе, вызывают искажения сигналов, приводят к неустойчивости работы электронного устройства в целом. Поэтому для устранения пульсации выпрямленного напряжения в схему выпрямителя на его выходе включают сглаживающие фильтры .
Прежде чем познакомиться с практическими схемами фильтрации, рассмотрим физические процессы в схеме двухполупериодного выпрямителя для случая, когда последовательно с сопротивлением нагрузки включен дроссель L ( рис. 117, а ), т. е. когда выпрямитель нагружен на индуктивное и активное сопротивления.
Напряжение U R н L , приложенное к цепи R н — L, имеет форму положительных синусоидальных полуволн; форма же тока, протекающего через нагрузку, отличается от формы выпрямленного напряжения. При увеличении напряжения U R н L в индуктивности L возникает э. д. с. самоиндукции e L , которая противодействует увеличению тока.
Она направлена навстречу возрастающему напряжению U R н L и поэтому на графике показана с обратной полярностью.
Рис. 117. Работа двухполупериодного выпрямителя: а —на индуктивность и активное сопротивление; б — на емкость и активное сопротивление.
Как только ток первого вентиля В 1 перестанет возрастать (достигает максимума), э. д. с. самоиндукции становится равной нулю. В следующую часть периода, когда полярность ее изменится, она будет препятствовать уменьшению тока в цепи R н — L, поэтому ток прекращается не в момент а позже, в момент времени t’. В момент времени t’ открывается также вентиль В 2 и ток в нагрузке складывается из возрастающего тока вентиля В 2 и уменьшающегося тока вентиля В 1 , поддерживаемого э. д. с. самоиндукции (последний замыкается теперь через вентиль В 2 , так как вентиль В 1 заперт).
Среднее значение выпрямленного тока уже незначительно отличается от максимального тока через вентиль, причем это отличие будет тем меньше, чем больше индуктивность L. Одновременно уменьшаются и пульсации выпрямленного напряжения . Так, при ωL, — (5÷8) R н пульсации напряжения на нагрузке не превышают 20%.
Обратное напряжение на вентиле равно сумме э. д. с. е II и напряжения на входе цепи R н —L:
В общем случае среднее значение выпрямленного напряжения на нагрузке равно
U ср = U ср.х.х — I ср (R i + r II + r др ),
где U ср.х.х — напряжение на выходе выпрямителя при отключенной нагрузке в режиме холостого хода; I ср (R i + r II + r др ) — напряжение потерь на актив-пых сопротивлениях элементов схемы.
Из последнего равенства следует, что с увеличением тока через нагрузку (при уменьшении R н ) увеличивается наклон внешней характеристики. Однако этот наклон не зависит от индуктивности дросселя, поэтому в выпрямителе с индуктивной нагрузкой целесообразно применять вентили с малым внутренним сопротивлением R i (селеновые или ионные вентили).
На рис. 117, б приведены двухполупериодная схема выпрямителя, нагруженного на параллельно подключенные конденсатор С и сопротивление R н , а также графики, поясняющие работу этой схемы.
Конденсатор дважды за каждый период подзаряжается до напряжения U C.макс поочередно через вентиль В 1 и вентиль В 2 . Когда напряжение на соответствующей половине вторичной обмотки трансформатора становится выше напряжения U С на конденсаторе, он. подзаряжается в промежутки времени t 1 — t 2 , t 3 — t 4 и разряжается на нагрузку в промежутки времени t 2 —t 3 , t 4 — t 5 . При этом ток в нагрузке поддерживается за счет энергии, накопленной в конденсаторе. Вентили в это время заперты. Чем больше сопротивление нагрузки, тем медленнее разряжается конденсатор, тем меньше изменяется (меньше пульсирует) напряжение на нагрузке.
Среднее значение выпрямленного напряжения примерно равно амплитуде напряжения на половине вторичной обмотки трансформатора: обратное напряжение в 2 раза больше (≈2Е mII ), коэффициент пульсации не превышает 15% при С≈8÷10 мкф.
Следует заметить, что ток в нагрузке протекает в течение всего полупериода, в то время как ток через вентиль проходит только лишь часть полупериода, причем максимальное значение этого тока в 3—4 раза больше среднего значения выпрямленного. Поэтому если необходимо получить от выпрямителя ток в 100 ма, то допустимый максимальный ток вентиля должен быть не менее 300 ма.
Наклон внешней характеристики зависит не только от величины внутреннего сопротивления вентиля и вторичной обмотки трансформатора, но и от постоянных времени заряда и разряда конденсатора:
t зар ≈ С(R i +r’ II ); t разр = CR н
Величина выпрямленного напряжения резко зависит от величины тока нагрузки. При R н = ∞, т. е., когда I ср = 0, напряжение на емкости максимально; при уменьшении R н напряжение U ср падает.
Выпрямитель, работающий на емкость, можно рассматривать как источник с большим внутренним сопротивлением. В момент включения схемы имеет место бросок тока, происходит первоначальный заряд конденсатора С, ток в цепи ограничивается только внутренним сопротивлением вентилей, поэтому возникает опасность выхода одного из них из строя.
Источник
Сглаживающие фильтры выпрямителей блоков питания.
Ёмкостные, индуктивно-ёмкостные, активные сглаживающие фильтры.
Схемы, свойства, онлайн калькулятор.
Потолковали мы основательно на предыдущей странице про разные виды диодных выпрямителей, перебросились парой фраз на тему простейших ёмкостных фильтров, а вопрос достижения параметра коэффициента пульсаций Кп в пределах 10 -5 . 10 -4 так и повис в воздухе — уж очень немалым получается номинал ёмкости сглаживающего конденсатора.
Коэффициент пульсаций выпрямленного напряжения Кп является важнейшим параметром выпрямителя. Его численное значение равно отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей.
Напомню выдержку из печатного издания, приведённую на предыдущей странице:
«Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным током вполне определённой «чистоты»:
10 -3 . 10 -2 (0,1-1%) — малогабаритные транзисторные радиоприёмники и магнитофоны,
10 -4 . 10 -3 (0,01-0,1%) — усилители радио и промежуточной частоты,
10 -5 . 10 -4 (0,001-0,01%) — предварительные каскады усилителей звуковой частоты и микрофонных усилителей.»
Помимо этого в характеристиках выпрямителей может использоваться и понятие коэффициента фильтрации (коэффициента сглаживания).
Коэффициент фильтрации, он же коэффициент сглаживания — величина, численно равная отношению коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра Кс = Кп-вх/Кп-вых .
Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.
В слаботочных цепях вопрос снижения пульсаций решается легко и кардинально — применением интегральных стабилизаторов. Параметр подавления пульсаций (Ripple Rejection) у подобных массовых ИМС составляет не менее 50дБ (в 360раз по напряжению), что при высокой «чистоте» выходного напряжения позволяет уменьшить ёмкости электролитов в 5-10 раз.
Если же у разработчика нет возможности (либо желания) включать в состав устройства стабилизаторы напряжения, то реальным подспорьем окажутся индуктивно-ёмкостные или активные сглаживающие фильтры.
Начнём с фильтров, выполненных из индуктивных элементов – дросселей и из ёмкостных элементов – конденсаторов.
Рис.1
На Рис.1а приведена схема простейшего ёмкостного сглаживающего фильтра. Принцип действия заключается в накоплении электрической энергии конденсатором фильтра и последующей отдачи этой энергии в нагрузку.
Для того чтобы не ограничиваться 50-ти герцовыми блоками питания, но и иметь возможность расчёта фильтров импульсных ИП, приведу универсальные формулы, учитывающие частоту входного сигнала F :
С1 = Iн/(3,14×Uн×F×Кп) для однополупериодных выпрямителей и
С1 = Iн/(6,28×Uн×F×Кп) — для двухполупериодных.
Кп — это коэффициент пульсаций, равный отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей, а
F — частота переменного напряжения на входе диодного выпрямителя.
Переходим к индуктивно-ёмкостным LC фильтрам.
ВНИМАНИЕ. Потребность в такого рода цепях возникает исключительно в случаях необходимости получить низкий уровень пульсаций в достаточно мощных сетевых блоках питания, либо в высокочастотных импульсных ИП. Связано это с тем, что для эффективной работы LC-фильтра, индуктивное сопротивление катушки XL на частоте подавления стремятся сделать значительно больше Rн. А это, в свою очередь, приводит к тому, что в условиях низких частот и малых токов (высоких Rн) индуктивность дросселя получается необоснованно высокой.
Г-образный индуктивно-ёмкостной LC фильтр 2-го порядка (Рис.1б) обладает значительно лучшими фильтрующими свойствами по сравнению с обычным ёмкостным.
Произведение LC (Гн*мкФ) зависит от необходимого коэффициента сглаживания фильтра и определяется по приближенной формуле:
L1(Гн)×С1(МкФ) = 25000/(F 2 (Гц)×Кп) для однополупериодных выпрямителей и
L1×С1 = 12500/(F 2 ×Кп) — для двухполупериодных, где
С1(МкФ)/L1(мГн) = 1000/Rн 2 (Ом) .
Схема П-образного LC-фильтра приведена на Рис.1в. Сглаживающее действие П-образного LC-фильтра можно упрощённо представить как совместное действие двух фильтров, описанных выше, а коэффициент сглаживания — как произведение коэффициентов сглаживания звеньев: ёмкостного и Г-образного индуктивно-ёмкостного.
Наилучшими фильтрующими свойствами обладают LC-фильтры Чебышева. Напишем формулу, исходя из рекомендаций, изложенных на странице ссылка на страницу:
С1 = С2 ; С1(МкФ)/L1(мГн) = 1176/Rн 2 (Ом) .
Уменьшить напряжение пульсаций на выходе однозвенного П-образного LC-фильтра можно, включив параллельно дросселю L1 неполярный конденсатор С3 (Рис.1г), который вместе с индуктивностью катушки образует режекторный фильтр. Если ёмкость конденсатора С3 выбрать такой, чтобы резонансная частота контура L1-С3 равнялась частоте пульсаций (F при однополупериодном выпрямлении или 2F при двухполупериодном), то большая часть напряжения пульсаций задержится этим контуром и лишь незначительная перейдёт в нагрузку.
Итак: С3 = 1/(39,44×L1×F 2 ) для однополупериодных выпрямителей и
С3 = 1/(9,86×L1×F 2 ) — для двухполупериодных.
Все остальные номиналы элементов — такие же, как в предыдущей схеме.
Давайте сдобрим пройденный материал онлайн таблицей.
КАЛЬКУЛЯТОР РАСЧЁТА ЭЛЕМЕНТОВ СЛАЖИВАЮЩЕГО ФИЛЬТРА БЛОКА ПИТАНИЯ.
Выбор схемы фильтра |   |
Тип выпрямителя |   |
Частота напряжения с обмотки трансформатора (Гц) | |
Выходное постоянное напряжение Uн (В) | |
Максимальный ток нагрузки Iн (А) | |
Пульсации выходного напряжения (%) | |
Минимальное сопротивление нагрузки Rн (Ом) | |
Ёмкость конденсатора С1 (МкФ) | |
Индуктивность дросселя L1 (мГн) | |
Ёмкость конденсатора С3 (МкФ) |
Транзисторные фильтры по сравнению с ёмкостными сглаживающими фильтрами имеют меньшие габариты, массу и более высокий коэффициент сглаживания пульсаций. Они позволяют уменьшить в десяток раз (при том же уровне пульсаций) номинал сглаживающего конденсатора, либо уменьшить в аналогичное количество раз амплитуду пульсаций при неизменном значении ёмкости.
Рис.2
На Рис.2а представлена схема наиболее распространённого транзисторного фильтра.
Напряжение с высокой амплитудой пульсаций, поступающее на коллектор транзистора, по сути, является напряжением питания эмиттерного повторителя, образованного Т1.
В это же самое время цепь базы питается через резисторы смещения и интегрирующую цепь R1C1, которая сглаживает пульсации напряжения на базе. Чем больше постоянная времени T=R1C1, тем меньше пульсации напряжения на базе, а так как устройство представляет собой эмиттерный повторитель, то на выходе фильтра пульсации будут столь же малыми, как и на базе.
Для того, чтобы снизить зависимость напряжения на выходе фильтра от уровня передаваемой мощности, ток через делитель R1R2 выбирают в 5…10 раз большим, чем ток, ответвляющийся в базу при минимальном сопротивлении нагрузки.
При расчёте номиналов элементов делителя, следует исходить из напряжения на базе транзистора:
Uб = Uвх — Uвх пульсаций — (2,5. 3В) .
В этом случае будет обеспечена работа регулирующего транзистора в активном режиме, а падение напряжения на нём составит величину:
Uкэ = Uвх пульсаций + (3,1. 3,6В) .
Коэффициент полезного действия транзисторного фильтра будет тем больше, чем меньше падание постоянного напряжения на силовом транзисторе. Из формулы видно, что для обеспечения высокого КПД активного сглаживающего фильтра, на вход устройства следует подавать уже отфильтрованное до определённого уровня напряжение.
На практике это делается включением на вход простейшего ёмкостного фильтра (Рис.1а), уровень пульсаций которого можно посчитать на приведённом выше калькуляторе.
Содержание
- 1 Определение и формула коэффициента пульсации
- 2 Как проверить пульсации
- 3 Виды коэффициентов пульсации напряжения (тока)
- 4 Коэффициент пульсации освещённости
- 5 Коэффициенты пульсаций различных источников света
- 6 Алгоритм вычисления пульсаций
- 6.1 Расчёт индекса помещения
- 6.2 Расчёт наименьшего количества квадратов сетки N
- 6.3 Расчёт коэффициента пульсации светильника Кпi
- 7 Единицы измерения
- 8 СанПиН 2.2.1/2.1.1.1278–03 и СП 52.1333.2011
- 9 Отрицательное воздействие несоблюдения правил
- 9.1 Порог восприятия частоты пульсаций
- 9.2 Стробоскопический эффект
- 10 Как убрать пульсацию в светодиодной лампе
- 11 Видео
Любой искусственный источник света, работающий от переменного напряжения бытовой сети 220 В, пульсирует, несмотря на наличие в его схеме выпрямителя. Производители осветительных приборов стараются свести этот эффект к минимуму, ведь от качества освещения зависят здоровье и производительность человека.
Пульсации светового потока
Определение и формула коэффициента пульсации
Коэффициент пульсации напряжения (Кп) – это величина, определяющая отношение максимальной составляющей переменного напряжения (Uпер.макс.) к его постоянной составляющей (Uпост). Для удобства она выражается в процентах.
Расчёт коэффициента пульсации по напряжению
Аналогично рассчитываются и пульсации тока.
Расчёт коэффициента пульсации по току
Iпер. макс. – это переменная составляющая тока. Iпост. – его постоянная составляющая.
Как проверить пульсации
Считаем освещение вместе!
Измерить пульсацию в домашних условиях без пульсметра и люксметра – задача весьма проблематичная. Примерно посмотреть, насколько сильно моргает источник света, не так трудно. Как правило, невооружённым глазом этот пагубный эффект незаметен. Однако, если воспользоваться камерой мобильного телефона, пульсации становятся заметны. Оценка проводится по хаpaктерным горизонтальным полосам на экране смартфона.
Полосы на камере смартфона
Виды коэффициентов пульсации напряжения (тока)
Что такое коэффициент мощности
При расчетах применяются различные виды коэффициентов. Помимо вышеописанного определения этой величины, встречается и пульсации по действующему значению. В этом случае расчёт иной. В числителе берётся не максимальное, а действующее значение напряжения или тока.
Пульсации по действующему напряжению
Коэффициент пульсации освещённости
Коэффициент использования производственной мощности
Коэффициент пульсаций освещённости – качественная хаpaктеристика осветительных приборов, используемых в помещении. Она регламентируется ГОСТ-ом, СП52.13330.2011 и широким перечнем других санитарных норм и критериев. С физической точки зрения, данный коэффициент показывает, как сильно снижена яркость светильника в момент её минимального значения.
Коэффициенты пульсаций различных источников света
Различные осветительные приборы отличаются по степени пульсации. Наиболее хороши в этом плане устаревшие лампочки накаливания. Их вольфрамовая спираль пpaктически не успевает измениться в яркости в моменты прохождения сетевого напряжения через ноль. Вдобавок старая лампочка пульсирует с удвоенной сетевой частотой, т.е. на 100 Гц. Этот параметр превышает чувствительность большинства людей.
Люминесцентные и led светильники, особенно устаревшие, менее хороши. Здесь всё зависит от качества их электроники. Иногда в продаже попадаются образцы, чьё моргание заметно невооружённым глазом. Модели дороже лишены такого дефекта.
Внимание! Применение диммеров существенно увеличивает пульсации. Особенно это ощущается на низкой яркости лампочки. Также диммеры (особенно симисторные) вносят нежелательные помехи в сеть.
Алгоритм вычисления пульсаций
Расчёт коэффициента пульсации производится с помощью специализированного ПО и таблиц. Основные этапы процесса следующие:
- построение компьютерной модели системы освещения, учитывающей площадь помещения, высоту потолка и отражающую способности стен;
- группировка источников света по отдельным питающим фазам (L1, L2, L3);
- расчёт минимального числа квадратов сетки N1 для квадратного помещения;
- распределение светильников по квадратам сетки;
- замер освещения в контрольных точках (для каждой отдельной фазы);
- определение по таблице параметров Kпоу и Kпi, зависящих от типа применяемых лампочек;
- расчёт общего коэффициента пульсации осветительной системы Кпобщ, численно равного среднему арифметическому его значений в отдельных точках.
Общий коэффициент пульсаций
Расчёт индекса помещения
От индекса помещения зависят его будущие световые параметры. Расчёт выполняется следующим образом.
Индекс помещения
Здесь a и b – длина и ширина помещения, h – расстояние от рабочей поверхности до осветительных приборов. Из равенства очевидно, что индекс помещения пропорционален его площади. Под рабочей поверхностью подразумевается плоскость на высоте 800 мм от пола (типичный письменный стол).
Расчёт наименьшего количества квадратов сетки N
Расчёт актуален для помещения любой формы. Учитываются геометрические хаpaктеристики помещения, такие, как его площадь (Sп). Параметр N пропорционален числу квадратов N1.
Количество квадратов сетки N
Здесь Sк – площадь квадрата, образованного наименьшей стеной помещения.
Расчёт коэффициента пульсации светильника Кпi
Данное вычисление необходимо для того, чтобы принять во внимание пульсации светильников, подключенных к одной из фаз (Кпis). Также учитывается и вид лампочек.
Пульсации светильника
Единицы измерения
При полноценных расчетах осветительной системы возникает необходимость пользоваться следующими физическими величинами:
- Световой поток Ф. Измеряется в «люменах» (российское обозначение – лм, международное – lm).
- Сила света I, «канделла» (кд, cd).
- Яркость L. Измеряется в «канделах на квадратный метр» (кд/м^2).
СанПиН 2.2.1/2.1.1.1278–03 и СП 52.1333.2011
Гигиенические стандарты на освещение регламентируются на государственном уровне. Они представлены в документах СанПиН 2.2.1/2.1.1.1278–03 и СП 52.1333.2011. Ознакомившись с ними, можно выяснить, какой уровень освещения требуется для промышленных предприятий, учебных, офисных, финансовых учреждений или жилых помещений.
Отрицательное воздействие несоблюдения правил
Недостаточный уровень освещённости и её пульсации оказывают пагубное влияние на здоровье человека. Нарушения правил способны вызвать хронические заболевания. Из каждодневных факторов плохого света выделяются излишняя утомляемость глаз, головная боль, депрессивность и рассеянность.
Порог восприятия частоты пульсаций
Частота, на которой мерцающий свет начинает казаться непрерывным, зависит от индивидуальных особенностей конкретного человека. У большинства людей она составляет от 30 до 60 Гц. Имеются и различия в том, как именно смотреть на предмет. Глаза наиболее восприимчивы к пульсациям, если речь идёт о периферийном зрении. При прямом взгляде чувствительность снижается.
Стробоскопический эффект
Стробоскопический эффект, по большей части, свойственен промышленным предприятиям и цехам со станками и прочим опасным оборудованием. Колебания света в сочетании с инертностью зрения могут создать нежелательные иллюзии. К примеру, если частота вращения токарного станка кратна пульсации освещения, то человек, смотрящий на вращающуюся деталь, будет видеть, что она неподвижна. Данный эффект чреват получением травмы и свойственен всем подвижным агрегатам.
Вращающаяся деталь кажется неподвижной
Как убрать пульсацию в светодиодной лампе
Самый простой способ – купить новую лампочку от качественного производителя. Если нужно привести в порядок имеющийся под рукой осветительный прибор, то первым делом стоит увеличить ёмкости входного и выходного электролитических конденсаторов. Чем они больше, тем меньше коэффициент пульсаций. В случае, если не помогло, то проблема кроется либо в самих светодиодах, либо в их драйвере (микросхеме). При таком диагнозе проще вернуться к первому способу и заменить лампочку на другую.
Конденсаторы в led лампочке
Дополнительная информация. Конденсаторы на выходе диодного моста нужны, чтобы выпрямить и сгладить сетевое напряжение. При их замене нельзя превышать номинальное напряжение, иначе они, скорее всего, взорвутся.
Из вышесказанного можно подчеркнуть, что расчет пульсаций источников света является важной и ответственной работой. Без проведения всех необходимых вычислений невозможна проектировка промышленных, общественных или бытовых зданий.
Видео
Расшифровка и технические хаpaктеристики ВББШВНГ-кабеля
Расшифровка и технические хаpaктеристики кабеля ВББШВНГ. Маркировка жил на основе алюминия согласно ГОСТ. ВББШВНГ-кабель: области применения, правила монтажа и эксплуатационный срок. Конструкция провода ВББШВНГ….
07 05 2023 9:21:15
Давно хотел создать тему для всех, да и самому немного разобраться. Как известно в импульсной электронике без осциллографа делать вообще нечего. Тут я расскажу как узнать частоту с помощью осциллографа.
Частота = 1 / период импульса.
Период импульса = диапазон положения ручки “время” на осциллографе * количество клеток периода импульса на осциллограмме.
Предлагаю рассмотреть три осциллограммы и рассчитать частоту:
(На всех трёх осциллограммах ручка “время” у меня была в положении “0,05 мкс” [микросекунд])
Первый пример, расписываю очень подробно:
Период импульса = 0,05 мкс * 4,2 клетки = 0,21 мкс
0,21 мкс / 1000 = 0,00 021 мс [миллисекунда]
0,00 021 мс / 1000 = 0,0 000 0021 с [секунды]
Частота = 1 / 0,0 000 0021 с = 4 761 900 Гц
4 761 900 Гц / 1000 = 47 619 кГц
47 619 кГц / 1000 = 4,7619 МГц
Второй пример, кратко:
Период импульса = 0,05 мкс * 2 клетки = 0,1 мкс
Частота = 1 / 0,1 мкс = 10 МГц
Третий пример (прошу прощения за плохую синхронизацию, мой осциллограф уже не “тянет” столь высокую частоту):
Период импульса = 0,05 мкс * 1,2 клетки = 0,06 мкс
Частота = 1 / 0,06 мкс = 16,666 МГц
Всем спасибо. Прошу ткнуть носом в имеющиеся ошибки и опечатки
Уважаемого Админа персонально прошу прокомментировать данный пост
Сотрудничаю с НАСА, Роскосмос, Газпром, РЖД, Интер РАО ЕЭС, Роснано и др. (конкретно уточняйте у самой организации) ©.