Как найти частоту волны в физике формула


Загрузить PDF


Загрузить PDF

Частота (или частота волны) — это число полных колебаний или циклов волны, совершенных в единицу времени. Есть несколько различных способов вычислить частоту в зависимости от данной вам информации.

  1. Изображение с названием Calculate Frequency Step 1

    1

    Формула: f = V / λ[1]

    • где f — частота, V — скорость волны, λ — длина волны.
    • Пример: вычислите частоту звуковой волны, если длина волны равна 322 нм, а скорость звука равна 320 м/сек.
  2. Изображение с названием Calculate Frequency Step 2

    2

    Преобразуйте единицы измерения длины волны в метры (если необходимо). Если длина волны дается в нанометрах, вам нужно конвертировать это значение в метры, разделив его на количество нанометров в одном метре.[2]

    • Обратите внимание, что при работе с очень малыми или очень большими числами лучше записывать их в экспоненциальном формате. В этой статье числа будут даны как в обычном, так и в экспоненциальном формате.
    • Пример: λ = 322 нм
      • 322 нм x (1 м / 10^9 нм) = 3,22 x 10^-7 м = 0,000000322 м
  3. Изображение с названием Calculate Frequency Step 3

    3

    Разделите скорость волны на ее длину. Для вычисления частоты (f) разделите скорость волны (V) на ее длину (λ), выраженную в метрах.[3]

    • Пример: f = V / λ = 320 / 0.000000322 = 993788819,88 = 9,94 x 10^8
  4. Изображение с названием Calculate Frequency Step 4

    4

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример: частота этой волны равна 9,94 х 10^8 Гц.

    Реклама

  1. Изображение с названием Calculate Frequency Step 5

    1

    Формула: f = C / λ. Формула для вычисления частоты волны в вакууме практически идентична формуле для вычисления частоты волны в средах. В вакууме не существует факторов, влияющих на скорость волны, поэтому в формуле используется постоянная величина скорости света, с которой распространяются электромагнитные волны в вакууме.[4]

    • В формуле f — частота, С — скорость света, λ — длина волны.
    • Пример: вычислите частоту электромагнитной волны, если ее длина равна 573 нм.
  2. Изображение с названием Calculate Frequency Step 6

    2

    Преобразуйте единицы измерения длины волны в метры (если необходимо). Если длина волны дается в нанометрах, вам нужно конвертировать это значение в метры, разделив его на количество нанометров в одном метре.

    • Обратите внимание, что при работе с очень малыми или очень большими числами лучше записывать их в экспоненциальном формате. В этой статье числа будут даны как в обычном, так и в экспоненциальном формате.
    • Пример: λ = 573 нм
      • 573 нм х ( 1 м / 10^9 нм) = 5,73 х 10^-7 м = 0,000000573
  3. Изображение с названием Calculate Frequency Step 7

    3

    Разделите скорость света на длину волны. Скорость света является постоянной величиной, которая равна 3,00 х 10^8 м/с. Разделите эту величину на длину волны (в метрах).[5]

    • Пример: f = С / λ = 3,00 х 10^8 / 5,73 х 10^-7 = 5,24 х 10^14
  4. Изображение с названием Calculate Frequency Step 8

    4

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример: частота этой волны равна 5,24 х 10^14 Гц.

    Реклама

  1. Изображение с названием Calculate Frequency Step 9

    1

    Формула: f = 1 / T.[6]
    Частота обратно пропорциональна времени, которое необходимо для совершения одного колебания волны.

    • В формуле f — частота, Т — время, которое необходимо для совершения одного колебания волны.
    • Пример А: вычислите частоту волны, если ей необходимо 0,32 с для совершения одного колебания.
    • Пример B: за 0,57 секунд волна совершает 15 колебаний. Вычислите частоту этой волны.
  2. Изображение с названием Calculate Frequency Step 10

    2

    Разделите число колебаний на время. Если в задаче дано время, затрачиваемое на 1 колебание, то в этом случае просто разделите 1 на время (Т). Если в задаче дано время, затрачиваемое на несколько колебаний, то в этом случае разделите данное количество колебаний (n) на время (Т).[7]

    • Пример А: f = 1 / T = 1 / 0,32 = 3,125
    • Пример B : f = n / T = 15 / 0,57 = 26,316
  3. Изображение с названием Calculate Frequency Step 11

    3

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример А: частота волны равна 3,125 Гц.
    • Пример B: частота волны равна 26,316 Гц.

    Реклама

  1. Изображение с названием Calculate Frequency Step 12

    1

    Формула: f = ω / (2π)[8]

    • где f — частота, ω — угловая частота, π — число Пи (математическая константа).
    • Пример: волна вращается с угловой частотой 7,17 радиан в секунду. Вычислите частоту этой волны.
  2. Изображение с названием Calculate Frequency Step 13

    2

    Умножьте Пи на два.

    • Пример: 2 * π = 2 * 3,14 = 6,28
  3. Изображение с названием Calculate Frequency Step 14

    3

    Разделите угловую частоту (в радианах в секунду) на удвоенное число пи (6,28).[9]

    • Пример: f = ω / (2π) = 7,17 / (2 * 3,14) = 7,17 / 6,28 = 1,14
  4. Изображение с названием Calculate Frequency Step 15

    4

    Запишите ответ. Рядом поставьте единицу измерения частоты — Герц (Гц).

    • Пример: частота волны равна 1,14 Гц.

    Реклама

Что вам понадобится

  • Калькулятор
  • Карандаш
  • Бумага

Об этой статье

Эту страницу просматривали 113 689 раз.

Была ли эта статья полезной?


Download Article


Download Article

Frequency, also called wave frequency, is a measurement of the total number of vibrations or oscillations made within a certain amount of time. There are a few different ways to calculate frequency based on the information you have available to you. Keep reading to learn some of the most common and useful versions.

  1. Image titled Calculate Frequency Step 1

    1

    Learn the formula. The formula for frequency, when given wavelength and the velocity of the wave, is written as: f = V / λ[1]

    • In this formula, f represents frequency, V represents the velocity of the wave, and λ represents the wavelength of the wave.
    • Example: A certain sound wave traveling in the air has a wavelength of 322 nm when the velocity of sound is 320 m/s. What is the frequency of this sound wave?
  2. Image titled Calculate Frequency Step 2

    2

    Convert the wavelength into meters, if necessary. If the wavelength is given in nanometers, you need to convert this value into meters by dividing it by the number of nanometers in a single meter.[2]

    • Note that when working with extremely small numbers or extremely large numbers, it is generally easier to write the values in scientific notation. The values will be shown in and out of their scientific notation forms for this example, but when writing your answer for homework, other schoolwork, or other formal forums, you should stick with scientific notation.
    • Example: λ = 322 nm
      • 322 nm x (1 m / 10^9 nm) = 3.22 x 10^-7 m = 0.000000322 m

    Advertisement

  3. Image titled Calculate Frequency Step 3

    3

    Divide the velocity by the wavelength. Divide the velocity of the wave, V, by the wavelength converted into meters, λ, in order to find the frequency, f.[3]

    • Example: f = V / λ = 320 / 0.000000322 = 993788819.88 = 9.94 x 10^8
  4. Image titled Calculate Frequency Step 4

    4

    Write your answer. After completing the previous step, you will have completed your calculation for the frequency of the wave. Write your answer in Hertz, Hz, which is the unit for frequency.

    • Example: The frequency of this wave is 9.94 x 10^8 Hz.
  5. Advertisement

  1. Image titled Calculate Frequency Step 5

    1

    Learn the formula. The formula for the frequency of a wave in a vacuum is almost identical to that of a wave not in a vacuum. Since there are no outside influences on the velocity of the wave, though, you would use the mathematical constant for the speed of light, which electromagnetic waves would travel at under these conditions. As such, the formula is written as: f = C / λ[4]

    • In this formula, f represents frequency, C represents the velocity or speed of light, and λ represents the wavelength of the wave.
    • Example: A particular wave of electromagnetic radiation has a wavelength of 573 nm when passing through a vacuum. What is the frequency of this electromagnetic wave?
  2. Image titled Calculate Frequency Step 6

    2

    Convert the wavelength into meters, if necessary. When the problem gives you the wavelength in meters, no further action is needed. If, however, the wavelength is given in micrometers, you need to convert this value into meters by dividing it by the number of micrometers in a single meter.

    • Note that when working with extremely small numbers or extremely large numbers, it is generally easier to write the values in scientific notation. The values will be shown in and out of their scientific notation forms for this example, but when writing your answer for homework, other schoolwork, or other formal forums, you should stick with scientific notation.
    • Example: λ = 573 nm
      • 573 nm x (1 m / 10^9 nm) = 5.73 x 10^-7 m = 0.000000573
  3. Image titled Calculate Frequency Step 7

    3

    Divide the speed of light by the wavelength. The speed of light is a constant, so even if the problem does not provide you with a value, the value remains 3.00 x 10^8 m/s. Divide this value by the wavelength converted into meters.[5]

    • Example: f = C / λ = 3.00 x 10^8 / 5.73 x 10^-7 = 5.24 x 10^14
  4. Image titled Calculate Frequency Step 8

    4

    Write your answer. With this, you should have calculated the value of the frequency of the wave. Write your answer in Hertz, Hz, the unit for frequency.

    • Example: The frequency of this wave is 5.24 x 10^14 Hz.
  5. Advertisement

  1. Image titled Calculate Frequency Step 9

    1

    Learn the formula. Frequency and the time taken to finish a single wave oscillation are inversely proportional. As such, the formula for calculating frequency when given the time taken to complete a wave cycle is written as: f = 1 / T

    • In this formula, f represents frequency and T represents the time period or amount of time required to complete a single wave oscillation.
    • Example A: The time for a certain wave to complete a single oscillation is 0.32 seconds. What is the frequency of this wave?
    • Example B: In 0.57 seconds, a certain wave can complete 15 oscillations. What is the frequency of this wave?
  2. Image titled Calculate Frequency Step 10

    2

    Divide the number of oscillations by the time period. Usually, you will be told how long it takes to complete a single oscillation, in which case, you would just divide the number 1 by the time period, T. If given a time period for numerous oscillations, however, you will need to divide the number of oscillations by the overall time period required to complete them.[6]

    • Example A: f = 1 / T = 1 / 0.32 = 3.125
    • Example B: f = 1 / T = 15 / 0.57 = 26.316
  3. Image titled Calculate Frequency Step 11

    3

    Write your answer. This calculation should tell you the frequency of the wave. Write your answer in Hertz, Hz, the unit for frequency.

    • Example A: The frequency of this wave is 3.125 Hz.
    • Example B: The frequency of this wave is 26.316 Hz.
  4. Advertisement

  1. Image titled Calculate Frequency Step 12

    1

    Learn the formula. When told the angular frequency of a wave but not the standard frequency of that same wave, the formula to calculate the standard frequency is written as: f = ω / (2π)[7]

    • In this formula, f represents the frequency of the wave and ω represents the angular frequency. As with any mathematical problem, π stands for pi, a mathematical constant.
    • Example: A particular wave rotates with an angular frequency of 7.17 radians per second. What is the frequency of that wave?
  2. Image titled Calculate Frequency Step 13

    2

    Multiply pi by two. In order to find the denominator of the equation, you need to double the value of pi, 3.14.

    • Example: 2 * π = 2 * 3.14 = 6.28
  3. Image titled Calculate Frequency Step 14

    3

    Divide the angular frequency by the double of pi. Divide the angular frequency of the wave, given in radians per second, by 6.28, the doubled value of pi.[8]

    • Example: f = ω / (2π) = 7.17 / (2 * 3.14) = 7.17 / 6.28 = 1.14
  4. Image titled Calculate Frequency Step 15

    4

    Write your answer. This final bit of calculation should indicate what the frequency of the wave is. Write your answer in Hertz, Hz, the unit for frequency.

    • Example: The frequency of this wave is 1.14 Hz.
  5. Advertisement

Add New Question

  • Question

    What is the frequency if 80 oscillations are completed in 1 second?

    Community Answer

    Frequency is the number of oscillations completed in a second. The answer would be 80 Hertz.

  • Question

    Do atoms have a frequency and, if so, does it mean everything vibrates?

    Donagan

    Atoms have energy. Energy is often characterized as vibration. Vibration possesses frequency. So, yes, everything could be thought of as vibrating at the atomic level.

  • Question

    What’s the definition of frequency?

    Community Answer

    The rate at which a vibration occurs that constitutes a wave, either in a material (as in sound waves), or in an electromagnetic field (as in radio waves and light), usually measured per second. The rate at which something occurs or is repeated over a particular period of time or in a given sample.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Thanks for submitting a tip for review!

Things You’ll Need

  • Calculator
  • Pencil
  • Paper

References

About This Article

Article SummaryX

To calculate the frequency of a wave, divide the velocity of the wave by the wavelength. Write your answer in Hertz, or Hz, which is the unit for frequency. If you need to calculate the frequency from the time it takes to complete a wave cycle, or T, the frequency will be the inverse of the time, or 1 divided by T. Display this answer in Hertz as well. Keep reading to learn how to calculate frequency from angular frequency!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,510,551 times.

Did this article help you?

Частота волны

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng! 
Занимаюсь там сам – очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Частота волны — число полных колебаний или циклов волны, совершенных в единицу времени

LARGE f=frac{c}{lambda }=frac{upsilon }{T}=frac{kupsilon }{2 pi}

В Формуле мы использовали :

f — Частота волны

c — Скорость света

lambda — Длина волны

 upsilon — Фазовая скорость

T — Период колебаний

k=frac{2pi}{L} — Волновое число

L — Длина волны


Сайт «Все формулы» работает на WordPress

Содержание:

Волны:

Стоя на берегу озера или пруда, вы могли наблюдать, как кольцами разбегаются волны от места, куда был брошен камень, как волны раскачивают лодку или катер. Ветер нарушает равновесие морской поверхности, кажется, что море надвигается на берег, но это не так. Не перемещаются по полю колосья, когда «волнуется» нива, они только наклоняются и опять выпрямляются. Вслед за кораблем или лодкой всегда возникает типичная картина волн.

Волновые процессы широко распространены в природе. Физические основы волновых движений различны, но все они объясняются одинаковыми законами.

Что же такое волна и каковы причины возникновения волн

Вам известно, что твердые, жидкие и газообразные тела состоят из частей, взаимодействующих между собой. Если частица тела начинает совершать колебания, то в результате взаимодействия ее с другими частицами тела это движение распространяется с определенной скоростью во всех направлениях.

Волна — процесс распространения колебаний в любой среде. Волна — это изменение состояния среды, распространяющееся в пространстве и переносящее энергию.

Наблюдения. Рассмотрим особенности распространения волн. Если рассматривать волны на поверхности воды (рис. 204), то они кажутся валами, движущимися в определенном направлении, причем расстояния между валами, или гребнями, одинаковы.

Волны в физике - виды, формулы и определения с примерами

Если бросить в воду поплавок, его не будет относить волной, а он начнет совершать колебания вверх-вниз, оставаясь почти на одном месте.

При распространении волны изменяется состояние колеблющейся среды, но не перенос вещества. От брошенного камня начинает колебаться определенный участок воды, эти колебания передаются соседним участкам и постепенно распространяются во все стороны. Течение воды не возникает, перемещается только форма ее поверхности.

Опыт 1. Закрепим один конец длинного резинового шнура и легонько заставим шнур колебаться. По шнуру побежит волна (рис. 205). Чем сильнее колеблется шнур, тем больше скорость распространения волны. Волна добежит до точки крепежа, отразится и побежит в обратном направлении.

Волны в физике - виды, формулы и определения с примерами

При распространении волны изменяется только форма шнура, а каждый его участок колеблется относительно своего положения равновесия, причем колебания происходят в направлении, перпендикулярном направлению распространения волны (рис. 206). Такие волны называют поперечными волнами.

Поперечные волны

Поперечные волны — это волны, в которых частицы совершают колебания в направлении, перпендикулярном направлению распространения волны.

Опыт 2. Если ударить по одному из концов длинной мягкой пружины большого диаметра, то по пружине «побежит» сжатие. Повторяя удары, можно возбудить в пружине волну, представляющую собой последовательные сжатия и растяжения пружины, «бегущие» друг за другом (рис. 207). Любой виток пружины совершает колебания вдоль направления распространения волны. Такую волну называют продольной волной.
Волны в физике - виды, формулы и определения с примерами

Продольные волны

Продольные волны — это волны, в которых частицы совершают колебания вдоль направления распространения волны.

При распространении волны движение передается от одного участка тела к другому. С передачей движения связана передача энергии. Передача энергии без передачи вещества – основное свойство всех волн.

Любые волны характеризуются длиной и скоростью их распространения.

Длина волны — это расстояние между ближайшими друг к другу точками волны, колеблющимися в одинаковых фазах (рис. 208).
Волны в физике - виды, формулы и определения с примерами
Длину волны обозначают греческой буквой А. (лямбда). Ее единицей является один метр (1 м).

Волны любого происхождения распространяются в пространстве не мгновенно, а с определенной скоростью. Например, можно увидеть, как чайка летит над морем будто все время над одним гребнем волны. В этом случае скорость полета чайки равна скорости распространения волны.

А как можно определить скорость распространения волны?

Вы уже знаете, что любое колебание характеризуется периодом колебаний, то есть временем, после которого колебания повторяются. Тогда можно сказать, что за один период волна распространяется на расстояние Волны в физике - виды, формулы и определения с примерами. Поэтому скорость ее распространения можно найти по формуле:

Волны в физике - виды, формулы и определения с примерами
где v – скорость распространения волны (м/с); Волны в физике - виды, формулы и определения с примерами – длина волны (м); Т – период колебаний (с).

Так как период и частота связаны соотношением Волны в физике - виды, формулы и определения с примерами
Волны в физике - виды, формулы и определения с примерами

Пример №1

Определите скорость распространения волны на воде, если ее длина равна 180 м, а период колебаний – 15 с.

Дано:

Волны в физике - виды, формулы и определения с примерами = 180 м

Т = 15 с

v – ?

Решение
По формуле Волны в физике - виды, формулы и определения с примерамиопределяем скорость распространения волны на воде.

v = 180 м : 15 с = 12 м/с.
Ответ: 12 м/с.

Пример №2

Каково основное свойство механической волны?

Ответ: переносить энергию.

Интерференция волн

Для волн не очень больших амплитуд справедлив принцип суперпозиции: если в точку пространства приходят волны от нескольких источников, то эти волны накладываются друг на друга. В результате такого наложения в некоторых точках пространства может наблюдаться постоянное усиление колебаний, а в некоторых — ослабление. Выясним, почему и когда это происходит. Пусть в некоторую точку M поступают две когерентные волны — волны от двух источников Волны в физике - виды, формулы и определения с примерами, колеблющихся синхронно, то есть в одинаковых фазах и с одинаковой частотой (рис. 22.6, а).

Волны в физике - виды, формулы и определения с примерамиВолны в физике - виды, формулы и определения с примерами

Если волны приходят в точку М в противоположных фазах (в один и тот же момент времени одна волна «толкает» точку М вверх, а вторая «толкает» ее вниз), то волны будут постоянно гасить друг друга (рис. 22.6, б). Если же волны приходят в точку М в одинаковых фазах, то в точке M будут все время наблюдаться колебания с увеличенной амплитудой (рис. 22.6, в). явление наложения волн, вследствие которого в некоторых точках пространства наблюдается устойчивое во времени усиление или ослабление результирующих колебаний, называют интерференцией.

Дифракция волн

Судно, плывущее по морю, образует на поверхности воды волну. Если на своем пути волна встретит скалу или торчащую из воды ветку, то за скалой образуется тень (то есть непосредственно за скалу волна не проникает), а за веткой тень не образуется (волна ветку огибает).

Явление огибания волнами препятствий называют дифракцией (от лат. difractus — разломанный) (рис. 22.8).

Волны в физике - виды, формулы и определения с примерами

В приведенном примере дифракция волны происходит на ветке, но не происходит на скале. Но это не всегда так. Если скала достаточно удалена от берега, то на некотором расстоянии от скалы тень исчезнет — волна обогнет и скалу. Дело в том, что дифракция наблюдается в двух случаях: 1) когда линейные размеры препятствий, на которые находит волна (или размеры отверстий, сквозь которые проходит волна), сопоставимы с длиной волны; 2) когда расстояние от препятствия до места наблюдения намного больше размера препятствия.

Выводы:

  • Распространение в пространстве колебаний вещества или поля называют волной. Механической волной называют распространение колебаний в упругой среде.
  • Волна распространяется в пространстве не мгновенно, а с конечной скоростью. При распространении волны происходит перенос энергии без переноса вещества. В некоторых точках пространства вследствие наложения волн друг на друга может наблюдаться устойчивое во времени усиление или ослабление результирующих колебаний — это явление называют интерференцией. Волны могут огибать препятствия — это явление называют дифракцией.
  • Волну, в которой частицы среды колеблются перпендикулярно направлению распространения волны, называют поперечной. Волну, в которой частицы среды колеблются вдоль направления распространения волны, называют продольной.
  • Волна периодична во времени и пространстве. Периодичность волны во времени характеризуется периодом колебаний каждой отдельной точки волны. Периодичность волны в пространстве характеризуется длиной волны. Длина волны — это расстояние, на которое распространяется волна за время, равное периоду колебаний. Длина λ, частота ν и скорость v распространения волны связаны формулой волны: v = λν .

Звуковые волны

Звучание флейты, шум мегаполиса, шорох травы, грохот водопада, человеческая речь, музыкальный звук, шум, акустический резонанс… Все это связано с распространением в пространстве определенных механических волн, которые называют звуковыми волнами. Их изучает акустика — наука о звуке. С элементами акустики вы начали знакомиться в курсе физики 9 класса. Итак, вспоминаем и узнаем новое.

Звуковые (акустические) волны — это механические волны с частотами от 20 Гц до 20 кГц. Звуковые волны обычно доходят до уха через воздух — в виде последовательных сгущений и разрежений (то есть в воздухе звуковые волны являются продольными). В зонах сгущений (разрежений) давление воздуха незначительно больше (меньше) атмосферного (рис. 23.1).

Волны в физике - виды, формулы и определения с примерами

Рис. 23.1. Человеческое ухо воспринимает звуковые волны с избыточным (звуковым) давлением примерно от 20 мкПа (0 децибелов — порог слышимости) до 20 Па (120 децибелов — болевой порог). Для сравнения Волны в физике - виды, формулы и определения с примерами =100 000 Па

Звук — механическая волна, потому все свойства волнового движения касаются и звука.

Волны в физике - виды, формулы и определения с примерами

  • Звук распространяется в среде с конечной скоростью, зависящей от температуры, плотности, состава и других характеристик среды. Так, в жидкостях звук распространяется быстрее, чем в газах, и медленнее, чем в твердых телах. Скорость распространения звука обычно увеличивается с увеличением температуры среды (в воздухе при температуре 0 °С скорость распространения звука составляет около 330 м/с, а при 20 °С — 340 м/с). Кроме того, чем меньше масса молекул среды, тем быстрее распространяется звук.
  • Источником звука является колеблющееся тело (рис. 23.2). Такие колебания могут быть вынужденными (диффузор громкоговорителя), свободными (струна гитары), автоколебаниями (струны смычковых инструментов).
  • Звук не распространяется в вакууме.
  • При распространении звука не происходит переноса вещества, но происходит перенос энергии.
  • Звуковые волны могут накладываться друг на друга (явление интерференции); могут огибать препятствия (явление дифракции).

Как связаны субъективные и объективные характеристики звука

Все физические величины, характеризующие механические волны (амплитуда, частота, длина, энергия), являются и характеристиками звука. Эти величины не зависят от особенностей восприятия звука человеком, поэтому их называют объективными, или физическими, характеристиками звука. Субъективные характеристики звука (громкость, высота, тембр) обусловлены особенностями слуха человека, поэтому их называют физиологическими. Понятно, что физические и физиологические характеристики звука связаны (см. таблицу).

  • Заказать решение задач по физике
Субъективные (физиологические) характеристики звука
Волны в физике - виды, формулы и определения с примерами

Громкость звука определяется прежде всего амплитудой звуковой волны (звуковым давлением), однако зависит и от частоты звуковой волны. Человеческое ухо плохо воспринимает звуки низких (около 20 Гц) и высоких (около 20 кГц) частот, лучше всего — средних частот (1–3 кГц).

Громкость звука измеряют в децибелах (дБ). Так, при частоте звука 1 кГц и звуковом давлении 20 Па громкость звука составляет 120 дБ — это болевой порог звука — наиболее громкий звук, который может воспринимать человек, не чувствуя боли (звук такой громкости издает двигатель реактивного самолета).

Обратите внимание! Громкий звук может привести к ухудшению слуха и даже к глухоте, особенно это касается прослушивания громкой музыки в наушниках. Слушать музыку в наушниках следует при минимальной громкости!
Волны в физике - виды, формулы и определения с примерами Высота звука определяется в основном частотой звуковой волны: чем больше ее частота, тем выше тон звука. Например, ноте «ля» первой октавы соответствует частота 440 Гц; ноте «ля» второй октавы — частота 880 Гц. Свойство человеческого уха различать звуки по их частоте также зависит от интенсивности звуков. При увеличении интенсивности звука его высота кажется более низкой.
Волны в физике - виды, формулы и определения с примерами

Тембр звука определяется составом звуковой волны: кроме основной частоты (по которой мы и оцениваем высоту звука) любой звук содержит несколько более слабых и более высоких дополнительных частот — обертонов. Именно благодаря тембру мы узнаем человека по голосу, отличаем звуки фортепиано от звуков флейты и т. д. Каждый музыкальный инструмент, каждый человек или животное имеют свой тембр.

Волны в физике - виды, формулы и определения с примерами

Что такое акустический резонанс

На любое тело, расположенное в пределах распространения звуковой волны, действует периодическая сила, частота которой равна частоте волны. Под действием этой силы тело начинает совершать вынужденные колебания. Если частота собственных колебаний тела сов падает с частотой звуковой волны, то амплитуда колебаний тела увеличивается и оно начинает издавать звук — наблюдается акустический резонанс.

Акустический резонанс — это явление резкого возрастания амплитуды звукового сигнала при приближении частоты сигнала-возбудителя к частоте собственных колебаний системы.

Наблюдать акустический резонанс можно с помощью опыта с двумя камертонами, имеющими одинаковую частоту (рис. 23.3).

Волны в физике - виды, формулы и определения с примерами

Акустический резонанс используют для увеличения интенсивности звука, созданного некоторым источником (струной, ножками камертона, голосовыми связками и т. д.). Например, для увеличения громкости камертона его присоединяют к деревянному ящику (резонатору), собственная частота колебаний воздуха в котором равна частоте колебаний камертона. Камертон, присоединенный к резонатору, звучит гораздо громче, чем тот, который держат в руке.

Акустический резонанс используют во многих музыкальных инструментах. Воздух в трубах органа, корпусах арф, бандур, гитар и т. д. резонирует с тонами и обертонами звуков, издаваемых колеблющимися телами, и усиливает их. Полость рта — резонатор для звуковых волн, которые создаются благодаря колебаниям голосовых связок. Рис. 23.3. Если заставить звучать один из камертонов, из-за резонанса начнет звучать и второй

Звуковая волна, достигнув уха, испытывает ряд преобразований. Сначала она действует на барабанную перепонку, заставляя ее вибрировать. Чем громче звук, тем сильнее вибрирует перепонка, передавая звуковые колебания в среднее ухо, где они усиливаются.

Волны в физике - виды, формулы и определения с примерами

Усиленный звук попадает во внутреннее ухо с заполненной жидкостью улиткой. Поверхность улитки покрыта волосковыми клетками, количество которых достигает 15 000. Каждая клетка резонирует с определенным диапазоном частот. Обнаружив «собственную» частоту, клетка начинает колебаться, возбуждая нервные окончания, и в мозг идет нервный импульс — человек слышит звук.

С возрастом количество волосковых клеток уменьшается (от 15 000 у ребенка до 4 тысяч у пожилого человека). Первыми погибают клетки, «отвечающие» за высокую частоту, поэтому взрослый человек не слышит высоких звуков (подросток слышит звуки до 22 кГц, пожилой человек — до 12 кГц).

Вспоминаем инфра- и ультразвук

Инфразвук (от лат. infra — ниже, под) — это механические волны, частота которых меньше 20 Гц. Инфразвуковые волны возникают во время штормов, землетрясений, цунами, извержений вулканов, вследствие ударов о берег морских волн. Некоторые существа способны воспринимать инфразвуковые волны (рис. 23.4). Источником инфразвука могут быть и объекты, созданные человеком: турбины, двигатели внутреннего сгорания и т. д. В городах наибольший уровень инфразвука около автомагистралей.

Волны в физике - виды, формулы и определения с примерами

Инфразвук очень опасен для животных и человека: он может вызывать симптомы морской болезни, головокружение, потерю зрения, стать причиной повышенной агрессивности. При длительном воздействии интенсивное инфразвуковое излучение может привести к остановке сердца. При этом человек даже не понимает, что происходит, ведь он не слышит инфразвука. Механические волны, частота которых превышает 20 кГц, называют ультразвуковыми волнами (от лат. ultra — сверх, за пределами).

Ультразвук есть в шуме ветра и водопада, в звуках, которые издают некоторые живые существа. Установлено, что ультразвук до 100 кГц воспринимают многие насекомые и грызуны; улавливают его и собаки.

Слабый ультразвук — основа ультразвуковой локации — определения расположения и характера движения объекта с помощью ультразвука. Так, летучие мыши и дельфины, излучая ультразвук и воспринимая его эхо, могут даже в полной темноте найти дорогу или поймать добычу. Ультразвуковое исследование позволяет «увидеть» еще не родившегося младенца, исследовать состояние внутренних органов, выявить инородные тела в тканях. Ультразвуковую локацию применяют также на морских судах — для выявления объектов в воде (сонары) и исследования рельефа морского дна (эхолоты); в металлургии — для выявления и установления размеров дефектов в изделиях (дефектоскопы).

Мощный ультразвук применяют в технике (обработка прочных материалов, сварка, очистка поверхностей от загрязнений); медицине (измельчение камней в организме, что позволяет избежать хирургических операций); пищевой промышленности (изготовление сыров, соусов); косметологии (изготовление кремов, зубной пасты).

Выводы:

  • Механические волны с частотами 20 Гц — 20 кГц называют звуковыми волнами (звуком). Субъективные характеристики звука: высота звука (определяется частотой звуковой волны); громкость звука (определяется амплитудой и частотой звуковой волны); тембр звука (определяется спектром звуковой волны).
  • Явление резкого возрастания амплитуды звукового сигнала в случае приближения частоты сигнала-возбудителя к частоте собственных колебаний системы называют акустическим резонансом. Акустические резонаторы имеют почти все музыкальные инструменты.
  • Механические волны, частота которых меньше 20 Гц, называют инфразвуковыми волнами (инфразвук). Механические волны, частота которых превышает 20 кГц, называют ультразвуковыми волнами (ультразвук).
  • Волновое движение в физике
  • Продольные и поперечные волны в физике
  • Звуковые волны в физике
  • Электрическое поле в физике
  • Электромагнитные явления в физике
  • Электромагнитные волны и их свойства
  • Магнитные явления в физике
  • Магнитный поток

Как найти частоту волны? Процесс прост; количество оборотов, которое требуется для завершения конкретной вещи, называется частотой.

Когда объект движется, мы обычно определяем движение, силу и многие другие факторы. Но нам также нужно знать, с какой частотой он будет двигаться в данный момент времени. Таким образом, обратное время дается как частота в стандартных терминах.

В подробном случае мы также могли бы определить частоту данной волны, частицы в краткосрочной перспективе, а также более широкий контекст. частота является широко используемым фактором с точки зрения волны. Скажем, например, волна распространяется с определенной скоростью, и мы должны найти частоту волны.

Обычно мы погружаемся в математическую часть решения, но, говоря простым языком, мы также можем быстро определить волны. То частота сколько циклов он делает за одну секунду. Таким образом, если волна завершает один цикл, частота составляет половину от него.

Частота — это то, что появляется постоянно или в определенный момент времени. Подобно соленоиду, он имеет несколько витков при намотке на проводник и производит электричество. Точно так же частота — это количество циклов, которые волна совершает за одну секунду, и она обычно равна 2 герцам.

Компания количество циклов световой волны сделанное за одну секунду, также оценивается с точки зрения длины волны и скорость световой волны. Звуковая волна является наиболее распространенной областью, где часто рассматривается частотный термин.

Существует также научная вещь: собаки и птицы слышат звук за пределами определенного уровня, который даже люди не способны слышать. Мы созданы таким образом, что только определенное количество частота звука мы могли вынести услышать.

Частота волновой формулы

Частота имеет общую формулу, которую можно применять во всех контекстах. Период времени является основной причиной, которая помогает в формуле частоты. 

Количество циклов, которые волна делает за один, рассматривается как частота этой конкретной волны. Следовательно, формула частоты в повседневном исчислении такова: f=1/T. Здесь Т — период времени, за который волны совершают число циклов.

Чтобы рассчитать частоту, нам нужно знать характеристики волны. Волна — это совокупность вибраций, называемых энергиями. Они достигли пика на обоих концах. Верхний узел называется впадина, а нижний узел называется гребень.

Высота волны обычно считается амплитудой волны. Высота волны будет определять, будет ли амплитуда больше или меньше. Поэтому, когда они изменяются, циклы, сделанные в секунду, также будут изменены.

Таким образом, когда волна завершает один цикл, то есть если волна имеет и гребень, и впадину в одной и той же фазе, тогда получаемая частота равна половине.

Волна совершает определенное количество циклов за одну секунду, что в основном известно как частота волны. И это дается формулой f=1/Т. Тип волны может зависеть от среды, через которую она проходит.

Как найти частоту волны по графику?

Теперь давайте посмотрим, как найти частоту волны на графике. Во-первых, частота — это количество циклов, которые волна пытается совершить, чтобы совершить один полный круг в данный конкретный момент времени.

Когда волна сделает один цикл, на это потребуется некоторое время. На графике мы называем это единицами. По сути, на графике есть несколько единиц, по которым мы можем быстро определить, как найти частоту волны в данном конкретном случае.

Скажем, например, волна движется с определенной скоростью, и мы также должны знать, сколько секунд это занимает. Скажи, что есть 12 секунд отмечены на графике, поэтому этой волне требуется 4 секунды, чтобы завершить один полный цикл. Итак, по формуле f=1/Т, частота волны 0.25Гц.

Давайте рассмотрим несколько задач по расчету частоты.

Проблема:

Типичная волна совершает два цикла за 30 секунд, и какова будет частота волны, если она будет распространяться в той же среде?

Решение:

f=1/Т

f=2/30

f=0.0667 Гц

Всегда возникает путаница между частота волны и скорость волны. Есть амплитуда волны, которая в основном является высотой волны. Таким образом, скорость рассчитывается, чтобы найти скалярную часть скорости, которая является скоростью.

Когда мы обнаруживаем, что волна является световой, звуковой или электромагнитной волной, нам нужно найти частоту волна, завершающая циклы. Период времени между циклами, совершаемыми волной, обычно определяется формулой как обратную частоту.

Как найти частоту волны по длине и амплитуде?

Как найти частоту волны по длине и амплитуде? Когда мы рассматриваем волну как свет, мы должны знать все факторы, влияющие на частоту волны.

Во-первых, необходимо учитывать длину волны. Как найти частоту волны с длиной волны? Формула очень проста, и нам нужно найти формулу скорости света. 

Будет формула, называемая скоростью света, с = fλ. Здесь c — скорость света, f — определяемая частота, λ — длина волны света. Из этой формулы мы можем найти частоту волны через длину волны, переставив члены, данные в формуле. 

Если говорят, что волна движется с определенной скоростью и временем, нам также нужно найти частота с которым распространяется световая волна. Таким образом, формула, упомянутая выше, будет использоваться для расчета частоты в заданный период времени.

Найдем частоту волны и посмотрим, как частота определяется по формуле.

Проблема:

Световая волна распространяется со скоростью 3×108 РС. Данную длину волны световой волны называют равной 2000 Å. Какова частота?

Решение:

с = fλ

f = с / λ

ф = 3×108 / 2000 Å

f= 1.5 х 1018 герц

Итак, из вышеприведенной задачи видно, что частоту можно найти, используя длину волны.

Теперь нам нужно знать, как найти частоту волны через амплитуду. Для этого рассмотрим теперь общую формулу частоты, т. е. f=1/Т. Здесь f также можно записать как f = ω / 2 π

Здесь формула для T дается как 2 π/ω. Отсюда легко найти значение амплитуды, если упомянут период времени. А частоту можно найти по приведенной выше формуле, если в конкретной задаче задана амплитуда.

Как найти частоту волны, зная только длину волны?

Нам нужно знать, как длина волны влияет на волну, когда она распространяется с определенной скоростью и в заданном направлении. Это то, как далеко волна сможет пройти в среде.

Мы все знаем, что скорость света является стандартом для большинства формул, и мы также знаем, как переставить детали данной формулы, чтобы найти частоту данной волны. Как правило, когда световая волна распространяется в определенном направлении со скоростью 3×108, он также будет собирать информацию о частоте волны.

Формула скорости света является основой для определения длины волны или частоты распространяющейся световой волны. Скорость формулы света определяется выражением с = fλ. Отсюда мы получаем частоту волны через длину волны, соответствующим образом изменяя формулу.

Окончательная формула f = с / λ. Давайте посмотрим на проблему, как работает формула для электромагнитной волны.

Проблема:

Вычислите частоту электромагнитной волны, которая распространяется со скоростью 2×106м/с с длиной волны 1000 Å. С заданными деталями используйте формулу частота по длине волны.

Решение:

с = fλ

f = с / λ

f = 0.002 х 106 герц

f = 2 х 106/ 1000 Å

Таким образом, мы можем быстро определить частоту волны, используя значение скорости и, главным образом, значение длины волны.

Длина волны волны — это в основном пространство между гребнями или впадинами волны, которые следуют друг за другом. В основном концы одной и той же волны, которая была передана с точки зрения звука или электромагнитная волна.

Когда гребни и впадины волны, находящиеся в одной и той же фазе, встречаются в одном и том же месте, обычно считается, что это длина волны.

Как найти частоту волны по заданному периоду?

Как найти частоту волны через период времени? Ответ на этот вопрос прост, так как это общая формула для определения частоты волны.

Мы должны знать, что период времени в волне — это расстояние между гребнем и впадиной в одной и той же фазе. Поэтому, когда волна в основном распространяется с определенной частотой в заданный промежуток времени, нам нужна формула для расчета частоты. 

Вот формула для частота с точки зрения периода времени, f=1/Т. Период времени обычно является еще одним термином для амплитуды волны. Т можно также записать как 2 π/ω, Где ω является мерой амплитуды. 

Компания амплитуда – это в основном высота волны в зависимости от чего нам нужно сделать вывод, что амплитуда большая или малая. Если высота волны велика, то амплитуда называется значительной, а если высота волны мала, то говорят, что амплитуда волны мала.

Амплитуда имеет два конца, называемые гребень и впадина. Впадина — это верхний узел амплитуды, а гребень — нижний узел амплитуды.

Когда расстояние между двумя волнами называется длиной волны, а количество циклов, которое совершает одна волна, называется частота, когда период времени равен единице единица на графике, что в стандартном выражении составляет одну секунду.

Как найти частоту волны без скорости?

Из формулы скорости света мы могли бы заметить, что длина волны обратно пропорциональна частоте волны, то есть циклам, совершаемым волной за период времени.

Мы также знаем, что частота не прямо пропорциональна периоду времени; следовательно, длина волны и период времени пропорциональны друг другу. Длина волны связана с энергией, поэтому, когда длина волны увеличивается, энергия уменьшается. Формула основана на энергии фотона. 

Мы предполагаем, что длина волны и период времени пропорциональны, а частота и энергия быть пропорциональным. Частота волны без скорости была бы формулой энергии, где E=hf, где E — энергия, h — постоянная Планка, f — частота.

Итак, зная конкретную базовую формулу света и энергии, мы можем соответствующим образом переставить термины и узнать, как найти частоту волны во всех возможных терминах. Кроме того, все эти факторы влияют на волну и ее количество, способствуя ее собственному распространению.

Добавить комментарий