Краткая теория
Механические
колебания частиц и волны в упругой среде
с частотами свыше 20 кГц называются
ультразвуковыми.
Верхний предел ультразвуковых частот
определяется межмолекулярными
расстояниями он зависит от агрегатного
состояния вещества и примерно равен
109
– 1010
Гц.
Источником
ультразвуковых волн может быть твердое
тело, находящееся в колебательном
движении с соответствующей частотой.
Для получения ультразвука частотой в
несколько десятков килогерц обычно
используется явление магнитострикции
, которое заключается в том, что под
действием переменного магнитного поля
несколько изменяется длина расположенного
вдоль поля стержня из ферромагнитного
материала. Это периодическое удлинение
и укорочение стержня приводит в
колебательное движение прилежащие к
концам стержня частицы среды, в которой
образуется ультразвуковая волна. В
медицине для целей терапии применяется
ультразвук относительно высокой частоты
порядка 800-3000 кГц, который получается с
помощью так называемого обратного
пьезоэлектрического эффекта. Обратный
пьезоэлектрический эффект состоит в
том, что во многих кристаллах (кварц,
сегнетова соль, титанат бария и др.) под
действием электрического поля происходит
некоторое взаимное смещение полярных
групп атомов, составляющих основную
структуру вещества, что вызывает
соответствующее изменение размеров
кристаллов.
Если к торцевым
поверхностям пластинки, вырезанной
определенным образом из кристалла
кварца, с помощью электродов приложить
переменное электрическое напряжение,
то толщина пластинки будет поочередно
уменьшаться и увеличиваться с частотой
приложенного напряжения.
При уменьшении
толщины пластинки в прилегающих слоях
окружающей среды образуется разряжение,
а при увеличении – сгущение частиц среды.
Таким образом, в
результате периодического изменения
толщины пластинки, называемой
пьезоэлектрическим преобразователем,
в среде возникает ультразвуковая волна,
распространяющаяся в направлении,
перпендикулярном поверхности пластинки
(Рис.1).
Ультразвуковые
волны подчиняются тем же законом, что
и звуковые волны. В связи с более высокой
частотой и соответственно меньшей
длиной волны ультразвуковые волны легче
фокусируются и сильнее поглощаются
средой, чем звуковые.
Биофизическое
обоснование методов ультразвуковой
терапии.
В звуковых и ультразвуковых
волнах колебания частиц происходят в
том же направлении, что и распространение
волны. Такие волны, называемые продольными,
представляют собой чередующиеся участки
сгущения и разрежения вещества,
перемещающиеся в направлении
распространения волны. В твердых
веществах могут образовываться, кроме
продольных , также и поперечные звуковые
или ультразвуковые волны.
Рис.1 Схема
образования ультразвуковой волны
Расстояние между двумя
ближайшими точками волны, колеблющимися
в одной фазе (например, между центрами
двух соседних участков сгущения или
разрежения), называется длиной стоячей
волны. Между частотой ультразвуковых
колебаний n
и длиной волны l
существует зависимость
,
гдеV
– скорость распространения волны в
данной среде. Скорость распространения
зависит от упругих свойств и плотности
среды; в жидкостях она выше, чем в газах,
а в твердых телах выше, чем в жидкостях.
В воздухе
ультразвуковые волны распространяются
со скоростью около 330 м/с. Скорость
распространения ультразвука в различных
мягких тканях организма находится в
пределах 1445 – 1600 м/с, не отличаясь более,
чем на 10 % от скорости распространения
в воде (около 1500 м/с).
В костной ткани
скорость распространения выше – около
3370 м/с. Таким образом, при наиболее часто
используемой в ультразвуковой терапии
частоте 880 кГц длина волны в воде и мягких
тканях тела имеет величину порядка 1,6
– 1,8 мм.
Для создания и
поддержания ультразвуковой волны
требуется постоянная передача в среду
энергии источника колебаний. Эта энергия
в процессе колебания частиц среды около
положения равновесия передается от
одной частицы другой так, что в
ультразвуковой волне происходит передача
энергии без переноса самого вещества.
Количество энергии,
переносимое за 1 с через площадку 1 м2
, перпендикулярную направлению
распространения волны, называется
ИНТЕНСИВНОСТЬЮ
УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ.
Поскольку величина энергии за 1с есть
мощность, то интенсивность равна мощности
колебаний, приходящейся на 1м2(Вт/
м2).
Происходящие в
ультразвуковой волне колебательные
движения частиц вещества характеризуются
очень малой амплитудой смещения и
чрезвычайно большими ускорениями. Так,
например, при частоте 880 кГц частицы
тканей тела, в которых распространяется
волна с интенсивностью 2 Вт/см2
(максимальная интенсивность, используемая
при ультразвуковой терапии) , колеблются
с амплитудой порядка 3,5 10-6
см. Максимальное ускорение достигает
при этом 90 106
см/с2,
что превышает величину ускорения
свободного падения тел почти в 100 тыс.
раз.
На колеблющиеся
частицы вещества действуют значительные
величины переменного (акустического)
давления. Так, например, при терапевтическом
применении ультразвука с вышеуказанными
параметрами амплитуда переменного
давления достигает 2,7 атм.
Огромные ускорения
и значительные давления, испытываемые
частицами среды при ультразвуковых
колебаниях, определяют в значительной
степени действие ультразвука (в том
числе и лечебное) на ткани организма.
При распространении
ультразвуковой волны происходят потери
энергии на нагрев частиц среды.
Интенсивность ультразвука уменьшается
при этом по экспоненциальному закону.
Для характеристики этого процесса
используют понятия «глубина проникновения».
Глубина проникновения равна расстоянию
до поверхности, на которой интенсивность
ультразвуковой волны уменьшилась в е
раз (е=2,73
– основание натуральных логарифмов).
Поглощение энергии увеличивается с
частотой колебаний, соответственно
уменьшается глубина проникновения. На
частоте 880 кГц глубина проникновения
ультразвуковой энергии в мышечные ткани
составляет около 5 см, в жировые ткани
– около 10 см, в кости – около 0,3 см. Малые
потери энергии в слоях жировой ткани
и, следовательно, незначительный их
нагрев при достаточном проникновении
энергии в мышцы обеспечивают хорошие
условия для терапевтического применения
ультразвука.
Вместе с тем,
распределение ультразвуковой энергии
между слоями тканей тела имеет характерную
особенность, заключающуюся в интенсивном
нагреве костных тканей. Это отличает
действие ультразвука от действия
электромагнитной волны и должно
учитываться при проведении процедуры
ультразвуковой терапии.
УЗ-колебания
находят широкое применение в диагностике
и терапии.
В терапии используются
такие свойства ультразвука, как
химическое, тепловое, бактерицидное и
т.д. При лечении ультразвуком наблюдается
болеутоляющее, рассасывающее,
противовоспалительное действие. При
действии УЗ на кожу увеличивается ее
проницаемость для лекарственных веществ
и т.д. Широкое применение находит
УЗ-диагностика при анализе динамических
процессов в организме.
Воздействие
ультразвуком на ткани организма
осуществляется обычно непосредственно
путем приложения поверхности
ультразвукового излучателя к области,
подлежащей воздействию. Такой способ
применяется при воздействии на
относительно плоские поверхности мягких
тканей тела и может быть как неподвижным
(стабильным), так и подвижным (лабильным),
при котором ультразвуковую головку
плавно, массирующим движением перемещают
по всей поверхности области воздействия.
Биофизическое
обоснование методов ультразвуковой
диагностики
Применение
ультразвука в диагностике основано на
повышенной разрешающей ( по поглощению
) способности при визуализации тканей
близких по плотности по сравнению с
рентгеновским излучением и некоторых
особенностях его распространения. Кроме
того,
действие ультразвука малой интенсивности
совершенно безвредно для организма,
тогда как действие рентгеновских лучей
далеко не безвредно.
Вследствие малой
длины волны ультразвук излучается в
виде узких направленных пучков. Скорость
распространения и поглощения ультразвука
зависит от свойств среды. Поглощение
ультразвука в среде происходит по закону
где
I0
– интенсивность
ультразвука, падающего на слой вещества,
I
– интенсивность ультразвука, прошедшего
слой вещества толщиной
l
; m–
коэффициент поглощения.
Ультразвук очень
сильно поглощается газами и во много
раз слабее – жидкостями. Так коэффициент
поглощения ультразвука в воздухе
примерно в 1 000 раз больше, чем в воде.
Поэтому контакт между ультразвуковым
излучателем и облучаемым объектом не
должен содержать воздушной прослойки.
Поглощение ультразвука в данной среде
зависит и от частоты: при повышении
частоты коэффициент поглощения
увеличивается.
Отражение
ультразвукового пучка от границы раздела
двух сред, происходит по законам
геометрической оптики, зависит от
физических свойств среды и характеризуется
коэффициентом отражения
a,
который
определяют из соотношения
a
=,
где Z1
и Z2
– акустические
сопротивления первой и второй среды
соответственно:
Z
= rV,
где r
– плотность среды,
V
– скорость распространения ультразвука
в данной среде.
Свойства УЗ-волн
отражаться от границы неоднородности
сред лежит в основе локационного
диагностического метода. Данный метод
основан на использовании одиночных
ультразвуковых импульсов, направляемых
в исследуемый объект, и регистрации
времени их возвращения и амплитуды
после возвращения от неоднородностей
исследуемого объекта, Зная время,
прошедшее от посылки импульса до его
возвращения, и скорость распространения
ультразвука в данной среде, можно
определить расстояние до неоднородностей.
Метод ультразвуковой
локации применяется для определения
опухолей и отеков головного мозга
(эхоэнцефалография), положения и размеров
сердца (эхокардиография) и т.д.
Соседние файлы в папке Metodichka_LAB-ChAST_-1
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Ультразвук. Основы теории распространения ультразвуковых волн
Ультразвук — механические колебания, находящиеся выше области частот, слышимых человеческим ухом (обычно 20 кГц). Ультразвуковые колебания перемещаются в форме волны, подобно распространению света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвук требует упругую среду такую как газ, жидкость или твердое тело.
К примеру Ультразвуковые Анализаторы Качества Молока (УАКМ) ←
Основные параметры ультразвука
Основными параметрами волны являются длина волны и период. Число циклов, совершенных за одну секунду, называется частотой и измеряется в Герцах (Гц). Время, требуемое, чтобы совершить полный цикл, называется периодом и измеряется в секундах. Взаимосвязь между частотой и периодом волны приведено.
Скорость звука в идеальном упругом материале при заданной температуре и давлении является постоянной. Связь между скоростью ультразвука и длиной волны следующая.
Дисперсия звука — зависимость фазовой скорости монохроматических звуковых волн от их частоты. Дисперсия скорости звука может быть обусловлена как физическими свойствами среды, так и присутствием в ней посторонних включений и наличием границ тела, в котором звуковая волна распространяется.
Разновидности ультразвуковых волн
Большинство методов ультразвукового исследования использует либо продольные, либо поперечные волны. Также существуют и другие формы распространения ультразвука, включая поверхностные волны и волны Лэмба.
Продольные ультразвуковые волны — волны, направление распространения которых совпадает с направлением смещений и скоростей частиц среды.
Поперечные ультразвуковые волны — волны, распространяющиеся в направлении, перпендикулярном к плоскости, в которой лежат направления смещений и скоростей частиц тела, то же, что и сдвиговые волны.
Поверхностные (Рэлеевские) ультразвуковые волны имеют эллиптическое движение частиц и распространяются по поверхности материала. Их скорость приблизительно составляет 90% скорости распространения поперечной волны, а их проникновение вглубь материала равно примерно одной длине волны.
Волна Лэмба — упругая волна, распространяющиеся в твёрдой пластине (слое) со свободными границами, в которой колебательное смещение частиц происходит как в направлении распространения волны, так и перпендикулярно плоскости пластины. Лэмба волны представляют собой один из типов нормальных волн в упругом волноводе — в пластине со свободными границами. Т.к. эти волны должны удовлетворять не только уравнениям теории упругости, но и граничным условиям на поверхности пластины, картина движения в них и их свойства более сложны, чем у волн в неограниченных твёрдых телах.
Интенсивность и мощность ультразвука
Интенсивность звука (сила звука) — средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны, в единицу времени. Для периодического звука усреднение производится либо за промежуток времени большой по сравнению с периодом, либо за целое число периодов [2]. Интенсивность ультразвука — величина, которая выражает мощность акустического поля в точке.
В сферической бегущей волне интенсивность ультразвука обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0, т. е. потока звуковой энергии в среднем нет. Интенсивность ультразвука в гармонической плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. Поток звуковой энергии характеризуют так называемым вектором Умова — вектором плотности потока энергии звуковой волны, который можно представить как произведение интенсивности ультразвука на вектор волновой нормали, т. е. единичный вектор, перпендикулярный фронту волны. Если звуковое поле представляет собой суперпозицию гармонических волн различной частоты, то для вектора средней плотности потока звуковой энергии имеет место аддитивность составляющих.
Для излучателей, создающих плоскую волну, говорят об интенсивности излучения, понимая под этим удельную мощность излучателя, т. е. излучаемую мощность звука, отнесённую к единице площади излучающей поверхности.
Интенсивность звука измеряется в системе единиц СИ в Вт/м2. В ультразвуковой технике интервал изменения интенсивности ультразвука очень велик — от пороговых значений ~ 10−12 Вт/м2 до сотен кВт/м2 в фокусе ультразвуковых концентраторов.
Мощность звука — энергия, передаваемая звуковой волной через рассматриваемую поверхность в единицу времени. Различают мгновенное значение мощности ультразвука и среднее за период или за длительное время. Наибольший интерес представляет среднее значение мощности ультразвука, отнесённое к единице площади, т. н. средняя удельная мощность звука, или интенсивность звука [2].
Таблица 1 — Свойства некоторых распространенных материалов
Материал |
Плотность, кг/м3 |
Скорость продольной волны, м/c |
Скорость поперечной волны, м/c |
Акустический импеданс, 103 кг/(м2*с) |
Акрил |
1180 |
2670 |
– |
3,15 |
Воздух |
0,1 |
330 |
– |
0,33 |
Алюминий |
2700 |
6320 |
3130 |
17,064 |
Латунь |
8100 |
4430 |
2120 |
35,883 |
Медь |
8900 |
4700 |
2260 |
41,830 |
Стекло |
3600 |
4260 |
2560 |
15,336 |
Никель |
8800 |
5630 |
2960 |
49,544 |
Полиамид (нейлон) |
1100 |
2620 |
1080 |
2,882 |
Сталь (низколегированный сплав) |
7850 |
5940 |
3250 |
46,629 |
Титан |
4540 |
6230 |
3180 |
26,284 |
Вольфрам |
19 100 |
5460 |
2620 |
104,286 |
Вода (293К) |
1000 |
1480 |
– |
1,480 |
Затухание ультразвука
Одной из основных характеристик ультразвука является его затухание. Затухание ультразвука — это уменьшение амплитуды и, следовательно, интенсивности звуковой волны по мере ее распространения. Затухание ультразвука происходит из-за ряда причин. Основными из них являются:
убывание амплитуды волны с расстоянием от источника, обусловленное формой и волновыми размерами источника;рассеяние ультразвука на неоднородностях среды, в результате чего уменьшается поток энергии в первоначальном направлении распространения;поглощение ультразвука, т. е. необратимый переход энергии звуковой волны в другие формы, в частности в тепло.
Первая из этих причин связана с тем, что по мере распространения волны от точечного или сферического источника энергия, излучаемая источником, распределяется на все увеличивающуюся поверхность волнового фронта и соответственно уменьшается поток энергии через единицу поверхности, т. е. интенсивность звука. Для сферической волны, волновая поверхность которой растёт с расстоянием r от источника как r2, амплитуда волны убывает пропорционально r -1, а для цилиндрической волны — пропорционально r -½.
Рассеяние ультразвука происходит из-за резкого изменения свойств среды — её плотности и модулей упругости — на границе неоднородностей, размеры которых сравнимы с длиной волны. В газах это могут быть, например, жидкие капли, в водной среде — пузырьки воздуха, в твёрдых телах — различные инородные включения или отдельные кристаллиты в поликристаллах и т. п. Особый интерес представляет рассеяние на хаотически распределённых в пространстве неоднородностях.
Поглощение ультразвука может быть обусловлено различными механизмами. Большую роль играет вязкость и теплопроводность среды, взаимодействие волны с различными молекулярными процессами вещества, с тепловыми колебаниями кристаллической решётки и др.
3атухание звука, обусловленное рассеянием и поглощением, описывается экспоненциальным законом убывания амплитуды с расстоянием, т. е. амплитуда пропорциональна e-δr, а интенсивность — e-2δr в отличие от степенного закона убывания амплитуды при расхождении волны, где δ – коэффициент затухания звука.
Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м).
Для плоской волны коэффициент затухания по амплитуде с расстоянием определяется по формуле.
Коэффициент затухания от времени определяется.
Тогда связь между единицами измерения (дБ/м) и (1/м)
Коэффициент затухания выражается либо в децибелах на метр (дб/м), либо в неперах на метр (Нп/м) или что тоже самое м-1. Затухание в 1 Нп/м означает, что на расстоянии 1 м амплитуда волны уменьшается в e раз (e =2,71 — основание натуральных логарифмов или число непера).
1 Нп/м = 8,68 дБ/м
Отражение ультразвука от границы раздела сред
При падении звуковой волны на границу раздела сред, часть энергии будет отражаться в первую среду, а остальная энергия будет проходить во вторую среду. Соотношение между отраженной энергией и энергией, проходящей во вторую среду, определяется волновыми сопротивлениями первой и второй среды. При отсутствии дисперсии скорости звука волновое сопротивление не зависит от формы волны и выражается формулой.
Коэффициенты отражения и прохождения будут определяться следующим образом
Стоит отметить также, что если вторая среда акустически более «мягкая», т. е. Z1>Z2, то при отражении фаза волны изменяется на 180˚ [1].
Коэффициент пропускания энергии τ из одной среды в другую определяется отношением интенсивности волны, проходящей во вторую среду, к интенсивности падающей волны
Интерференция и дифракция ультразвуковых волн
Интерференция звука — неравномерность пространственного распределения амплитуды результирующей звуковой волны в зависимости от соотношения между фазами волн, складывающихся в той или иной точке пространства. При сложении гармонических волн одинаковой частоты результирующее пространственное распределение амплитуд образует не зависящую от времени интерференционную картину, которая соответствует изменению разности фаз составляющих волн при переходе от точки к точке. Для двух интерферирующих волн эта картина на плоскости имеет вид чередующихся полос усиления и ослабления амплитуды величины, характеризующей звуковое поле (например, звукового давления). Для двух плоских волн полосы прямолинейны с амплитудой, меняющейся поперёк полос соответственно изменению разности фаз. Важный частный случай интерференции — сложение плоской волны с её отражением от плоской границы; при этом образуется стоячая волна с плоскостями узлов и пучностей, расположенными параллельно границе.
Дифракция звука — отклонение поведения звука от законов геометрической акустики, обусловленное волновой природой звука. Результат дифракции звука — расхождение ультразвуковых пучков при удалении от излучателя или после прохождения через отверстие в экране, загибание звуковых волн в область тени позади препятствий, больших по сравнению с длиной волны, отсутствие тени позади препятствий, малых по сравнению с длиной волны, и т. п. Звуковые поля, создаваемые дифракцией исходной волны на препятствиях, помещённых в среду, на неоднородностях самой среды, а также на неровностях и неоднородностях границ среды, называются рассеянными полями. Для объектов, на которых происходит дифракция звука, больших по сравнению с длиной волны λ, степень отклонений от геометрической картины зависит от значения волнового параметра
Излучатели ультразвука
Излучатели ультразвука — устройства, применяемые для возбуждения ультразвуковых колебаний и волн в газообразных, жидких и твердых средах. Излучатели ультразвука преобразуют в энергию звукового поля энергию какого-либо другого вида.
Наибольшее распространение в качестве излучателей ультразвука получили электроакустические преобразователи. В подавляющем большинстве излучателей ультразвука этого типа, а именно в пьезоэлектрических преобразователях, магнитострикционных преобразователях, электродинамических излучателях, электромагнитных и электростатических излучателях, электрическая энергия преобразуется в энергию колебаний какого-либо твердого тела (излучающей пластинки, стержня, диафрагмы и т. п.), которое и излучает в окружающую среду акустические волны. Все перечисленные преобразователи, как правило, линейны, и, следовательно, колебания излучающей системы воспроизводят по форме возбуждающий электрический сигнал; лишь при очень больших амплитудах колебаний вблизи верхней границы динамического диапазона излучателя ультразвука могут возникнуть нелинейные искажения.
В преобразователях, предназначенных для излучения монохроматической волны, используется явление резонанса: они работают на одном из собственных колебаний механической колебательной системы, на частоту которого настраивается генератор электрических колебаний, возбуждающий преобразователь. Электроакустические преобразователи, не обладающие твердотельной излучающей системой, применяются в качестве излучателей ультразвука сравнительно редко; к ним относятся, например, излучатели ультразвука, основанные на электрическом разряде в жидкости или на электрострикции жидкости
Характеристики излучателя ультразвука
К основным характеристикам излучателей ультразвука относятся их частотный спектр, излучаемая мощность звука, направленность излучения. В случае моночастотного излучения основными характеристиками являются рабочая частота излучателя ультразвука и его частотная полоса, границы которой определяются падением излучаемой мощности в два раза по сравнению с её значением на частоте максимального излучения. Для резонансных электроакустических преобразователей рабочей частотой является собственная частота f0 преобразователя, а ширина полосы Δf определяется его добротностью Q.
Излучатели ультразвука (электроакустические преобразователи) характеризуются чувствительностью, электроакустическим коэффициентом полезного действия и собственным электрическим импедансом.
Чувствительность излучателя ультразвука — отношение звукового давления в максимуме характеристики направленности на определённом расстоянии от излучателя (чаще всего на расстоянии 1 м) к электрическому напряжению на нём или к протекающему в нём току. Эта характеристика применяется к излучателям ультразвука, используемым в системах звуковой сигнализации, в гидролокации и в других подобных устройствах. Для излучателей технологического назначения, применяемых, например, при ультразвуковых очистке, коагуляции, воздействии на химические процессы, основной характеристикой является мощность. Наряду с общей излучаемой мощностью, оцениваемой в Вт, излучатели ультразвука характеризуют удельной мощностью, т. е. средней мощностью, приходящейся на единицу площади излучающей поверхности, или усреднённой интенсивностью излучения в ближнем поле, оцениваемой в Вт/м2.
Эффективность электроакустических преобразователей, излучающих акустическую энергию в озвучиваемую среду, характеризуют величиной их электроакустического коэффициента полезного действия, представляющего собой отношение излучаемой акустической мощности к затрачиваемой электрической. В акустоэлектронике для оценки эффективности излучателей ультразвука используют так называемый коэффициент электрических потерь, равный отношению (в дБ) электрической мощности к акустической. Эффективность ультразвуковых инструментов, используемых при ультразвуковой сварке, механической обработке и тому подобное, характеризуют так называемым коэффициентом эффективности, представляющим собой отношение квадрата амплитуды колебательного смещения на рабочем конце концентратора к электрической мощности, потребляемой преобразователем. Иногда для характеристики преобразования энергии в излучателях ультразвука используют эффективный коэффициент электромеханической связи.
Звуковое поле излучателя
Звуковое поле преобразователя делят на две зоны: ближнюю зону и дальнюю зону. Ближняя зона — это район прямо перед преобразователем, где амплитуда эха проходит через серию максимумов и минимумов. Ближняя зона заканчивается на последнем максимуме, который располагается на расстоянии N от преобразователя. Известно, что расположение последнего максимума является естественным фокусом преобразователя. Дальняя зона — это район находящийся за N, где давление звукового поля постепенно уменьшается до нуля.
Характеристики звукового поля определяются конструкцией ультразвукового преобразователя. Следовательно, от его формы зависит распространение звука в исследуемой области и чувствительность датчика.
Применение ультразвука
Многообразные применения ультразвука, при которых используются различные его особенности, можно условно разбить на три направления. Первое связано с получением информации посредством ультразвуковых волн, второе — с активным воздействием на вещество и третье — с обработкой и передачей сигналов (направления перечислены в порядке их исторического становления). При каждом конкретном применении используется ультразвук определённого частотного диапазона.
Получение информации с помощью ультразвуковых методов. Ультразвуковые методы широко используются в научных исследованиях для изучения свойств и строения веществ, для выяснения проходящих в них процессов на макро- и микроуровнях. Эти методы основаны главным образом на зависимости скорости распространения и затухания акустических волн от свойств веществ и от процессов, в них происходящих.
Воздействие ультразвука на вещество. Активное воздействие ультразвука на вещество, приводящее к необратимым изменениям в нём, или воздействие ультразвука на физические процессы, влияющее на их ход, обусловлено в большинстве случаев нелинейными эффектами в звуковом поле. Такое воздействие широко используется в промышленной технологии; при этом решаемые с помощью ультразвуковой технологии задачи, а также и сам механизм ультразвукового воздействия различны для разных сред.
Обработка и передача сигналов. Ультразвуковые устройства применяются для преобразования и аналоговой обработки электрических сигналов в различных отраслях радиоэлектроники, например в радиолокации, связи, вычислительной технике, и для управления световыми сигналами в оптике и оптоэлектронике. В устройствах для управления электрическими сигналами используются следующие особенности ультразвука: малая по сравнению с электромагнитными волнами скорость распространения; малое поглощение в кристаллах и соответственно высокая добротность резонаторов
Сегодня сложно представить медицинскую диагностику без такого метода, как ультразвуковое исследование. Появившись в середине прошлого века, УЗИ-сканеры произвели настоящую революцию в медицине. Ультразвуковая диагностика продолжает активно развиваться. На смену обычной двухмерной картинке приходят новые технологии. Недавно первый отечественный УЗИ-сканер экспертного класса производства «Калугаприбор» концерна «Автоматика» представил холдинг «Швабе», отвечающий за маркетинговую стратегию и продажи этого оборудования.
О том, что такое ультразвук, как появились УЗИ-сканеры и о новейшей технологии 5D в ультразвуковом исследовании — в нашем материале.
На ультразвуковой волне
Многие помнят определение звука из школьного учебника по физике: «Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом». Таким образом, диапазон звуковых волн лежит в пределах от 20 Гц до 20 кГц. Звуки именно такой частоты способен слышать человек. Волны с частотой менее 20 Гц называются инфразвуком, а с частотой выше 20 кГц — ультразвуком.
В то время как человеку инфразвук и ультразвук недоступны, многие живые существа вполне нормально общаются в этих частотах. Например, слон различает звук частотой от 1 Гц, а в верхнем пределе слышимости лидируют дельфины — максимум слухового восприятия у них доходит до 150 кГц. Кстати, ультразвук вполне способны уловить собаки и кошки. Собака может слышать звук до 70 кГц, а верхний порог звукового диапазона у кошек равен 30 Гц.
Если для некоторых животных ультразвук — обычный способ общения, то людям о наличии в природе «невидимых» звуковых волн лишь приходилось догадываться. Опыты в этой сфере проводил еще Леонардо да Винчи в XV веке. Но открыл ультразвук в 1794 году итальянец Ладзаро Спалланцани, доказав, что летучая мышь с заткнутыми ушами перестает ориентироваться в пространстве.
УЗИ: физические основы
В XIX веке ультразвук произвел настоящий бум в научной среде, стали проводиться первые научные опыты. Например, в 1822 году, погрузив в Женевское озеро подводный колокол, удалось вычислить скорость звука в воде, что предопределило рождение гидроакустики.
Ближе к концу века, в 1890 году, учеными Пьером и Жаком Кюри было открыто физическое явление, которое вошло в основу ультразвукового исследования. Братья Кюри обнаружили пьезоэлектрический эффект. Заключается он в том, что при механической деформации некоторых кристаллов между их поверхностями возникает электрическое напряжение.
Пьер Кюри и кварцевый пьезоэлектрометр
На основе таких пьезокерамических материалов и создается главный компонент любого УЗИ-оборудования — преобразователь, или датчик, ультразвука. На пьезоэлементы подается ток, который преобразуется в механические колебания с излучением ультразвуковых волн. Пучок ультразвуковых волн распространяется в тканях организма, часть его отражается и возвращается обратно к пьезоэлементу. Основываясь на времени прохождения волны, оценивается расстояние.
Ультразвук в медицине: от лечения артрита до диагностики
В медицине ультразвук вначале использовали как метод лечения артритов, язвенной болезни желудка, астмы. Было это в начале 30-х годов прошлого века. Считалось, что ультразвук обладает противовоспалительным, анальгезирующим, спазмолитическим действием, также усиливает проницаемость кожи. Кстати, сегодня на этом основан фонофорез — метод физиотерапии, когда вместо обычного геля для УЗИ наносится лечебное вещество, а ультразвук помогает препарату глубже проникать в ткани.
Но свое основное применение в области медицины ультразвук нашел как метод диагностики. Основателем УЗИ-диагностики считается австрийский невролог, психиатр Дьюссик. В 1947 году он рассмотрел опухоль мозга, учитывая интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента.
Настоящий прорыв в развитии ультразвуковой диагностики произошел в 1949 году, когда в США был создан первый аппарат для медицинского сканирования. Это устройство мало чем напоминало современные УЗИ-сканеры. Оно представляло собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости — сомаскоп. Но начало было положено. УЗИ-сканеры совершенствовались очень стремительно, и к середине 60-х годов они стали приобретать привычный вид с мануальными датчиками.
Благодаря развитию микропроцессорной технологии в течение 1980−1990-х годов качество УЗИ намного улучшилось. В это время ультразвуковую диагностику стали активно применять в различных областях медицины, оценив ее безвредность по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией. Особо широкое применение ультразвук нашел в акушерстве и гинекологии. Уже в конце 1990-х годов во многих странах УЗИ стало стандартным исследованием, с помощью которого определяли срок беременности, выявляли пороки развития плода.
Взгляд изнутри: современные технологии в УЗИ
Сегодня отечественное здравоохранение закупает у зарубежных поставщиков порядка 3 тысяч УЗИ-сканеров в год. Дело в том, что до последнего времени такие устройства не выпускались серийно в России.
Эксперименты по применению ультразвука проводились и у нас в стране. В 1954 году в институте акустики Академии наук СССР даже появилось специализированное отделение, а в 1960-е годы был налажен выпуск отечественных УЗИ-сканеров. Но все они так и остались в статусе экспериментальных, не получили массового применения на практике, а к 1990-м годам и вовсе были замещены импортными аналогами.
В прошлом году Ростех в рамках программы импортозамещения наладил серийное производство российских УЗИ-сканеров — на мощностях, входящего в концерн «Автоматика». Они относятся к среднему и высокому классу, в них применяются новейшие технологии, такие как 3D/4D-изображение, а также эластография, то есть УЗИ с применением дополнительного фактора — давления, помогающего по характеру сокращения тканей определять патологические изменения.
Методы ультразвуковой диагностики продолжают активно развиваться. В этом году к производственной линейке Ростех добавил аппараты экспертного класса. Госкорпорация представила новинку на форуме в рамках экспозиции холдинга, который реализует маркетинговую стратегию и осуществляет продажи изделия. Это первый отечественный УЗИ-сканер экспертного класса.
Что означает определение «экспертный» в классификации УЗИ-сканеров? Основной критерий — это разрешающая способность. Здесь используются высокоплотные датчики, способные различать мельчайшие детали структур. Как упоминалось выше, каждый преобразователь имеет определенный набор пьезоэлементов. В аппаратах недорогого класса плотность этих элементов невысока. Чем больше плотность, тем более точной и достоверной будет диагностика.
Второй, не менее важный критерий — какой набор программ заложен в данном оборудовании. Для того чтобы обеспечивать высокий уровень исследования, как правило, применяют очень дорогие пакеты программного обеспечения. Это позволяет визуализировать наиболее тонкие детали, изменения структур органов, сосудов и тканей. Кстати, в программное обеспечение — российского производства.
В новом изделии не только улучшено качество получаемого изображения, но и внедрены автоматизированные методы его обработки и анализа. Так, визуальную оценку плода осуществляет программа реконструкции полупрозрачного 3D УЗИ, которая за счет усиления визуализации одновременно наружных и внутренних структур в одном реконструированном трехмерном изображении позволяет увеличить информативность и диагностическую достоверность исследования за счет повышения контрастности и подсветки внутренних структур дополняет объемное изображение морфологической информацией об объекте исследования, повышая точность диагностики. Среди других технологий новинки — программа автоматического анализа образований молочной железы. Еще одна функция изделия — фантастическая 5D Heart Color, которая реконструирует девять проекций сердца плода с одновременным отображением кровотока. Полученные данные позволяют наиболее детально оценить сердце на предмет врожденных патологий.
Таким образом, в течение нескольких десятилетий применение УЗИ в медицине претерпело огромные изменения, особенно в акушерстве: от простого измерения размеров плода до детальной оценки его кровотока и внутренних органов. То, что было технически невозможно еще совсем недавно, сегодня превращается в привычную составляющую рутинного ультразвукового исследования.
Ультразвуковые датчики. Особенности применения и выбора
При выборе ультразвукового датчика необходимо учитывать особенности окружающей среды и характер ее влияния на измерения и работоспособность измерительных приборов.
Введение.
Ультразвуковые датчики широко используются в качестве датчиков приближения (proximity), для дистанционного обнаружении различных объектов, измерения расстояний. Как правило, датчики действуют путем посылки короткого цуга ультразвуковых волн в направлении объекта обнаружения, который, отразившись от поверхности объекта, возвращается обратно. Затем, электронная схема производит расчет времени между моментом посылки сигнала и моментом приема отраженного эха. Расстояние является производной величиной от времени и скорости звука в окружающей среде.
В настоящее время на рынке представлен широкий выбор ультразвуковых датчиков в различных конструктивных исполнениях, действующих в различных акустических частотах. Палитра поведения различных акустических частот в схожих условиях окружающей среды не является одинаковой. В большинстве случаев не составит труда, руководствуясь характеристиками, данными производителем, выбрать подходящий датчик для своей задачи. Но в случаях, когда в работе устройств появляются сбои или возникают существенные ошибки в измерениях, необходимо произвести более тщательную оценку факторов влияния, таких как:
1. Изменения скорости звука в зависимости от температуры и свойств окружающей среды (в основном, воздуха), — как данные изменения влияют на точность измерений и разрешающую способность датчиков;
2. Изменения длины звуковой волны в зависимости от скорости и частоты звука, — как данные изменения влияют на точность измерений, разрешающую способность, минимальный размер объекта, минимальное и максимальное расстояние до объекта;
3. Изменения величины затухания в зависимости от частоты звука и влажности, — как данные изменения влияют на максимальное расстояние чувствительности датчиков в воздухе;
4. Изменения уровня внешних шумов в зависимости от частоты, — как данные изменения влияют на максимальное расстояние чувствительности и размеры объекта обнаружения;
5. Изменения амплитуды отраженного эха в зависимости от расстояния до объекта, размеров и геометрии поверхности, — как данные изменения влияют на расстояние чувствительности.
Ультразвуковые датчики. Особенности применения и выбора.
2. Ультразвук. Основные свойства.
Ультразвук — это звуковые колебания, не воспринимаемые человеческим слухом, частотой свыше 20кГц. Роль микрофонов и громкоговорителей в сфере ультразвука выполняют устройства, называемые трансдукторами. Большинство ультразвуковых датчиков используют один трансдуктор как для передачи, так и для приема сигналов. В датчиках приближения и измерения расстояния, предназначенных для автоматизации технологических процессов в качестве трансдукторов применяются пьезоэлектрические преобразователи (далее — пьезоэлементы) с рабочей частотой от 40 до 400кГц.
3. Скорость звука в воздухе. Зависимость от температуры.
Ультразвуковые датчики действуют по принципу эхолокации — расстояние до объекта рассчитывается на основании измерения промежутка времени между моментами посылки и приема звукового импульса и скорости звука в среде.
Для газов формула скорости звука © выглядит так:
c=√(γ k T/ m)= √(γ R T/ M)= √(γ R (t+273,15)/M), (1) где γ — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных; k — постоянная Больцмана; R — универсальная газовая постоянная; T — абсолютная температура в кельвинах; t — температура в градусах Цельсия; m — молекулярная масса; M — молярная масса. По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул и в приближении постоянства показателя адиабаты пропорциональна квадратному корню из абсолютной температуры.
Таблица 1.
Скорость звука в газах (0° С; 101 325 Па),
м/с
Азот 334
Аммиак 415
Ацетилен 327
Водород 1284
Воздух 331
Гелий 965
Кислород 316
Метан 430
Угарный газ 338
Углекислый газ 259
Хлор 206
Формула скорости звука в воздухе при давлении ~1атм:
c (t)=331√(1+t/273), (2)
где t — температура в градусах Цельсия.
Из зависимости видно, что скорость распространения звуковых волн снижается с понижением температуры воздуха. Большинство производителей в спецификации к ультразвуковым датчикам указывают коэффициент температурной погрешности, выраженный в % на один градус температуры. Тогда, с учетом L=ct, (3) расстояние чувствительности может быть откорректировано.
Датчики для высоких, низких температур или для расширенных температурных диапазонов оборудованы автоматической температурной коррекцией.
4. Длина звуковой волны.
Длина звуковой волны определяется из соотношения:
λ=c/f, (4)
где λ – длина волны; c — скорость звука; f — частота.
В случае, когда размер препятствий и неоднородностей в среде заметно превышает длину волны звука, распространение звука происходит по законам геометрической акустики. Если же препятствия сравнимы с длиной волны (или меньше ее), существенную роль начинает играть дифракция волн, с которой связано и рассеяние звука. Данные явления следует учитывать при выборе датчика особенно для обнаружения мелких объектов и неровностей. Например, длина волны при скорости звука 344 м/с (20оС, 1атм) для частоты:
40кГц — 8,6 мм.;
180кГц — 1,9 мм.;
400кГц — 0,86 мм.
Эквивалентна длине волны и разрешающая способность датчиков, указываемая многими производителями в спецификациях на изделия.
5. Затухание. Зависимость от частоты звука и влажности.
При распространении звука в механической среде, амплитуда звукового давления снижается в результате дифракции волн, рассеяния, поглощения, необратимого превращения энергии в другие формы. Оценка объемов абсорбционных потерь и затухания используется в определении максимальной дальности действия ультразвукового датчика. Коэффициент затухания (дБ/м) увеличивается с ростом частоты ультразвука, в то же время, для любой отдельно взятой частоты существует зависимость коэффициента затухания от влажности (воздуха). Степень влажности, при которой происходит максимальное затухание, различна для разных частот. Например, для частоты свыше 125кГц максимальное затухание происходит при относительной влажности воздуха (ОВВ) 100%, для частоты 40кГц максимальное затухание происходит при ОВВ 50%. Определить максимальный коэффициент затухания для частот от 50 до 400кГц можно, воспользовавшись оценочной формулой:
a (f)=0,066f-1,8, (5)
где a (f) — коэффициент затухания (дБ/м); f — частота ультразвука (кГц) при 20оС, 1атм, ОВВ 80%.
На графике приведены экспериментальные кривые для разных частот, показывающие зависимость коэффициента затухания от влажности воздуха.
6. Внешние шумы.
Чем выше частота звука, тем меньше влияние внешних шумов. Это связано с тем, что в окружающей среде присутствует незначительное количество высокочастотных шумов, а низкочастотные шумы быстро рассеиваются в атмосфере.
7. Влияние частоты, расстояния и среды распространения звука на амплитуду звукового давления.
Ультразвуковой датчик посылает звуковой сигнал короткими цугами. Различные датчики производят различное звуковое давление (SPL — sound pressure level). В акустике, в силу широкого динамического диапазона, звуковое давление обычно выражается в децибелах. З. д., являясь совершенно относительной величиной, отвечает соотношению: SPL=20 log (P/P0), (6) где P — фактическое давление в микропаскалях (μПа); P0 — опорное давление, принимается равным 1 μПа — минимальному уровню, воспринимаемому на расстоянии R0=30см. от датчика. Соответственно, R0 принимается как опорное расстояние.
В процессе распространения, звуковой луч радиально расширяется по мере удаления от излучателя, а амплитуда звукового давления P снижается из-за затухания и рассеивания. Тогда SPL на расстоянии R от излучателя выражается формулой:
SPL®=SPL (R0)-20 Log (R/ R0)-a (f)R, (7)
где R — фактическое расстояние от датчика; R0 — опорное расстояние; a (f) — коэффициент затухания сигнала с частотой f.
8. Амплитуда отраженного эха от плоской поверхности для различных ультразвуковых частот.
Рассмотренная в предыдущем параграфе формула (7) звукового давления справедлива для прямолинейного распространения звука в среде от одной точки к другой и может применяться для датчиков с разделенным излучателем и приемником (THRU-BEAM). Для датчиков с диффузным отражением луча от объекта (с единственным элементом, исполняющим роль излучателя и приемника), действующим по принципу эхолокации свойственны потери при отражении от среды другой (большей) плотности. Отражение звука — явление, возникающее при падении звуковой волны на границу раздела двух упругих сред и состоящее в образовании волн, распространяющихся от границы раздела в обратном направлении. Количество отраженного звука зависит от соотношения акустического сопротивления сред (Z).
Т.к. акустическое сопротивление воздуха в 1000 раз превышает сопротивление воды, а более твердых материалов — в несколько тысяч раз, ультразвуковые волны на границе раздела отражаются почти полностью. В случае прямолинейного отражения луча от плоской поверхности можно пренебречь взаимодействием звука с твердым телом и воспользоваться формулой Френеля:
V=(Z2-Z1)/(Z2+Z1)
где V — коэффициент отражения; Z2 и Z1 — акустическое сопротивление материалов.
Для границы воздух/вода коэффициент отражения V равен 0,99.
Тогда, звуковое давление отраженного эха можно выразить формулой:
SPL (2R)=V (SPL (R0)-20 Log (2R/ R0)-2a (f)R), (9)
где R — расстояние от датчика до объекта; R0 — опорное расстояние; a (f) — коэффициент затухания сигнала с частотой f; V — коэффициент отражения (~1).
Звуковая волна – период, длина, частота и скорость распространения
Калькуляторы онлайн перевода длины звуковой, инфразвуковой или ультразвуковой
волны в частоту и наоборот. Таблица соответствия
нот полного звукоряда частотам.
Звуковая волна – это механические колебания, которые в результате колебаний молекул вещества распространяются в какой-либо
среде (в газе, жидкости или твёрдом теле) и, достигнув органов слуха человека, воспринимаются им как звук. Источник, создающий
возмущение (колебания воздуха), называется источником звука.
Как уже было сказано, для распространения звука необходима какая-либо упругая среда. Поэтому в вакууме ори, не ори – тебя никто не
услышит, по причине того, что звуковые волны распространяться не смогут, так как там нечему колебаться.., да и слушать там, по большому
счёту, тоже некому.
Так же, как и в случае с электромагнитными волнами, соотношение, связывающее длину звуковой волны с частотой колебаний,
в общем случае выглядит следующим образом:
λ (м) = V (м/сек) / F (Гц), где V (м/сек) – это скорость распространения
звука в среде.
Период колебаний также не претерпел никаких изменений и по-прежнему равен:
T(сек) = 1 / F (Гц) = λ (м) / V (м/сек).
Частота колебаний звукового сигнала F (Гц) – это параметр стабильный, практически не зависящий от среды распространения.
А вот скорость звука V (м/сек), а соответственно и длина звуковой волны – это величины, которые зависят
не только от плотности вещества, но и от его упругости, а в случае с жидкостями и газами ещё – и от температуры, и атмосферного
давления.
Зависимость скорости звуковой волны от свойств упругой среды легко прослеживается по следующей формуле:
V (м/сек) = √Eупр (паскаль) / ρ (кг/м3)
,
где Eупр представляет собой модуль объёмной упругости среды, а ρ – плотность среды.
Модуль упругости, так же как и плотность – это справочные величины, прописанные для конкретных материалов.
В качестве примера, ниже приведена таблица величины скорости распространения звука в различных средах:
Среда | Скорость звука, м/сек |
Воздух при 0° | 331 |
Воздух при 30° | 350 |
Вода | 1450 |
Медь | 3800 |
Дерево | 4800 |
Железо | 4900 |
Сталь | 5600 |
Для газов параметры модуля объёмной упругости и плотности имеют ярко выраженную зависимость от температуры и атмосферного давления.
Если углубиться, то скорость звука в газах можно вычислить по следующей формуле:
V (м/сек) = √γ*Ратм / ρ ,
где
γ = cp/сv – это отношение удельной теплоёмкости при постоянном давлении
к удельной теплоёмкости при постоянном объёме, а Pатм – атмосферное давление,
которое связано с температурой газообразной среды.
Поэтому, чтобы никого сильно не грузить, приведу и приближённую зависимость скорости звука (при нормальном
атмосферном давлении) от температуры среды:
V (м/сек) = (331 + 0,6 * T°), где 331 м/сек – это скорость звука при 0°С,
а T° – температура в градусах Цельсия.
Теперь можно совместить формулы и получить простое соотношение, связывающее длину звуковой волны с частотой колебаний с учётом
температуры среды:
λ (м) = (331 + 0,6 * T°) / F (Гц).
Всё это без лишнего напряга несложно посчитать при помощи листа бумаги или деревянных счёт, ну а для пущего упрощения жизни человека,
приведу и пару он-лайн считалок для перевода одного из параметров в другой.
Калькуляторы предполагают расчёты длины и частоты звуковой волны для воздушной среды при нормальном атмосферном
давлении (760 мм ртутного столба).
Онлайн калькулятор расчёта длины звуковой волны по частоте
Частота звуковых колебаний f |
||
Температура Т(°С) (по умолчанию 20°) |
||
Длина волны |
Онлайн калькулятор расчёта частоты по длине звуковой волны
Длина волны λ при заданной Т |
||
Температура Т(°С) (по умолчанию 20°) |
||
Частота колебаний |
Полный диапазон звуковых частот условно находится в пределах:
16…20 000 Гц.
Ниже ( 0,001…16Гц ) – инфразвук.
Выше ( 20…100кГц ) – низкочастотный ультразвук,
ещё выше (100кГц…1МГц) – высокочастотный ультразвук.
А для интересующихся приведу таблицу соответствия нот стандартного музыкального звукоряда частотам.
Частота (Гц) | ||||||||||||
Октава | Нота | |||||||||||
До | До – диез | Ре | Ми – бемоль | Ми | Фа | Фа – диез | Си | Си- диез | Ля | Соль-бемоль | Соль | |
C | C# | D | Eb | E | F | F# | G | G# | A | Bb | B | |
0 | 16.35 | 17.32 | 18.35 | 19.45 | 20.60 | 21.83 | 23.12 | 24.50 | 25.96 | 27.50 | 29.14 | 30.87 |
1 | 32.70 | 34.65 | 36.71 | 38.89 | 41.20 | 43.65 | 46.25 | 49.00 | 51.91 | 55.00 | 58.27 | 61.74 |
2 | 65.41 | 69.30 | 73.42 | 77.78 | 82.41 | 87.31 | 92.50 | 98.00 | 103.8 | 110.0 | 116.5 | 123.5 |
3 | 130.8 | 138.6 | 146.8 | 155.6 | 164.8 | 174.6 | 185.0 | 196.0 | 207.7 | 220.0 | 233.1 | 246.9 |
4 | 261.6 | 277.2 | 293.7 | 311.1 | 329.6 | 349.2 | 370.0 | 392.0 | 415.3 | 440.0 | 466.2 | 493.9 |
5 | 523.3 | 554.4 | 587.3 | 622.3 | 659.3 | 698.5 | 740.0 | 784.0 | 830.6 | 880.0 | 932.3 | 987.8 |
6 | 1047 | 1109 | 1175 | 1245 | 1319 | 1397 | 1480 | 1568 | 1661 | 1760 | 1865 | 1976 |
7 | 2093 | 2217 | 2349 | 2489 | 2637 | 2794 | 2960 | 3136 | 3322 | 3520 | 3729 | 3951 |
8 | 4186 | 4435 | 4699 | 4978 | 5274 | 5588 | 5920 | 6272 | 6645 | 7040 | 7459 | 7902 |
Как найти частоту звуковых колебаний
Звуком называют волны механических деформаций, распространяющиеся в любой достаточно упругой среде (жидкостях, твердых телах, газах). Как и другие волны, звук характеризуется, в частности, частотой колебаний. В зависимости от начальных условий найти частоту звука можно разными способами.
Вам понадобится
- – калькулятор;
- – физический справочник;
- – тахометр;
- – звуковой датчик;
- – осциллограф.
Инструкция
Найдите частоту звуковых колебаний, если известна длина их волн и скорость звука в среде, где они распространяются. Вычисления следует производить по формуле F=V/L. Здесь V – скорость звука в среде, а L – длина волны (известная величина). Значения скоростей звука для разных сред можно узнать из физических справочников. Так, для воздуха при нормальных условиях (температуре в районе 20°C и давлении, близком к атмосферному) это значение составляет 341 м/с. Поэтому, например, звуковые колебания в воздухе с длиной волны в 0,25 м будут иметь частоту 341/0,25=1364 Гц.
Найти частоту звуковых колебаний, зная их период, можно по простой формуле: F=1/T. Обратите внимание на то, что для получения корректных значений частоты, представленных в герцах, период T должен быть выражен системе СИ, то есть иметь размерность в секундах.
Для получения частоты звуковых колебаний, распространяющихся в реальной среде, осуществите физический эксперимент. Примените специализированное устройство – тахометр. Сегодня тахометры, как правило, имеют высокую точность измерений и отображают информацию в готовом виде на цифровом индикаторе.
При отсутствии тахометра для нахождения частоты звука можно воспользоваться микрофоном или другим звуковым датчиком с достаточной чувствительностью, а также осциллографом. Подключите датчик к осциллографу и создайте условия для получения сигнала (например, поместите датчик в исследуемую среду). Подберите чувствительность осциллографа так, чтобы колебания на экране отображались с достаточной амплитудой. Путем подстройки частоты развертки добейтесь отображения устойчивой картинки. Узнайте период звуковых колебаний, ориентируясь на шкалу прибора. Найдите частоту, используя способ, описанный во втором шаге.
Обратите внимание
При вычислениях, связанных с получением значений частоты звука, всегда переводите все известные значения в систему СИ.
Полезный совет
Если дополнительно требуется найти циклическую частоту звуковых колебаний, рассчитайте ее по формуле w=2*PI*F, где F – частота, выраженная в герцах, полученная одним из описанных способов.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Частота – ультразвуковое колебание
Cтраница 1
Частота ультразвуковых колебаний определяет длину волны. Ее значение необходимо знать при использовании АРД-диаг-рамм.
[2]
Частота ультразвуковых колебаний может колебаться в пределах от 15 – 20 до 40 – 50 кгц, интенсивность от 0 3 до 0 5 вт. Растворение никелевых анодов в ультразвуковом поле происходит гораздо быстрее, чем в обычных электролитах, что связано с их кавитационной эрозией. Поэтому применение чехлов для анодов обязательно.
[4]
Частота ультразвуковых колебаний 15 – 17 кГц была выбрана из условия применения магнитострикционных вибраторов, как наиболее простых и доступных в промышленных условиях.
[5]
Частота ультразвуковых колебаний в этом случае, как правило, равна частоте электромагнитных колебаний, однако в некоторых случаях могут возбуждаться и кратные частоты.
[6]
Частота ультразвуковых колебаний должна выбираться с учетом толщины шва и величины затухания ультразвуковых колебаний в металле пгаа.
[8]
Частота ультразвуковых колебаний, применяемых при очистке, зависит как от величины и геометрии самих деталей, так и от количества загрязнений, приходящихся на единицу площади. Чем больше размеры загрязняемых частиц детали, тем ниже должна быть частота колебаний; чем выше требования, предъявляемые к точности деталей, тем выше рекомендуемая частота ультразвуковых колебаний.
[9]
Частота ультразвуковых колебаний данных установок 20 5 – 23 5 кГц; напряжение питания 440 – 480 В; ток намагничивания 20 – 25 А.
[10]
Частоту ультразвуковых колебаний выбирают более высокой, но с учетом влияния затухания ультразвука в материале. Поэтому с целью достижения максимальной чувствительности частоту снижают с увеличением толщины изделия и повышением затухания ультразвука.
[11]
Частоту ультразвуковых колебаний следует измерять акустическими методами посредством интерферометра или зонда, радиотехническими методами при помощи анализатора спектра путем анализа эхо-сигнала на искателе от вогнутой цилиндрической поверхности стандартного образца № 3 или измерением периода колебаний в эхо-сигнале посредством широкополосного осциллографа.
[12]
Обычно частоты ультразвуковых колебаний превышают 20 000 Гц и находятся выше акустического диапазона, воспринимаемого нормальным человеческим ухом. Эти волны распространяются в однородных материалах по относительно прямым линиям и при достижении границы раздела двух сред ( например, однородный металл шва и внутренний порок) преломляются и отражаются. Отраженный пучок усиливается, преобразуется в переменный ток и подается на экран электроннолучевой трубки, на которой изображается соответствующей формы импульс ультразвуковой волны. Расшифровка этого импульса позволяет определить наличие в шве дефекта.
[14]
При частоте ультразвуковых колебаний 16 кгц достигнута полная очистка плат от флюсов в этиловом спирте в течение 0 5 – 1 мин.
[15]
Страницы:
1
2
3
4
5