Как найти частоту встречаемости признака

Содержание:

В результате статистической обработки материалов, полученных при измерении величины явления, можно подсчитать число единиц, обладающих конкретным значением того или иного признака.

Допустим, что в качестве изучаемого признака взят вес детали. Будем обозначать этот признак X. Измерения веса, например, 50 деталей дали следующие результаты (в г): 83, 85, 81, 82, 84, 82, 79, 84, 80, 81, 82, 82, 80, 82, 80, 82, 83, 84, 79, 79, 83, 82, 83, 85, 82, 82, 81, 80, 82, 82, .83,80, 82, 85, 81, 83, 81, 81, 83, 82, 81, 85, 83, 79, 81, 85, 81, 84, 81, 82.

Условились каждое отдельное значение признака обозначать Вариационный ряд - определение и вычисление с примерами решения

Если мы расположим отдельные значения признака (варианты) в возрастающем или убывающем порядке и укажем относительно каждого варианта, как часто он встречался в данной совокупности, то получим распределение признака, или вариационный ряд.

Вариационные ряды и их характеристики

Построим вариационный ряд для приведенного выше примера. Для этого находим наименьший вариант, равный 79 г, и, располагая варианты в возрастающем порядке, подсчитываем их частоту. Так, вариант 79 г встречается 4 раза, вариант 80 г — 5 раз и т. д. Расположим полученные варианты следующим образом (см. табл. 1).

Такой ряд называется вариационным рядом; он характеризует изменение (варьирование) какого-нибудь количественного признака (в нашем примере варьирование веса деталей). Следовательно, вариационный ряд представляет собой две строки (или колонки). В одной из них приводятся варианты, а в другой частоты.

Вариационный ряд - определение и вычисление с примерами решения

Виды вариации

Вариация признака может быть дискретной и непрерывной. Дискретной вариацией признака называется такая, при которой отдельные значения признака (варианты) отличаются друг от друга на некоторую конечную величину (обычно целое число), т. е. даны в виде прерывных чисел. Непрерывной называется вариация, при которой значения признака могут отличаться одно от другого на сколь угодно малую величину. В качестве примера можно привести: для дискретной вариации признака — число станков, обслуживаемых одним рабочим, число семян в 1 кг и т. д.; для непрерывной вариации признака— процент выполнения рабочим нормы выработки, вес одного семени и т. д.

При непрерывной вариации распределение признака называется интервальным. Частоты относятся не к отдельному значению признака, как это бывает при дискретной вариации, а ко всему интервалу. Часто за значение интервала принимают его середину, т. е. центральное значение. В качестве примера можно привести интервальный вариационный ряд по проценту выполнения норм выработки.

Пример 1.

Распределение рабочих по проценту выполнения норм выработки.
Вариационный ряд - определение и вычисление с примерами решения

Частость

Нередко вместо абсолютных значений. частот используют относительные величины. Для этой цели можно использовать долю частоты того или иного варианта (а также интервала) в сумме всех частот. Такая величина называется частостью и обозначается Вариационный ряд - определение и вычисление с примерами решения

Мы имеем частоты Вариационный ряд - определение и вычисление с примерами решения

Для получения суммы всех частот их нужно сложить
Вариационный ряд - определение и вычисление с примерами решения
В математике используется знак Вариационный ряд - определение и вычисление с примерами решения (греческая буква сигма заглавная), означающий суммирование.

Следовательно, можно записать:
Вариационный ряд - определение и вычисление с примерами решения
где значки 1=1 и i=n под и над Вариационный ряд - определение и вычисление с примерами решения показывают, что суммированию подлежат все Вариационный ряд - определение и вычисление с примерами решения при условии, что i принимает все целые значения от 1 до n.

В дальнейшем в подобных случаях (т. е. при суммировании по подстрочному номеру i) мы не будем записывать значения, принимаемые i, но будем помнить смысл записи Вариационный ряд - определение и вычисление с примерами решения (уже без указания значений, принимаемых i).

Для получения частости каждого варианта или интервала-нужно его частоту разделить на Вариационный ряд - определение и вычисление с примерами решения
Вариационный ряд - определение и вычисление с примерами решения  Вариационный ряд - определение и вычисление с примерами решения и т.д.,
где Вариационный ряд - определение и вычисление с примерами решения — частость первого варианта или интервала, Вариационный ряд - определение и вычисление с примерами решения— второго и т. д.

Вычислим частости, используя данные табл. 1:Вариационный ряд - определение и вычисление с примерами решения

Сумма всех частостей равна 1:

Вариационный ряд - определение и вычисление с примерами решения

В нашем примере
0,08+0,1+0,2+0,28+0,16+0,08+0,1 = 1,00.
Частости можно выражать и в процентах (тогда сумма всех частостей равна 100%).

Границы интервалов

В интервальном вариационном ряду в каждом интервале различают нижнюю и верхнюю границы интервала:

  • нижняя граница интервала Вариационный ряд - определение и вычисление с примерами решения
  • верхняя граница интервала Вариационный ряд - определение и вычисление с примерами решения
  • величина интервала Вариационный ряд - определение и вычисление с примерами решения

При построении интервальных вариационных рядов в каждый интервал включаются варианты, числовые значения которых больше нижней границы и меньше или равны верхней грани це. Так, в табл.12 в интервал 95—100% попадают все рабочие, выполнившие нормы выработки от 95 до 100% включительно. Рабочие, выполнившие план на 100,01%, попадают в следующий интервал. Разумеется надо стремиться строить интервалы так, чтобы избегать попадания значительного числа случаев на границы интервалов.

Интервальные вариационные ряды бывают с одинаковыми и неодинаковыми интервалами. В последнем случае чаще всего встречаются интервалы последовательно увеличивающиеся.

Пример 2.

Вариационный ряд с равными интервалами:

Вариационный ряд - определение и вычисление с примерами решения

Пример 2а.

Вариационный ряд с последовательно увеличивающимися интервалами:

Вариационный ряд - определение и вычисление с примерами решения

Свойства сумм

Как видно (и из дальнейшего изучения материала), нам приходится иметь дело с суммами. Рассмотрим некоторые свойства сумм.

1)    Сумма ограниченного числа слагаемых, имеющих одну и ту же величину (сумма постоянной), равна произведению величины слагаемых на их число:Вариационный ряд - определение и вычисление с примерами решения

2)    Постоянный множитель может быть вынесен из-под знака суммы и введен под знак суммы:

Вариационный ряд - определение и вычисление с примерами решения

3)    Сумма алгебраической суммы нескольких переменных равна алгебраической сумме сумм каждой переменной:

Вариационный ряд - определение и вычисление с примерами решения

(легко обобщается на большее число слагаемых).

Величина интервала

Для выбора оптимальной величины интервала, т. е. такой величины интервала, при которой вариационный ряд не будет очень громоздким и в нем не исчезнут особенности явления, можно рекомендовать формулу:

Вариационный ряд - определение и вычисление с примерами решения

где n — число единиц в совокупности.

Так, если в совокупности 200 единиц наибольший вариант равен 49,961, а наименьший — 49,918, то

Вариационный ряд - определение и вычисление с примерами решения

Следовательно, в данном случае оптимальной величиной интервала может служить величина 0,005.

Плотность распределения

В качестве характеристики ряда распределения применяют плотность распределения, которую вычисляют как отношение-частот или частостей к величине интервала.  

Различают абсолютную плотность распределения:

Вариационный ряд - определение и вычисление с примерами решения

и относительную плотность распределения:
Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения -— плотности распределения, абсолютная (со значком А) и относительная (со значком О).

Пример 3.

По данным примера 2 вычислим относительную плотность распределения. Для первого интервала

Вариационный ряд - определение и вычисление с примерами решения
для второго интервалаВариационный ряд - определение и вычисление с примерами решения

Расщепление интервалов

Часто возникает необходимость в расщеплении интервалов. Для этой цели можно воспользоваться следующим методом для интервальных вариационных рядов с равными интервалами.

Расщепление производится при предположении, что плотность вариационного ряда изменяется по параболе второго порядка. Имеется в виду, что весь интервал разбивается на две части: первую, составляющую долю Вариационный ряд - определение и вычисление с примерами решения в величине интервала, и вторую 1—Вариационный ряд - определение и вычисление с примерами решения. Соответственно частость расщепляемого интервала F распадается на Вариационный ряд - определение и вычисление с примерами решения В этом случае:

Вариационный ряд - определение и вычисление с примерами решения
где А —    частость интервала, предшествующего расщепляемому;

В —    частость расщепляемого интервала;

С —    частость интервала, последующего за расщепляемым;

Вариационный ряд - определение и вычисление с примерами решения—    приращение частости интервала, предшествующего расщепляемому (Вариационный ряд - определение и вычисление с примерами решения);

Вариационный ряд - определение и вычисление с примерами решения —    второе приращение частостей Вариационный ряд - определение и вычисление с примерами решения — (В—А)=С—2В+А].

Пример 4.

По данным примера 2 произведем расщепление интервала 100—125% на две части, выделим часть интервала 100—120% и определим удельный вес рабочих, выполняющих норму выработки от 100 до 120%.

Имеем:Вариационный ряд - определение и вычисление с примерами решения

Получаем частость по соответствующей формуле: Вариационный ряд - определение и вычисление с примерами решения

В случае неравных интервалов вычисление усложняется.

Графические методы изображения вариационных рядов

Большое значение для наглядного представления вариационного ряда имеют графические методы его изображения. Вариационный ряд графически может быть изображен в виде полигона, гистограммы, кумуляты и огивы.

Полигон распределения (Дословно – многоугольник распределения) строится в прямоугольной системе координат. Величина признака откладывается на оси абсцисс, частоты или частости (точнее — плотности распределения) — по оси ординат.

На оси абсцисс отмечаются точки, соответствующие, величине вариантов, и из них восстанавливаются ординаты (перпендикуляры), длина которых соответствует численности этих вариантов. Вершины ординат соединяются прямыми линиями. Чаще всего полигоны применяются для изображения дискретных вариационных рядов, но могут быть применены и для интервальных рядов. В этом случае ординаты, пропорциональные частоте или частости интервала, восстанавливаются перпендикулярно оси абсцисс в точке, соответствующей середине данного интервала. Для замыкания крайние ординаты соединяются с •серединой интервалов, в которых частоты или частости равны нулю.

Пример 5.

По данным примера 1 строим полигон.
Вариационный ряд - определение и вычисление с примерами решения
 

Гистограмма распределения строится аналогично полигону в прямоугольной системе координат. В отличие от полигона при построении гистограммы на оси абсцисс берутся не точки, а отрезки, изображающие интервал, а вместо ординат, соответствующих частотам или частостям отдельных вариантов, строят прямоугольники с высотой, пропорциональной частотам или частостям интервала.

Вариационный ряд - определение и вычисление с примерами решения

В случае неравенства интервалов гистограмма распределения строится не по частотам или частостям, а по плотности интервалов (абсолютной или относительной). При этом общая площадь гистограммы равна численности совокупности, если построение производится по абсолютной плотности, или единице, если гистограмма построена по относительной плотности.

Если соединить прямыми линиями середины верхних сторон прямоугольников, то получим полигоны распределения.

Разбивая интервалы на несколько частей и исходя из того, что вся площадь гистограммы должна остаться при этом неизменной, можно получить мелкоступенчатую гистограмму, которая в пределе (за счет уменьшения величины интервала) перейдет в плавную кривую, называемую кривой распределения.

Пример 6.

Имеются данные о диаметре 200 валиков (см. табл. 4).

Чтобы по этим данным построить вариационный ряд с равными интервалами, изобразить его с помощью гистограммы, а затем превратить ее в мелкоступенчатую, производим следующие действия:

а) Выбираем наименьший вариант, а затем наибольший и находим между ними разность. Делим полученную разность на число проектируемых интервалов и получаем величину каждого интервала.

Так, наименьший интервал 49,918, наибольший — 49,961. Разность 49,961—49,918=0,043.

Допустим, мы хотим получить пять интервалов, тогда величина каждого интервала равна
Вариационный ряд - определение и вычисление с примерами решения
Следовательно, будем иметь такие интервалы:

49,918—49,928; 49,928—49,938 и т. д.

Строим рабочую таблицу, в которой подсчитываем численность каждого интервала путём . разноски данных из табл. 4 в рабочую табл. 5 и проставления черточек, соответствующих единице счета. По мере накопления четырех черточек перечеркиваем их одной чертой и ведем счет пятками (см. табл. 5).

На основании рабочей таблицы получаем следующий вариационный ряд (см. табл. 6).

б) По полученному вариационному ряду строим гистограмму распределения: на оси абсцисс откладываем диаметры валиков, начиная с 49,918 до 49,968, а на оси ординат проставляем масштаб; далее строим прямоугольники с высотой, пропорциональной количеству валиков в каждом интервале.
Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Соединяем прямыми линиями середины верхних сторон прямоугольников и получаем полигон (см. график 2).

Для получения мелкоступенчатой гистограммы разбиваем интервалы на две равные части и получаем:

Вариационный ряд - определение и вычисление с примерами решения

Если построить гистограмму по новому вариационному ряду, с уменьшенными интервалами, то получим гистограмму с более мелкими ступенями. Учет требования о неизменности площади гистограммы приводит к необходимости увеличить масштаб оси ординат вдвое.
Вариационный ряд - определение и вычисление с примерами решения

Можно продолжить процесс расчленения интервалов и дальше, получая все более и более мелкоступенчатую гистограмму.

Кумулятивная кривая (кривая сумм — кумулята) получается при изображении вариационного ряда с накопленными частотами или частостями в прямоугольной системе координат. При построении кумуляты дискретного признака на ось абсцисс наносятся значения признака (варианты). Ординатами служат вертикальные отрезки, длина которых пропорциональна накопленной частоте или частости того или иного варианта. Соединением вершин ординат прямыми линиями получаем ломаную (кривую) кумуляту.

Пример 7.

По данным табл. 4 построить кумуляту.
Вариационный ряд - определение и вычисление с примерами решения

Составляем дискретный вариационный ряд с накопленными частотами (при наличии частостей можно для построения кумуляты пользоваться ими; см. табл. 8).

Накопленная частота определенного варианта получается суммированием всех частот вариантов, предшествующих данному, с частотой этого варианта.

Используя накопленные частоты, строим кумуляту.

Вариационный ряд - определение и вычисление с примерами решения
При построении кумуляты- интервального вариационного ряда нижней границе первого интервала соответствует частота, равная нулю, а верхней границе — вся частота интервала. Верхней границе второго интервала соответствует накопленная частота первых двух интервалов (т. е. сумма частот этих интервалов) и т. д. Верхней границе последнего (максимального) интервала соответствует накопленная частота, равная сумме всех частот.

Пример 8.

По данным табл. 7 построить кумуляту.

Составляем интервальный вариационный ряд с накопленными частотами (см. табл. 9). По полученным накопленным частотам строим кумуляту (см. график 5).

Огива строится аналогично кумуляте с той лишь разницей, что на ось абсцисс наносят накопленные частоты, а на ось ординат — значения признака. Если лист бумаги, на котором изображена кумулята, повернуть на 90° и посмотреть на него с обратной стороны на свет, то можно увидеть огиву.

Вариационный ряд - определение и вычисление с примерами решения

График 5. Кумулята интервального вариационного ряда

Пример 9. По данным табл. 9 построим огиву (см. график 6)-

Накопленные частоты можно получать не только в восходящем порядке, но и в нисходящем, тогда частоты вариантов суммируются снизу вверх.

Пример 10.

По данным табл. 7. вычислить накопленные частоты в нисходящем порядке.
Вариационный ряд - определение и вычисление с примерами решения

Средние величины

В качестве одной из важнейших характеристик вариационного ряда применяют среднюю величину. Математическая статистика различает ряд типов средних величин: арифметическую, геометрическую, гармоническую, квадратическую, кубическую и др. Все перечисленные типы средних могут быть исчислены для случаев, когда каждый из вариантов вариационного ряда встречается только один раз, — тогда средняя называется простой или невзвешенной, — и для случаев, когда варианты или интервалы повторяются различное число раз. При этом число повторений вариантов или интервалов называют частотой или статистическим весом, а среднюю, вычисленную с учетом статистического веса, —взвешенной средней.

Выбор одного из перечисленных типов средних для характеристики вариационного ряда производится не произвольно, а в зависимости от особенностей изучаемого явления и цели, для которой средняя исчисляется.

Практически при выборе того или другого типа средней следует исходить из принципа осмысленности результата при суммировании или при взвешивании. Только тогда средняя применена правильно, когда в результате взвешивания или суммирования получаются величины, имеющие реальный смысл.

Обычно затруднения при выборе типа средней возникают лишь в использовании средней арифметической или гармонической. Что же касается геометрической и квадратической средних, то их применение ограничено особыми случаями (см. далее).

Следует иметь в виду, что средняя только в том случае является обобщающей характеристикой, если она применяется к однородной совокупности., В случае использования средней для неоднородных совокупностей можно прийти к неверным выводам. Научной – основой статистического анализа является метод статистических группировок, т. е. расчленения совокупности на качественно однородные группы.

Степенная средняя

Все указанные типы средних величин могут быть получены из формул степенной средней. Если имеются варианты Вариационный ряд - определение и вычисление с примерами решениято средняя из вариант тов может быть исчислена по формуле простой невзвешенной степенной средней порядка z

Вариационный ряд - определение и вычисление с примерами решения
При наличии соответствующих частот Вариационный ряд - определение и вычисление с примерами решения средняя исчисляется по формуле взвешенной степенной средней
Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения — степенная средняя;

z — показатель степени, определяющий тип средней;

х — варианты;

m — частоты или статистические веса вариантов.

Средняя арифметическая получается из формулы степенной средней при подстановке z=1

Вариационный ряд - определение и вычисление с примерами решения

средняя арифметическая невзвешенная и

Вариационный ряд - определение и вычисление с примерами решения

средняя арифметическая взвешенная.

Пример 11.

Измерения 20 единиц продукции дали следующие результаты (колонки 1 и 2):

Вариационный ряд - определение и вычисление с примерами решения

Вычислить средний размер единицы продукции.

Находим среднюю арифметическую. Для этого исчисляем в табл. 11 колонку 3

Вариационный ряд - определение и вычисление с примерами решения

Здесь умножение значения признака на вес и суммирование этих произведений дает общий размер продукции, т. е. имеет реальный смысл.

Средняя гармоническая получается при подстановке в формулу степенной средней значения z =—1.

Средняя гармоническая простая

Вариационный ряд - определение и вычисление с примерами решения

Средняя гармоническая взвешенная
Вариационный ряд - определение и вычисление с примерами решения
Средняя гармоническая вычисляется в тех случаях, когда средняя предназначается для расчета сумм слагаемых, обратно пропорциональных величине данного признака, т. е. когда суммированию подлежат не сами варианты, а обратные им величины

Вариационный ряд - определение и вычисление с примерами решения

или

Вариационный ряд - определение и вычисление с примерами решения

Пример 12.

По следующим данным о работе 22 рабочих в течение 6 часов вычислить среднюю гармоническую взвешенную.Вариационный ряд - определение и вычисление с примерами решения

В данном случае взвешивание состоит в делении по каждой группе количества рабочих (m) на затраты времени по изготовлению одной детали (х). Для проверки правильности выбора типа средней осмыслим результат взвешивания. Исходя из того, что все рабочие работали по 6 часов, количество рабочих можно рассматривать как величину, определяющую общие затраты времени. Тогда результат деления представит вполне осмысленную величину:

Вариационный ряд - определение и вычисление с примерами решения

Таким образом, средняя гармоническая в данном примере применена правильно. При использовании средней гармонической для упрощения расчетов целесообразно пользоваться таблицами обратных чисел (см. приложение VIII).

Средняя квадратическая получается из формулы степенной средней при подстановке z=2    

Вариационный ряд - определение и вычисление с примерами решения    

средняя квадратическая невзвешенная и 

Вариационный ряд - определение и вычисление с примерами решения
средняя квадратическая взвешенная.

Средняя квадратическая используется только в тех случаях, когда варианты представляют собой отклонения фактических величин от их средней арифметической или от заданной нормы.

Пример 13.

Имеются результаты измерения отклонений фактической длины изделий от заданной нормы.
Вариационный ряд - определение и вычисление с примерами решения

Вычислим среднюю величину отклонений.

Находим среднюю квадратическую взвешенную; для этого исчисляем в табл. 13 колонки 3 и 4:

Вариационный ряд - определение и вычисление с примерами решения

Значит, средняя величина отклонений фактической длины изделий от заданной нормы составляет 1,08 мм. В данном случае средняя арифметическая была бы непригодна, так как в результате мы получили бы нуль

Вариационный ряд - определение и вычисление с примерами решения
Средняя геометрическая получается из формулы степенной средней при подстановке z=0:

Вариационный ряд - определение и вычисление с примерами решения

Для раскрытия неопределенности этого вида прологарифмируем обе части равенства: Вариационный ряд - определение и вычисление с примерами решения
Вариационный ряд - определение и вычисление с примерами решения
Теперь при подстановке z в правую часть равенства получаем неопределенность вида Вариационный ряд - определение и вычисление с примерами решения Используя правило Лопиталя и дифференцируя отдельно числитель и знаменатель по переменной z, получаем:

Вариационный ряд - определение и вычисление с примерами решения
Таким образом:
Вариационный ряд - определение и вычисление с примерами решения   
Потенцируя, находим среднюю:
Вариационный ряд - определение и вычисление с примерами решения
Это и есть формула средней геометрической невзвешенной, которая записывается сокращенно так:

Вариационный ряд - определение и вычисление с примерами решения

где П — знак произведения;

n — число вариантов.

Если использовать частоты (m), то средняя геометрическая взвешенная примет следующий вид:

Вариационный ряд - определение и вычисление с примерами решения

Вычисления средней геометрической в значительной мере упрощаются применением логарифмирования. Для невзвешенной средней геометрической Вариационный ряд - определение и вычисление с примерами решения получаем:

Вариационный ряд - определение и вычисление с примерами решения
Для взвешенной средней геометрической:
Вариационный ряд - определение и вычисление с примерами решения
Таким образом, логарифм средней геометрической есть средняя арифметическая, из логарифмов вариантов (см. формулы средней арифметической).

Средняя геометрическая используется главным образом при изучении динамики (см. раздел II).

Расчет средних коэффициентов и темпов. роста производится по формулам средней геометрической.

Пример 14.

Выпуск промышленной продукции производился предприятием в следующих размерах:

Вариационный ряд - определение и вычисление с примерами решения

Чтобы найти средний месячный коэффициент и темп роста промышленной продукции, определяем помесячные коэффициенты роста Вариационный ряд - определение и вычисление с примерами решения, которые в данном случае и являются вариантами:

Вариационный ряд - определение и вычисление с примерами решения

Из найденных трех помесячных коэффициентов роста (вариантов) определяем средний месячный коэффициент роста Вариационный ряд - определение и вычисление с примерами решенияпо формуле средней геометрической. Для этого найденные коэффициенты роста перемножаются и из произведения извлекается корень третьей степени

Вариационный ряд - определение и вычисление с примерами решения

Из разобранного примера можно сделать два вывода: во-первых, что произведение трех найденных коэффициентов роста можно получить без их предварительного исчисления путем деления апрельского объема продукции (12,0) на январский объем (10,2):

Вариационный ряд - определение и вычисление с примерами решения

и, во-вторых, что показатель степени корня, равный трем (число коэффициентов роста), можно получить вычитанием единицы из числа приведенных в примере месяцев (четыре).

Таким образом, наиболее удобной для исчисления среднего коэффициента роста следует считать формулу:

 Вариационный ряд - определение и вычисление с примерами решения 

где n — число приведенных дат или периодов;

Вариационный ряд - определение и вычисление с примерами решения— последний член ряда;

Вариационный ряд - определение и вычисление с примерами решения — первый член ряда.

Математические свойства средней арифметической

Из вышеуказанных средних наиболее часто применяется средняя арифметическая. Знание свойств средней арифметической позволяет упрощенно ее вычислять.

Математические свойства средней арифметической:

1) Средняя постоянной величины равна этой же постоянной

величине.

2) Сумма отклонений от средней, умноженных на веса (частоты), равна нулю:

Вариационный ряд - определение и вычисление с примерами решения (если все веса равны единице)
или    

Вариационный ряд - определение и вычисление с примерами решения

Докажем это свойство для средней взвешенной.

Имеем: варианты Вариационный ряд - определение и вычисление с примерами решения

частоты Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения откуда Вариационный ряд - определение и вычисление с примерами решения

и Вариационный ряд - определение и вычисление с примерами решения

Подводя под общий знак суммы, получаем:

Вариационный ряд - определение и вычисление с примерами решения
Следовательно, Вариационный ряд - определение и вычисление с примерами решения

Пример 15.

Вычислить среднюю (по колонкам 1 и 2) и убедиться в правильности выведенной формулы.

Вариационный ряд - определение и вычисление с примерами решения

3)    Если у всех вариантов х частоты m равны друг другу, то средняя арифметическая взвешенная равна средней арифметической невзвешенной. 

Имеем Вариационный ряд - определение и вычисление с примерами решения

Тогда:

Вариационный ряд - определение и вычисление с примерами решения

4)    Если из всех вариантов (х) вычесть постоянную величину Вариационный ряд - определение и вычисление с примерами решения и из результатов вычитания, т. е. из отклонений вариантов от этой постоянной величины Вариационный ряд - определение и вычисление с примерами решения вычислить среднюю Вариационный ряд - определение и вычисление с примерами решения то она окажется меньше искомой средней на эту постоянную величину Вариационный ряд - определение и вычисление с примерами решения Поэтому, чтобы получить среднюю из вариантов Вариационный ряд - определение и вычисление с примерами решения нужно к найденной средней Вариационный ряд - определение и вычисление с примерами решения прибавить ту же постоянную величину:

Вариационный ряд - определение и вычисление с примерами решения

если Вариационный ряд - определение и вычисление с примерами решения

Доказательство.

Имеем отклонения от постоянной величины Вариационный ряд - определение и вычисление с примерами решения обозначенные Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения    
Находим среднюю из Вариационный ряд - определение и вычисление с примерами решения        Вариационный ряд - определение и вычисление с примерами решения

Откуда Вариационный ряд - определение и вычисление с примерами решения

Пример 16.

Вычислить среднюю путем вычитания 1000 из всех вариантов по следующим данным (колонки 1 и 2).
Вариационный ряд - определение и вычисление с примерами решения.

Пример 17.

Используя данные прёдыдущего примера, можно убедиться, что если за Вариационный ряд - определение и вычисление с примерами решения взять не 1000, а 1004, то величина средней не изменится.
Вариационный ряд - определение и вычисление с примерами решения

5) Если все варианты (х) уменьшить в одно и то же число раз, т. е. разделить на постоянную величину (k), и из частных Вариационный ряд - определение и вычисление с примерами решения вычислить среднюю, то онa окажется уменьшенной в такое же число раз, а поэтому, чтобы получить среднюю из вариантов Вариационный ряд - определение и вычисление с примерами решения нужно найденную среднюю Вариационный ряд - определение и вычисление с примерами решения умножить на ту же постоянную величину (k):
Вариационный ряд - определение и вычисление с примерами решения
Доказательство.

Имеем частные от деления вариантов х на постоянную величину k, обозначенные х’:
Вариационный ряд - определение и вычисление с примерами решения

Находим среднюю из Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

откуда Вариационный ряд - определение и вычисление с примерами решения

Пример 18.

Вычислить среднюю путем деления всех вариантов на 100 по следующим данным (колонки 1 и 2):Вариационный ряд - определение и вычисление с примерами решения

6) При вычислении средней вместо абсолютных значений весов (m) можно использовать относительные величины структуры (частости), т. е. удельные веса отдельных частот в общей сумме всех частот (см. § 4), или относительные величины координации, которые получаются путем отношения частот всех вариантов к одной из частот, принятой за единицу

Вариационный ряд - определение и вычисление с примерами решения
Если же удельные веса частот выражены в процентах, то

Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения — частость, т. е. доля частоты варианта в общей сумме частот.

Доказательство.

Вариационный ряд - определение и вычисление с примерами решения

Значит Вариационный ряд - определение и вычисление с примерами решения

Пример 19.

Вычислить средний размер детали по следующим данным (колонки 1 и 2):

Вариационный ряд - определение и вычисление с примерами решения

Предварительно найдем относительные величины структуры (колонка 3), а затем вычислим средний размер детали, используя их в качестве весов:
Вариационный ряд - определение и вычисление с примерами решения
Если теперь вычислить средний размер детали, используя в качестве весов частоты, то получим:
Вариационный ряд - определение и вычисление с примерами решения
что согласуется с результатом, полученным ранее.

Для вычисления средней можно было использовать колонку 4 :  Вариационный ряд - определение и вычисление с примерами решения

7) Если в частотах (m) имеется общий множитель (A), то его можно при вычислении средней не принимать во внимание т. е. взвешивание производить по сокращенным частотам Вариационный ряд - определение и вычисление с примерами решенияВариационный ряд - определение и вычисление с примерами решения Численное значение средней от замены частот (m) на сокращенные частоты Вариационный ряд - определение и вычисление с примерами решения не изменится
Вариационный ряд - определение и вычисление с примерами решения
Доказательство.

Имеем:Вариационный ряд - определение и вычисление с примерами решения

Разделим частоты на общий множитель А, содержащийся в них:

Вариационный ряд - определение и вычисление с примерами решения

Тогда
Вариационный ряд - определение и вычисление с примерами решения

Пример 20.

Вычислить среднюю по данным табл. 20 (колонки 1 и 2), произведя взвешивание вариантов по сокращенным весам.

Вычисляем среднюю по указанной формуле, предварительно сократив веса и заполнив колонки 3 и 4.
Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

8) Общая средняя равна-.-взвешенной средней из частных средних: 
Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения — частные средние, т. е. средние для отдельных групп совокупности;

Вариационный ряд - определение и вычисление с примерами решения — средняя из вариантов первой группы; 

Вариационный ряд - определение и вычисление с примерами решения — средняя из вариантов второй группы и т. д.;

Вариационный ряд - определение и вычисление с примерами решения —    частоты отдельных групп;

Вариационный ряд - определение и вычисление с примерами решения —    частота первой группы;

Вариационный ряд - определение и вычисление с примерами решения — частота второй группы и т. д.

Доказательство.

Пусть имеются частные средние:

Вариационный ряд - определение и вычисление с примерами решения

Найдем среднюю для всей совокупности:

Вариационный ряд - определение и вычисление с примерами решения

Пример 21.

В трех, партиях продукции численностью 1000, 2000 и 500 единиц найден средний вес детали (в кг): 3,3; 3,1; 3,7. Вычислить средний вес детали во всех трех партиях

Вариационный ряд - определение и вычисление с примерами решения

9) Сумма квадратов отклонений от средней меньше суммы квадратов отклонений от произвольной величины (В) на величину поправки С, равной произведению объема совокупности на квадрат разности между средней и данной произвольной величиной:

Вариационный ряд - определение и вычисление с примерами решения

для случая невзвешенной средней или

Вариационный ряд - определение и вычисление с примерами решения

для случая взвешенной средней.

Доказательство для случая невзвешенной средней.

Имеем:

Вариационный ряд - определение и вычисление с примерами решения

Пользуясь свойствами сумм (см. стр. 11), производим преобразования:

Вариационный ряд - определение и вычисление с примерами решения

На основании второго свойства средней арифметической Вариационный ряд - определение и вычисление с примерами решения а поэтому

Вариационный ряд - определение и вычисление с примерами решения

откуда

Вариационный ряд - определение и вычисление с примерами решения
Вариационный ряд - определение и вычисление с примерами решения

Пример 22.

По данным табл. 21 (колонки 1 и 2) убедиться в правильности указанных соотношений.

Вычисляем колонки 3, 4, 5, 6, 7, 8, 9 и находим:

Вариационный ряд - определение и вычисление с примерами решения

Подставляя полученные результаты в формулу

Вариационный ряд - определение и вычисление с примерами решенияВариационный ряд - определение и вычисление с примерами решения имеем:

Вариационный ряд - определение и вычисление с примерами решения

Метод отсчета от условного нуля

Упрощенное вычисление средней, состоящее в использовании ряда ее свойств, называется методом отсчета от условного нуля и предполагает:

  1. вычитание из всех вариантов начала отсчета или «ложного нуля» Вариационный ряд - определение и вычисление с примерами решения
  2. деление всех вариантов или отклонений вариантов от начала отсчета на общий множитель, содержащийся в них (k);
  3. условное принятие центра интервала за значение признака всех единиц в данном интервале.

Кроме того, в качестве весов используют сокращенные частоты Вариационный ряд - определение и вычисление с примерами решения или относительные величины (структуры или координации).

Формула исчисления средней методом отсчета от условного нуля:

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения, т. е. отклонение от начала отсчета делится на общий множитель, а исчисление средней из Вариационный ряд - определение и вычисление с примерами решения в зависимости от того, какими весами мы располагаем, производится по одной из следующих формул:

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения — относительные величины координации (см. табл. 19).

Пример 23.

Вычислить средний вес зерен (на Вариационный ряд - определение и вычисление с примерами решения) по данным колонок 1 и 2 табл. 22 (см. стр. 38), используя метод отсчета от условного нуля.

Используем формулу Вариационный ряд - определение и вычисление с примерами решения предварительно заполнив колонки 3, 4, 5 и 6 табл. 22:

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Метод стандартизации средних

Часто сравниваемые совокупности неоднородны по своему составу, и выводы при использовании средних для подобных сравнений могут оказаться неправильными. Чтобы .этого избежать, используют метод стандартизации.

Метод стандартизации средних наиболее разработан в статистике населения (демографической) и медицинской статистике, когда производится сравнение совокупностей с различными Структурами. Стандартизация достигается элиминированием (устранением) влияния различия в структурах совокупностей. Результат сравнения характеризует различие в средних при условии, что структура сравниваемых совокупностей одинакова.

Рассмотрим применение метода стандартизации на примере из медицинской статистики. Имеются данные о двух больницах А и Б по отделениям и в целом.Вариационный ряд - определение и вычисление с примерами решения

Получается парадоксальное положение, при котором по больнице Б итоговая (общая) летальность (8,4%) ниже, чем в больнице А (9,2%), хотя по всем отделениям летальность в больнице Б выше (см. последние две колонки).

Причиной этого парадокса является отличие удельных весов разных отделений в больницах. Доля терапевтического отделения (по числу больных) с самой высокой летальностью составляет в больнице А 60%„ а в больнице Б — 20%, а доля хирургического отделения, с самой низкой летальностью, в больнице А — 20%, а в больнице Б — 60%.

Устраним влияние различия в структурах и стандартизуем распределение больных по отделениям. В качестве стандарта можно взять распределение больных по отделениям в любой больнице или привлечь данные о распределении больных нескольких других больниц. Возьмем за стандарт распределение больных в больнице А. Тогда по больнице А общая летальность (9,2%) останется без изменения. По больнице Б произведем пересчет.Вариационный ряд - определение и вычисление с примерами решения

Находим среднюю стандартизованную летальность больных больницы Б:

Вариационный ряд - определение и вычисление с примерами решения
Таким образом, после стандартизации летальность в больнице Б оказалась значительно выше,, чем в больнице А:
Вариационный ряд - определение и вычисление с примерами решения
Следует иметь в виду, что полученное значение стандартизованной средней может служить только для сравнительных целей, абсолютное же ее значение принимать во внимание не следует.

Если за стандарт принять распределение больных в больнице Б, то получим следующую стандартизованную летальность для больницы А:

Вариационный ряд - определение и вычисление с примерами решения

а отношение стандартизованных средних почти не изменится:

Вариационный ряд - определение и вычисление с примерами решения

Мажорантность средних

Если вычислить различные типы средних для одного и того же вариационного ряда, то численные их значения будут отличаться друг от друга. При этом средние по своей величине расположатся в определенном порядке. Наименьшей из перечисленных средних окажется средняя гармоническая, затем геометрическая и т. д., наибольшей — средняя квадратическая. Порядок возрастания средних при этом определяется показателем степени z в формуле степенной средней и вытекает из «правила мажорантности».

Так,
при z= —1 получаем среднюю гармоническую,

при z= 0    »»    геометрическую,

при z= 1    »»    арифметическую,

при z= 2    »»    квадратическую:

Вариационный ряд - определение и вычисление с примерами решения
Подробное выяснение общего условия мажорантности впервые было произведено А. Я. Боярским, доказавшим, что если две средние должны удовлетворять соответственно уравнениям

Вариационный ряд - определение и вычисление с примерами решения

и    

Вариационный ряд - определение и вычисление с примерами решения
то первая из них Вариационный ряд - определение и вычисление с примерами решения мажорантна в отношении Вариационный ряд - определение и вычисление с примерами решения если при любом значении аргументаВариационный ряд - определение и вычисление с примерами решения

Для степенной средней порядка z имеем:
Вариационный ряд - определение и вычисление с примерами решения
Это отношение для положительных значений с показателем x растет вместе с показателем z.

Пример 24.

Вычислить различные типы средних,по следующим данным (колонки 1 и 2) и убедиться в правильности порядка возрастания средних:Вариационный ряд - определение и вычисление с примерами решения

Заполняем колонки с 3-й по 8-ю и по соответствующим формулам исчисляем средние взвешенные:

Вариационный ряд - определение и вычисление с примерами решения

Порядок средних определился в соответствии с правилом мажорантности:

17,41 < 18,14 < 18,8< 19,37.

Медиана

В качестве характеристики вариационного ряда применяется медиана (Вариационный ряд - определение и вычисление с примерами решения), т. е. такое значение варьирующего признака, которое приходится на середину упорядоченного вариационного ряда. Если в вариационном ряде 2m + 1 случаев, то значение признака у случая m + 1 будет медианным. Если в ряду четное число 2m случаев, то медиана равна средней арифметической из двух срединных значений.

Формулы для исчисления медианы при нечетном и четном числе вариантов:

Вариационный ряд - определение и вычисление с примерами решения

Пример 25.

Дано девять вариантов признака х, расположенных в возрастающем порядке:

Вариационный ряд - определение и вычисление с примерами решения

Вычислить медиану.

Имеем нёчетное число вариантов:

Вариационный ряд - определение и вычисление с примерами решения

Находим медиану

Вариационный ряд - определение и вычисление с примерами решения

Пример 26.

Дано 12 вариантов признака х, расположенных в возрастающем порядке:    

Вариационный ряд - определение и вычисление с примерами решения

Ищем медиану.

Имеем четное число вариантов:

Вариационный ряд - определение и вычисление с примерами решения

При исчислении медианы интервального вариационного ряда сначала находят интервал, содержащий медиану, путем использования накопленных частот или частостей. Медианному интервалу соответствует первая из накопленных частот или частостей, превышающая половину всего объема совокупности.

Для нахождения медианы при постоянстве плотности внутри интервала, содержащего медиану, используют следующую формулу:

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения—нижняя граница медианного интервала;

k — интервальная разность;

Вариационный ряд - определение и вычисление с примерами решения— накопленная частота интервала, предшествующего медианному;

Вариационный ряд - определение и вычисление с примерами решения — частота медианного интервала.

Пример 27.

По данным табл. 7 вычислить медиану.

Используем табл. 9, в которой дана колонка накопленных частот. Так как вариационный ряд содержит 200 единиц, то медиана будет 100-й единицей, входящей в интервал 49,938— 49,943 (определяется из колонки 3 табл. 9 по накопленной частоте 121, первой из накопленных частот, которая превышает половину всего объема вариационного ряда). Следовательно:

Вариационный ряд - определение и вычисление с примерами решения
Вычислим медиану:

Вариационный ряд - определение и вычисление с примерами решения

Медиана может быть определена и графически по кумуляте или огиве. Для определения медианы по кумуляте последнюю ординату, пропорциональную сумме всех частот или частостей, делят пополам. Из полученной точки восстанавливают перпендикуляр до пересечения с кумулятой. Абсцисса точки пересечения и дает значение медианы.

П р и м е р 28. По графику 5 определить медиану.

Последняя ордината, как видно из графика, равна 200. Деление этой ординаты пополам дает точку А (100). Перпендикуляр из точки А до пересечения с кумулятой дает точку В. Абсцисса точки В, равная 49,941, и будет медианой.

Медиана обладает тем свойством, что сумма абсолютных величин отклонений вариантов от медианы меньше, чем от любой другой величины (в том числе и от средней арифметической).

Вариационный ряд - определение и вычисление с примерами решения

Доказательство. Допустим, что в упорядоченном вариационном ряду, состоящем из n вариантов, в качестве начала отсчета отклонений взят вариант, расположенный так, что число вариантов меньше его m, а больше n—m.

Найденную сумму абсолютных величин отклонений от этого варианта обозначим Вариационный ряд - определение и вычисление с примерами решения

Если теперь передвинуть начало отсчета на один вариант вверх так, чтобы вариантов, величина которых меньше начала отсчета, было m—1, а больше n—m+1, то при этом сумма абсолютных величин отклонений вариантов меньших, чем начало отсчета, от начала отсчета уменьшится на m • с, где с — разность между старым и новым началами отсчета.

В то же время сумма абсолютных величин отклонений больших вариантов от нового начала отсчета отклонений увеличится на (n—m) • с. Новая сумма абсолютных отклонений окажется равной

Вариационный ряд - определение и вычисление с примерами решения

Следовательно, при таком передвижении начала отсчета вверх новая сумма абсолютных отклонений будет уменьшаться до тех пор, пока  Вариационный ряд - определение и вычисление с примерами решения т. е. пока m больше половины n.

При Вариационный ряд - определение и вычисление с примерами решения сумма абсолютных отклонений будет, следовательно, наименьшей, а затем при дальнейшем передвижении начала отсчета начнет увеличиваться.

Теперь следует учесть, что n-й вариант, расположенный в середине вариационного ряда, и есть медиана.

Таким образом, минимальное свойство медианы будет доказано.

Это свойство медианы может быть использовано при проектировке расположения трамвайных и троллейбусных остановок, бензоколонок, ссыпных пунктов и т. д.

Например, на шоссе длиной 100 км имеется 10 гаражей. Для проектирования строительства бензоколонки были собраны данные о числе предполагаемых ездок на заправку с каждого гаража. Результаты обследования представлены в табл, на стр. 45.

Нужно поставить бензоколонку так, чтобы общий пробег автомашин на заправку был наименьшим.

Решение: Вариант 1. Если бензоколонку поставить на середине шоссе, т. е. на 50-м километре, то пробеги с учетом числа ездок составят:
Вариационный ряд - определение и вычисление с примерами решения

а)    в одном направлении: 43 • 10 + 24 • 15 + 22 • 5 + 13 • 20 +

+ 10-5 + 4-25 = 1310 км;

б)    в противоположном направлении: 10-15 + 28-30 + 36-10 +

+ 42-65 = 4080 км.

Общий пробег в оба направления окажется равным 5390 км.

Вариант 2. Уменьшения пробега можно достигнуть, если бензоколонку поставить на 63,85-м километре (средний участок шоссе с учетом числа ездок).

В этом случае пробеги составят:

а)    в одном направлении: 56,85-10 + 37,85-15 + 35,85-5 + 26,85 -20 + 23,85-5+17,85 • 25 + 3,85 -15 = 2475,75 км;

б)    в противоположном направлении: 14,15-30 + 22,15-10 + 28,15-65 = 2475,75 км.

Общий пробег в оба направления составит 4951,5 км и окажется меньше, чем при первом варианте, на 438,5 км.

Вариант 3. Наилучший результат, т. е. минимальный общий пробег, будет получен в том случае, если мы поставим бензоколонку на 78-м километре, что будет соответствовать медиане.

Тогда пробеги составят:

а) в одном направлении: 71 • 10 + 52 • 15 + 50 • 5 + 41 • 20 + 38-5 + 32-25+ 18-15 = 3820 км;

б) в противоположном направлении: 8 • 10+14 • 65 = 990 км.

Общий пробег равен 4810 км, т. е. он оказался меньше общих пробегов, рассчитанных по предыдущим вариантам.

Мода

Модой (Вариационный ряд - определение и вычисление с примерами решения) называется вариант, наиболее часто, встречающийся в данном вариационном ряду. Для дискретного ряда мода, являющаяся характеристикой вариационного ряда, определяется по частотам вариантов и соответствует варианту  с наибольшей частотой.

         В случае интервального распределения с равными интервалами модальный интервал (т. е. содержащий моду) определяется пр наибольшей частоте, а при неравных интервалах — по наибольшей плотности.

Вычисление моды производится по следующей формуле:
Вариационный ряд - определение и вычисление с примерами решения

где
Вариационный ряд - определение и вычисление с примерами решения– нижняя граница модального интервала;

k—интервальная разность;

Вариационный ряд - определение и вычисление с примерами решения— частота модального интервала;

Вариационный ряд - определение и вычисление с примерами решения — частота интервала, предшествующего модальному;

Вариационный ряд - определение и вычисление с примерами решения — частота интервала, последующего за модальным.

Пример 29.

По данным табл. 7 находим моду.

Наибольшая частота, равная 49 (колонка 2, табл. 7), соответствует интервалу 49,938—49,943, который и будет модальным.

Следовательно:

Вариационный ряд - определение и вычисление с примерами решения

Подставляя в формулу найденные значения, вычислим моду

Вариационный ряд - определение и вычисление с примерами решения

Как видно из разобранного примера и примера 27, для данного вариационного ряда мода и медиана очень близки друг к другу.

Симметричные вариационные ряды

Вариационные ряды, в которых частоты вариантов, равно отстоящих от средней, равны между собой, называются симметричными. Особенностью симметричных вариационных рядов является равенство трех характеристик: средней арифметической, моды и медианы:

Вариационный ряд - определение и вычисление с примерами решения

Этим пользуются для распознания симметричности вариации в тех случаях, когда она затушевана тем, что средняя приходится не на середину интервала и не на границу между двумя интервалами, т. е. в результате сдвига интервалов группировки ряд частот как таковых оказывается не вполне симметричным.

Пример 30.

По данным табл. 7 определить среднюю и сопоставить с модой и медианой, вычисленными по этим же данным в примерах 27 и 29.

Вычисляем среднюю (см. табл. 26):

Вариационный ряд - определение и вычисление с примерами решения
Вариационный ряд - определение и вычисление с примерами решения

Найденную среднюю сопоставляем с модой и медианой, вычисленными ранее:
Вариационный ряд - определение и вычисление с примерами решения (из примера 27);

Вариационный ряд - определение и вычисление с примерами решения (из примера 29);

Вариационный ряд - определение и вычисление с примерами решения

Полученные характеристики по своей величине близки друг к другу, что дает нам основание считать данный вариационный ряд не очень отклоняющимся от симметричного.

Асимметричные вариационные ряды

Вариационные ряды, в которых расположение вариантов вокруг средней неодинаково, т. е. частоты по обе стороны от средней изменяются по-разному, называются асимметричными или скошенными. Различают левостороннюю и правостороннюю асимметрию.

Меры колеблемости (вариации) признака

Средние величины, характеризуя вариационный ряд одним числом, не учитывают вариацию признака, между тем эта вариация существует. Для измерения вариации признака математическая статистика применяет ряд способов.

Вариационный размах (R) (или широта распределения) есть разность между экстремальными (крайними) значениями вариационного ряда. Он представляет собой величину неустойчивую, чрезвычайно зависящую от случайных обстоятельств; применяется в качестве приблизительной оценки вариации.

В последнее время вариационный размах стал применяться в ряде отраслей промышленности при статистическом изучении качества продукции.

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения — наибольший вариант вариационного ряда;

Вариационный ряд - определение и вычисление с примерами решения — наименьший вариант вариационного ряда.

Среднее линейное отклонение или простое среднее отклонение (р —ро) представляет собой среднюю арифметическую из абсолютных значений отклонений вариантов от средней.

В зависимости от отсутствия или наличия частот вычисляют среднее линейное отклонение невзвешенное или взвешенное:
Вариационный ряд - определение и вычисление с примерами решения
где прямые скобки, в которых заключены разности между вариантами и средней, показывают, что непосредственное суммирование и суммирование после взвешивания производится без учета знаков.

Средний квадрат отклонения — дисперсия (обычно обозначаемый Вариационный ряд - определение и вычисление с примерами решения или Вариационный ряд - определение и вычисление с примерами решения) наиболее часто применяется и в теории и на практике в качестве меры колеблемости признака. Если дисперсию вычисляют для всей совокупности, то ее обозначают а и называют общей дисперсией:

Вариационный ряд - определение и вычисление с примерами решения

Дисперсия невзвешенная

Вариационный ряд - определение и вычисление с примерами решения

Дисперсия взвешенная

Таким образом, общая дисперсия есть средняя арифметическая из квадратов отклонений вариантов от их средней арифметической.

Среднее квадратическое отклонение (Вариационный ряд - определение и вычисление с примерами решения или Вариационный ряд - определение и вычисление с примерами решения) представляет собой квадратный корень из дисперсии:

Вариационный ряд - определение и вычисление с примерами решения

Среднее квадратическое отклонение невзвешенное

Вариационный ряд - определение и вычисление с примерами решения

Среднее квадратическое отклонение взвешенное

Достоинством этого показателя по сравнению со средним линейным отклонением (Вариационный ряд - определение и вычисление с примерами решения) является то, что при его вычислении никакого условного допущения о необходимости суммирования отклонений вариантов от средней без учета их знаков мы не делаем, а используем формулу средней квадратической (см. формулу на стр. 25), по которой при возведении отклонений в квадрат их знак безразличен.

Учитывая, что среднее линейное отклонение и среднее квадратическое отклонение представляют собой абсолютные величины, выраженные в тех же единицах измерения, что и варианты, для характеристики колеблемости признака используют относительные показатели – коэффициенты вариации (V), представляющие собой отношение среднего линейного отклонения или среднего квадратического отклонения к средней, выраженное в процентах (или в долях единицы):

Вариационный ряд - определение и вычисление с примерами решения

Коэффициент вариации по среднему линейному отклонению

Вариационный ряд - определение и вычисление с примерами решения

Коэффициент вариации по среднему квадратическому отклонению
Видоизмененный показатель коэффициента вариации по среднему линейному отклонению (Вариационный ряд - определение и вычисление с примерами решения) представляет собой показатель неровноты (Н). Он применяется в текстильной промышленности в. качестве меры колеблемости при изучении неровноты пряжи (по толщине, весу и другим показателям)

Вариационный ряд - определение и вычисление с примерами решения

Показатель неровноты невзвешенный

Вариационный ряд - определение и вычисление с примерами решения

Показатель неровноты взвешенный

Вариационный ряд - определение и вычисление с примерами решения — общая средняя;

Вариационный ряд - определение и вычисление с примерами решения — количество вариантов, величина которых меньше, чем общая средняя;

n — объем вариационного ряда;

Вариационный ряд - определение и вычисление с примерами решения—средняя из вариантов меньших, чем общая средняя;

Вариационный ряд - определение и вычисление с примерами решения — сумма частот вариантов, меньших общей средней;

Вариационный ряд - определение и вычисление с примерами решения—сумма частот всех вариантов.

 Доказательство (для показателя неровноты невзвешенного) .

Подставляя в формулу Вариационный ряд - определение и вычисление с примерами решения вместо Вариационный ряд - определение и вычисление с примерами решения его значение  Вариационный ряд - определение и вычисление с примерами решения

получаем:

Вариационный ряд - определение и вычисление с примерами решения (без умножения на 100).

Разделим весь вариационный ряд на две части. Пусть в первую часть включены варианты меньшие, чем общая средняя, а во вторую — большие, чем общая средняя.

Тогда

Вариационный ряд - определение и вычисление с примерами решения

где

Вариационный ряд - определение и вычисление с примерами решения —сумма отклонений вариантов, больших, чем общая средняя, от общей средней дает положительную величину;

Вариационный ряд - определение и вычисление с примерами решения— сумма отклонений вариантов меньших, чем общая средняя, от общей средней дает отрицательную величину.

Но так как Вариационный ряд - определение и вычисление с примерами решения представляет сумму абсолютных значений отклонений, перед вторым слагаемым ставим знак минус. Наос-новании свойства средней арифметической о том, что Вариационный ряд - определение и вычисление с примерами решения 0, делаем вывод, что Вариационный ряд - определение и вычисление с примерами решенияи следовательно,

Вариационный ряд - определение и вычисление с примерами решения

Учитывая, что под знаком суммы слагаемых будет Вариационный ряд - определение и вычисление с примерами решения выносим Вариационный ряд - определение и вычисление с примерами решения из-под знака суммы:

Вариационный ряд - определение и вычисление с примерами решения

Делим и умножаем числитель на Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Пример 31.

По данным табл. 27 о крепости одиночной нити (в г) вычислим показатели вариации признака: вариационный размах, показатель неровноты, коэффициенты вариации по среднему линейному отклонению и среднему квадратическому отклонению.

Вычисляем R:

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Находим среднюю: Вариационный ряд - определение и вычисление с примерами решения

Находим Н. Интервал 190—200 расчленяем на две части: 190—192,16 и 192,16—200.
Аналогично поступаем с частотами: так как вся частота данного интервала равна 69, то, предполагая равномерное распределение признака внутри интервала, получим, что на величину, равную единице интервала, приходится 6,9 единицы частот (абсолютная плотность); на новый интервал (190—192,16), в котором интервальная разность равна 2,16, придется 6,9*2,16 = 14,9 единицы частот. Для простоты возьмем 15. Суммируя частоты вариантов, меньших общей средней, получим 255 (см. колонку 5 табл. 27). Суммируя произведения х
Вариационный ряд - определение и вычисление с примерами решения
Вычисляем Вариационный ряд - определение и вычисление с примерами решения и Вариационный ряд - определение и вычисление с примерами решения.

Учитывая одно из свойств средней, а именно, что сумма отклонений от средней, соответствующим образом взвешенных, равна нулю, практически поступают следующим образом. В колонке 7 табл. 27, несмотря на знак прямых скобок, указывающих на абсолютную величину отклонений, для отрицательных отклонений от средней знак минус оставляют и ведут вычисление только до перемены знака на плюс. Взвешивают отрицательные отклонения от средней (колонка 8 табл. 27) и, так как сумма взвешенных положительных отклонений от средней должна быть равна сумме взвешенных отрицательных отклонений от средней, для определения общей суммы взвешенных отклонений найденную сумму удваивают.

Получаем:

Вариационный ряд - определение и вычисление с примерами решения

Вычисляем Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Между средним квадратическим отклонением Вариационный ряд - определение и вычисление с примерами решения и средним линейным отклонением Вариационный ряд - определение и вычисление с примерами решения существует определенное соотношение (такое же соотношение, как между Вариационный ряд - определение и вычисление с примерами решения и Вариационный ряд - определение и вычисление с примерами решения). По свойству мажорантности Вариационный ряд - определение и вычисление с примерами решения всегда больше Вариационный ряд - определение и вычисление с примерами решения

Если объем совокупности достаточно большой и распределение признака в вариационном ряде близко к нормальному (см. раздел IV), то связь между Вариационный ряд - определение и вычисление с примерами решения и Вариационный ряд - определение и вычисление с примерами решения определяется по формуле:   Вариационный ряд - определение и вычисление с примерами решения

Отклонения Вариационный ряд - определение и вычисление с примерами решения от 125 в обе стороны зависят от близости распределения к нормальному.

Пример 32.

По данным примера 31. найти соотношение между Вариационный ряд - определение и вычисление с примерами решения и Вариационный ряд - определение и вычисление с примерами решения

Имеем:

Вариационный ряд - определение и вычисление с примерами решения

Это отношение не намного отличается от теоретического (1,25), что косвенно свидетельствует о близости взятого распределения к нормальному.

Свойства дисперсии

Средний квадрат отклонения — дисперсия — обладает рядом свойств, которые позволяют упростить вычисления.

1) Дисперсия постоянной величины равна нулю:

Вариационный ряд - определение и вычисление с примерами решения
где с — постоянная величина;

Вариационный ряд - определение и вычисление с примерами решения— дисперсия постоянной величины.

2) Если все значения вариантов признака х уменьшить на постоянную величину, то дисперсия не изменится. Это позволяет вычислить дисперсию вариационного ряда путем вычитания из вариантов начала отсчета Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения — дисперсия вариантов х;

Вариационный ряд - определение и вычисление с примерами решения—дисперсия вариантов, уменьшенных вычитанием Вариационный ряд - определение и вычисление с примерами решения
 

Доказательство для невзвешенной дисперсии

Имеем: Вариационный ряд - определение и вычисление с примерами решения со средней Вариационный ряд - определение и вычисление с примерами решения Вариационный ряд - определение и вычисление с примерами решениясо средней

Вариационный ряд - определение и вычисление с примерами решения

Тогда 

Вариационный ряд - определение и вычисление с примерами решения
3)    Дисперсия алгебраической суммы независимых случайных величин (см. стр. 115 и далее) равна сумме их дисперсий:

Вариационный ряд - определение и вычисление с примерами решения

4)    Если все значения вариантов х уменьшить в k раз, то дисперсия уменьшится в Вариационный ряд - определение и вычисление с примерами решения раз:

Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения —дисперсия из частных, полученных в результате деления вариантов на постоянную величину k.
 

Доказательство для невзвешенной дисперсии

Имеем: Вариационный ряд - определение и вычисление с примерами решения со средней Вариационный ряд - определение и вычисление с примерами решенияВариационный ряд - определение и вычисление с примерами решения со средней Вариационный ряд - определение и вычисление с примерами решения Тогда:
   Вариационный ряд - определение и вычисление с примерами решения
Отсюда:    Вариационный ряд - определение и вычисление с примерами решения

5) Дисперсия суммы двух случайных величин, связанных корреляционной зависимостью, равна сумме их дисперсий плюс удвоенное произведение среднеквадратических отклонений на коэффициент корреляции между этими случайными величинами
Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения — коэффициент корреляции между величинами у и х, определяемый по формуле Вариационный ряд - определение и вычисление с примерами решения

(Значение его как меры тесноты связи см. раздел «Корреляция».)

Пример 33.

Даны случайные величины у и х, связанные корреляционной зависимостью так, что Вариационный ряд - определение и вычисление с примерами решения =0,5.

Вариационный ряд - определение и вычисление с примерами решения

Найти дисперсию суммы этих случайных величин (для простоты дан пример без взвешивания).

Находим средние:Вариационный ряд - определение и вычисление с примерами решения

Определяем дисперсии:

Вариационный ряд - определение и вычисление с примерами решения
Используя рассматриваемую формулу, имеем:
Вариационный ряд - определение и вычисление с примерами решения
Убедимся, что если х + у = z, то получаем три значения z: 4, 8 и 9.
Находим: среднюю
Вариационный ряд - определение и вычисление с примерами решения
дисперсию

Вариационный ряд - определение и вычисление с примерами решения
т. е.

Вариационный ряд - определение и вычисление с примерами решения
Результаты вычисления, произведенные по непосредственным данным и суммированным, совпадают. 

6) Дисперсия суммы двух случайных величин, связанных Линейной функциональной зависимостью (см. раздел «Корреляция»), равна сумме их дисперсий плюс или минус удвоенное произведение среднеквадратических отклонений:

Вариационный ряд - определение и вычисление с примерами решения

В данной формуле знак плюс или минус определяется характером связи. При прямолинейной связи у с х Вариационный ряд - определение и вычисление с примерами решения знак, о котором идет речь, совпадает со знаком Вариационный ряд - определение и вычисление с примерами решения Если Вариационный ряд - определение и вычисление с примерами решения то в формуле берем знак плюс, если Вариационный ряд - определение и вычисление с примерами решения то берем знак минус.

Пример 34.

Даны две случайные величины х и у, связанные уравнением у=2+Зх.Вариационный ряд - определение и вычисление с примерами решения

Найти дисперсию суммы этих случайных величин. Находим средние:

Вариационный ряд - определение и вычисление с примерами решения
Определяем дисперсии по формуле:

Вариационный ряд - определение и вычисление с примерами решения

Используем рассматриваемую формулу. В данном случае берем знак плюс:

Вариационный ряд - определение и вычисление с примерами решения

Убеждаемся, что если х + у = z, то получаем три значения z: 6, 14 и 22.

Находим: среднюю

Вариационный ряд - определение и вычисление с примерами решения
дисперсию

Вариационный ряд - определение и вычисление с примерами решения

т. е.

Вариационный ряд - определение и вычисление с примерами решения

Вычисление дисперсии методом отсчета от условного нуля

Практически расчет дисперсии производят по формуле, упрощающей вычисления. Эта формула получена с учетом свойств дисперсии, а расчет по ней называется отсчетом от условного нуля:
Вариационный ряд - определение и вычисление с примерами решения

Доказательство. Возьмем выражение  Вариационный ряд - определение и вычисление с примерами решения   произведем некоторые преобразования и получим:

Вариационный ряд - определение и вычисление с примерами решения
Так как второе слагаемое в фигурной скобке равно нулю: Вариационный ряд - определение и вычисление с примерами решения то,  продолжая преобразования, получаем:

Вариационный ряд - определение и вычисление с примерами решения
Отсюда:
Вариационный ряд - определение и вычисление с примерами решения

и

Вариационный ряд - определение и вычисление с примерами решения

Пример 35.

По данным табл. 27 (колонки 2 и 3) рассчитать дисперсию, используя формулу, упрощающую вычисления. Располагаем данные, необходимые для ее вычисления, в таблице (см. табл. 30).

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Величина дисперсии совпадает с величиной, полученной в примере 31, но в данном случае вычисления в значительной мере упрощены.

Из формулы Вариационный ряд - определение и вычисление с примерами решения вытекает еще одна формула дисперсии.

При Вариационный ряд - определение и вычисление с примерами решения получаем:

Вариационный ряд - определение и вычисление с примерами решения
или

Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения — средняя из квадратов вариантов.
Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения — квадрат средней

Вариационный ряд - определение и вычисление с примерами решения
Так, если вычислить дисперсию по данным табл. 27, пользуясь этой формулой, то получим:Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Результат совпадает с дисперсией, полученной по этим данным в примере 31.

Частные дисперсии

Для каждой группы вариантов вариационного ряда может быть исчислена наряду с частной средней и дисперсия, которая называется частной дисперсией или внутригрупповой, Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения (невзвешенная);

Вариационный ряд - определение и вычисление с примерами решения (взвешенная),

Где Вариационный ряд - определение и вычисление с примерами решения — частная средняя i-й группы;

Вариационный ряд - определение и вычисление с примерами решения—частная дисперсия i-й группы.

(Вариационный ряд - определение и вычисление с примерами решения означает суммирование по i-й части совокупности).

Средняя из частных дисперсий

Из частных, т. е.

внутригрупповых, дисперсий может быть найдена средняя, которая обозначается Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
Средняя из частных дисперсий служит для характеристики среднего рассеяния признака внутри групп.

Межгрупповая дисперсия

Частные средние по группам Вариационный ряд - определение и вычисление с примерами решения могут не совпадать с общей средней Вариационный ряд - определение и вычисление с примерами решения Мерой колеблемости частных средних вокруг общей средней является меж-
групповая дисперсия Вариационный ряд - определение и вычисление с примерами решения— дельта квадрат в среднемВариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Правило сложения вариаций

Между общей дисперсией, средней из частных дисперсий и межгрупповой дисперсией “существует такая связь:    

Вариационный ряд - определение и вычисление с примерами решения
Это — правило сложения вариации (или дисперсий).

Доказательство.

Пусть общая совокупность состоит из t групп численностью Вариационный ряд - определение и вычисление с примерами решения и Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Частные средние Вариационный ряд - определение и вычисление с примерами решенияобщая средняя Вариационный ряд - определение и вычисление с примерами решения и дисперсия

Вариационный ряд - определение и вычисление с примерами решения

Частные дисперсии можно записать следующим образом.
Вариационный ряд - определение и вычисление с примерами решения
откуда

Вариационный ряд - определение и вычисление с примерами решения

Суммируя Вариационный ряд - определение и вычисление с примерами решения для всей совокупности, получаем: Вариационный ряд - определение и вычисление с примерами решения

Умножим обе части этого равенства на Вариационный ряд - определение и вычисление с примерами решения тогдаВариационный ряд - определение и вычисление с примерами решения

Вычитая из обеих частей равенства Вариационный ряд - определение и вычисление с примерами решения получим:
Вариационный ряд - определение и вычисление с примерами решения
Левая часть равенства представляет собой общую дисперсию, т. е. Вариационный ряд - определение и вычисление с примерами решения. В правой части первое слагаемое есть средняя из частных дисперсий, т. е. Вариационный ряд - определение и вычисление с примерами решения а разность двух последних выражений— межгрупповая дисперсия Вариационный ряд - определение и вычисление с примерами решения Тогда:

Вариационный ряд - определение и вычисление с примерами решения

Пример 36.

Используя данные табл. 27 и расчленяя вариационный ряд на две группы (1-я группа с интервала 120—130 до интервала 190—200 включительно, а 2-я группа с •интервала 200—210 до интервала 260—270), исчислить частные дисперсии, среднюю из частных дисперсий и межгрупповую дисперсию.

Начинаем расчет с 1-й группы (см. табл. 33):

Вариационный ряд - определение и вычисление с примерами решения= 195; k= 10;

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
Для 2-й группы получаем (по тем же формулам):

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Вычисляем среднюю из частных дисперсий:

Вариационный ряд - определение и вычисление с примерами решения
Находим межгрупповую дисперсию, используя общую среднюю для всего вариационного ряда, найденную в примере 31 и равную 192,16

Вариационный ряд - определение и вычисление с примерами решения
Для получения общей дисперсии используем правило сложения вариации:

Вариационный ряд - определение и вычисление с примерами решения

Результат совпадает с дисперсией, вычисленной в примере 31 по табл. 27 без расчленения вариационного ряда на две группы.

Вариация альтернативного признака

Наряду с количественной вариацией признака может иметь место и качественная вариация. Если, имеются два взаимно исключающих друг друга варианта, то вариация признака называется альтернативной.

Так, например, рассмотрение выпущенной продукции с точки зрения ее качества, т. е. пригодности к дальнейшему использованию, дает альтернативный признак. Обозначая наличие признака 1, а отсутствие — 0 и долю вариантов, обладающих данным признаком, — р, а долю вариантов, не обладающий им, — q

и замечая, что p + q=1, получаем сначала среднюю: Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения, а затем дисперсию альтернативного признака:

Вариационный ряд - определение и вычисление с примерами решения

Следовательно, Вариационный ряд - определение и вычисление с примерами решения

§ 35. Из дисперсии альтернативного признака извлечением корня находится среднее квадратическое отклонение:

Вариационный ряд - определение и вычисление с примерами решения

Пример 37.

Совокупность состоит из 10000 электрических, лампочек, включающих в свой состав 20 бракованных. Найти дисперсию признака и среднее квадратическое отклонение.

Находим долю брака и долю доброкачественных лампочек:
Вариационный ряд - определение и вычисление с примерами решения
По формуле Вариационный ряд - определение и вычисление с примерами решения вычислим дисперсию:

Вариационный ряд - определение и вычисление с примерами решения

а затем среднее квадратическое отклонение:
Вариационный ряд - определение и вычисление с примерами решения

Попытки измерить колеблемость признака путем нахождения средней арифметической из квадратов разностей вариантов во всех возможных их попарных сочетаниях не вносят-ничего принципиально нового.

Можно доказать, что этот показатель Вариационный ряд - определение и вычисление с примерами решения представляет собой дисперсию, умноженную на 2, т. е.

Вариационный ряд - определение и вычисление с примерами решения

Пусть, например, имеются варианты:

1; 3; 5; 6; 10.

Исчислим среднюю и дисперсию:

Вариационный ряд - определение и вычисление с примерами решения

Вычислим абсолютные разности всех возможных попарных сочетаний, включая и сочетания каждого варианта с ним же:

1)    Разности попарных сочетаний с первым вариантом

1 — 1=0; 3—1=2; 5—1=4; 6—1 = 5; 10—1=9.

2)    Разности попарных сочетаний со вторым вариантом

3 — 3 = 0; 3—1 =2; 3 —5 = 2; 3 — 6 = 3; 3—10 = 7

и далее:

5    —5 = 0; 5—1 =4; 5 —3 = 2; 5 —6= 1; 5—10 = 5;

6    — 6 = 0; 6—1 =5; 6 — 3 = 3; 6 — 5= 1; 6—10 = 4;

10 — 10 = 0; 10 — 1 = 9; 10 —3 = 7; 10 —5 = 5; 10 —6 = 4.

Находим сумму квадратов 25 разностей и делением на 25 — среднюю арифметическую из квадратов разностей:Вариационный ряд - определение и вычисление с примерами решения

Замечаем, что этот же результат можно получить умножением дисперсии (Вариационный ряд - определение и вычисление с примерами решения) на 2:

9,2*2=18,4.

Квартили и децили

Как уже было показано, медиана — это вариант, который делит упорядоченный вариационный ряд на две равные по объему группы. В каждой группе аналогично можно найти также вариант, делящий ее на две подгруппы. Такие варианты называются квартилями.

Различают нижний и верхний квартили. Иногда вычисляют и децили, т.е. такие варианты, которые делят вариационный ряд на 10 равных по объему групп.

При отношении объема двух подгрупп, как Вариационный ряд - определение и вычисление с примерами решения к Вариационный ряд - определение и вычисление с примерами решения имеем нижний квартиль Вариационный ряд - определение и вычисление с примерами решения при отношении объемов подгруппВариационный ряд - определение и вычисление с примерами решения к Вариационный ряд - определение и вычисление с примерами решения  верхний квартиль Вариационный ряд - определение и вычисление с примерами решения а при отношениях объемов групп Вариационный ряд - определение и вычисление с примерами решения к Вариационный ряд - определение и вычисление с примерами решения  Вариационный ряд - определение и вычисление с примерами решения к Вариационный ряд - определение и вычисление с примерами решения и т.д. —децили.
Формулы для расчетов в интервальном ряду:

нижнего квартиля

Вариационный ряд - определение и вычисление с примерами решения
верхнего квартиля
Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения — минимальная граница интервала, содержащего нижний квартиль (определяется по накопленным частотам);

Вариационный ряд - определение и вычисление с примерами решения —то же, для верхнего квартиля;

k — интервальная разность;

 Вариационный ряд - определение и вычисление с примерами решения—накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль;

Вариационный ряд - определение и вычисление с примерами решения —то же, для верхнего квартиля;

Вариационный ряд - определение и вычисление с примерами решения —частота интервала, содержащего нижний квартиль;

Вариационный ряд - определение и вычисление с примерами решения —то же, для верхнего квартиля.

Вычисление децилей ничем принципиально не отличается от вычисления медианы и квартилей. Так, первый и второй децили могут быть вычислены по формулам:

Вариационный ряд - определение и вычисление с примерами решения

и т.д.

Пример 38.

По данным табл. 7 вычислить нижний и верхний квартили (рекомендуется предварительно вспомнить вычисление медианы).

Используем табл. 9, в которой дана колонка накопленных частот. Нижний квартиль рассчитывается по соответствующей формуле Вариационный ряд - определение и вычисление с примерами решения Из итога колонки 2 табл. 9 видно, что численность совокупности для этого ряда равна 200 единицам. Следовательно, нижний квартиль соответствует 50-й единице. По колонке накопленных частот (3) видим, что нижний квартиль содержится в интервале 49,933—49,938, потому что первая из накопленных частот, превышающих 50, — это накопленная частота данного интервала.

Следовательно:

Вариационный ряд - определение и вычисление с примерами решения
Находим нижний квартиль:

Вариационный ряд - определение и вычисление с примерами решения

Верхний квартиль отвечает 150-й единице и содержится в интервале 49,943-49,948 (так как первая из накопленных частот, превышающая 150, равна 164 и соответствует данному интервалу).

Находим верхний квартиль:

Вариационный ряд - определение и вычисление с примерами решения

Квартиль

В качестве характеристики колеблемости вариационного ряда применяется относительный показатель, подобный коэффициенту вариации, но для вычисления которого используются нижний и верхний квартили и медиана. Этот показатель называют квартилем Вариационный ряд - определение и вычисление с примерами решения без добавления слова нижний или верхний. Он исчисляется по формуле:
Вариационный ряд - определение и вычисление с примерами решения
где Вариационный ряд - определение и вычисление с примерами решения— половина межквартильного расстояния.

Пример 39.

По результатам исчисления медианы, а также нижнего и верхнего квартилей по табл. 7 (см. примеры 27 и 38) найти квартиль.

Имеем:
Вариационный ряд - определение и вычисление с примерами решения
Интересно, что величина коэффициента вариации, по данным табл. 7, довольно близка к полученной величине квартиля:

Вариационный ряд - определение и вычисление с примерами решения

Моменты распределения

Обобщающими характеристиками вариационных рядов являются моменты распределения. Характер распределения может быть определен с помощью небольшого числа моментов. Способ моментов был разработан русским математиком П. Л. Чебышевым и успешно применен А. А. Марковым для рассмотрения возможностей использования закона нормального распределения при изучении сумм: большого, но конечного числа независимых случайных величин.

Средняя из k-x степеней-отклонений вариантов х от некоторой постоянной величины А называется моментом k-гo порядка:

Вариационный ряд - определение и вычисление с примерами решения

При исчислении средней в качестве весов могут быть использованы частоты, частости или вероятности (см. раздел II). При использовании в качестве весов частот или частостей моменты называются эмпирическими, а при использовании вероятностей — теоретическими.

Порядок момента определяется величиной k. Эмпирический момент k-гo порядка находится как отношение суммы произведений k-x степеней отклонений вариантов от постоянной величины А на частоты к сумме частот:

Вариационный ряд - определение и вычисление с примерами решения
В зависимости от выбора постоянной величины А различают следующие моменты:

1) Если постоянная величина А равна нулю (А=0), то моменты называются начальными. Приводим формулу всех начальных моментов:

Вариационный ряд - определение и вычисление с примерами решения

Тогда:

при k = 0 получаем 

Вариационный ряд - определение и вычисление с примерами решения
при k=1

Вариационный ряд - определение и вычисление с примерами решения
при k=2

Вариационный ряд - определение и вычисление с примерами решения
при k = 3

Вариационный ряд - определение и вычисление с примерами решения
при k = 4
Вариационный ряд - определение и вычисление с примерами решения
и т. д. Практически используют моменты первых четырех порядков.

Пример 40.

Вычислить начальные моменты первых четырех порядков, если варианты х имеют как отрицательные, так и положительные значения.

Располагаем все расчеты в таблицу:Вариационный ряд - определение и вычисление с примерами решения

Вычисляем моменты:
Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
2) Если А не равно нулю, а некоторой произвольной величине Вариационный ряд - определение и вычисление с примерами решения (начало отсчета), то моменты называются начальными относительно Вариационный ряд - определение и вычисление с примерами решения и обозначаются Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
При подстановке различных значений k получаем начальные моменты относительно Вариационный ряд - определение и вычисление с примерами решения
при k=0

Вариационный ряд - определение и вычисление с примерами решения
при k=1

Вариационный ряд - определение и вычисление с примерами решения
при k=2

Вариационный ряд - определение и вычисление с примерами решения

при k=3

Вариационный ряд - определение и вычисление с примерами решения

при k=4

Вариационный ряд - определение и вычисление с примерами решения

и т.д.

Из формулы момента первого порядка вытекает, что Вариационный ряд - определение и вычисление с примерами решенияВариационный ряд - определение и вычисление с примерами решения т. е. средняя арифметическая равна началу отсчета плюс начальный момент первого порядка относительно начала отсчета. Если отклонения х от Вариационный ряд - определение и вычисление с примерами решения имеют общий множитель С, то на него можно разделить отклонения, а по окончании вычислений полученный момент умножить на этот множитель в соответствующей степени, т. е.Вариационный ряд - определение и вычисление с примерами решения

Отсюда следует, что Вариационный ряд - определение и вычисление с примерами решения

При сравнении с вычислением средней методом отсчета от условного нуля видно, что Вариационный ряд - определение и вычисление с примерами решения (см. стр. 37) и Вариационный ряд - определение и вычисление с примерами решения тождественны. Поэтому вычисление средней методом отсчета от условного нуля иногда называют методом моментов.

Пример 41.

Вычислить начальные моменты относительно Вариационный ряд - определение и вычисление с примерами решения = 20 первых четырех порядков по данным колонок 1 и 2 табл. 35.

Располагаем все расчеты в таблицу:
Таблица 35
Вариационный ряд - определение и вычисление с примерами решения
Возьмем в качестве Вариационный ряд - определение и вычисление с примерами решения вариант, равный 20, вычислим колонку 3, разделим все отклонения от начала отсчета на общий множитель С, равный 2, и получим значения Вариационный ряд - определение и вычисление с примерами решения в колонке 4, для которых начальные моменты вычислены в примере 40.

Для получения Вариационный ряд - определение и вычисление с примерами решения нужно найденные в примере 40 начальные моменты умножить на С, равное 2, в соответствующей степени:
Вариационный ряд - определение и вычисление с примерами решения
Практически при нахождении начальных моментов относительно Вариационный ряд - определение и вычисление с примерами решения поступают следующим образом:

из всех вариантов вычитают начало отсчета и находят отклонения Вариационный ряд - определение и вычисление с примерами решения
делят эти отклонения на общий множитель Вариационный ряд - определение и вычисление с примерами решения
находят начальные моменты для Вариационный ряд - определение и вычисление с примерами решения

путем умножения найденных начальных моментов на Вариационный ряд - определение и вычисление с примерами решения получают начальные моменты относительно Вариационный ряд - определение и вычисление с примерами решения
3) Если за постоянную величину А взять среднюю Вариационный ряд - определение и вычисление с примерами решения то моменты называются центральными и обозначаются Вариационный ряд - определение и вычисление с примерами решения
Вариационный ряд - определение и вычисление с примерами решения
Тогда:

при k = 0
Вариационный ряд - определение и вычисление с примерами решения
центральный момент нулевого порядка равен единице
при k=1
Вариационный ряд - определение и вычисление с примерами решения
центральный момент первого порядка равен нулю
при k = 2
Вариационный ряд - определение и вычисление с примерами решения
центральный момент второго порядка равен дисперсии и служит мерой колеблемости признака

при k = 3
Вариационный ряд - определение и вычисление с примерами решения
центральный момент третьего порядка служит мерой асимметрии распределения признака. Если распределение симметрично, то Вариационный ряд - определение и вычисление с примерами решения
При k = 4
Вариационный ряд - определение и вычисление с примерами решения
центральный момент четвертого порядка

Пример 42.

Вычислим центральные,моменты первых четырех порядков по данным табл. 36 (колонки 1, 2).

Располагаем все расчеты в таблицу (см. табл. 36). Получаем:

Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
§ 40. Существует связь между начальными моментами первых четырех порядков вариантов Вариационный ряд - определение и вычисление с примерами решения и начальным моментом 4-го порядка вариантов Вариационный ряд - определение и вычисление с примерами решения для случая, когда варианты Вариационный ряд - определение и вычисление с примерами решения меньше вариантов Вариационный ряд - определение и вычисление с примерами решения на единицу:Вариационный ряд - определение и вычисление с примерами решения

где Вариационный ряд - определение и вычисление с примерами решения — четвертый начальный момент вариантов Вариационный ряд - определение и вычисление с примерами решения

В правой части формулы все начальные моменты (от нулевого порядка до четвертого порядка) вариантов Вариационный ряд - определение и вычисление с примерами решения.

Практически данная формула используется для проверки

вычисления начальных моментов первых четырех порядков вариантов Вариационный ряд - определение и вычисление с примерами решения путем вычисления начального момента 4-го порядка новых вариантов Вариационный ряд - определение и вычисление с примерами решения полученных прибавлением к вариантам Вариационный ряд - определение и вычисление с примерами решения единицы.

Если исчисления Вариационный ряд - определение и вычисление с примерами решения непосредственно из данных по формуле

Вариационный ряд - определение и вычисление с примерами решения

и по формуле связи между моментами дают тождественные результаты, то это свидетельствует о правильности всех начальных моментов первых четырех порядков, вычисленных для вариантов Вариационный ряд - определение и вычисление с примерами решения

Пример 43.

Проверим правильность начальных моментов первых четырех порядков, вычисленных в примере 40.

Располагаем все расчеты в таблицу:Вариационный ряд - определение и вычисление с примерами решения

В колонке 3 записываем новые варианты Вариационный ряд - определение и вычисление с примерами решения путем прибавления к старым вариантам Вариационный ряд - определение и вычисление с примерами решения единицы.

Получаем по формуле:

Вариационный ряд - определение и вычисление с примерами решения

Для расчетов Вариационный ряд - определение и вычисление с примерами решения по формуле связи между моментами привлекаем данные из примера 40:

Вариационный ряд - определение и вычисление с примерами решения
Получаем:

Вариационный ряд - определение и вычисление с примерами решения

Результаты совпадают, следовательно, начальные моменты первых четырех порядков в примере 40 вычислены правильно.

Вычисление центральных моментов, привлекаемых в качестве характеристик вариационного ряда, по формуле

Вариационный ряд - определение и вычисление с примерами решения с точки зрения вычислительной техники довольно громоздко. Поэтому сначала вычисляют начальные моменты-относительно Вариационный ряд - определение и вычисление с примерами решения а для нахождения центральных моментов используют формулу перехода от начальных моментов, вычисленных относительно Вариационный ряд - определение и вычисление с примерами решения к центральным:

Вариационный ряд - определение и вычисление с примерами решения

Знаки в формуле чередуются.

Вариационный ряд - определение и вычисление с примерами решения и т. д. обозначают числа сочетаний из: k по 1; k по 2; k по 3 и т. д.

Полагая в этой формуле k равным 0, 1, 2, 3, 4 и т. д., можем получить центральные моменты различных порядков:

Вариационный ряд - определение и вычисление с примерами решения

Для вычисления центральных моментов высших порядков по найденным центральным моментам низших порядков и начальным моментам относительно Вариационный ряд - определение и вычисление с примерами решения подставляем в формулу третьего центрального момента величину Вариационный ряд - определение и вычисление с примерами решения найденную из формулы второго центрального момента:

Вариационный ряд - определение и вычисление с примерами решения

т. е.

Вариационный ряд - определение и вычисление с примерами решения

Пример 44.

Используя данные примера 41, где вычислены начальные моменты относительно Вариационный ряд - определение и вычисление с примерами решения = 20, вычислим центральные моменты первых четырех порядков по соответствующим формулам и сверим полученные результаты с центральными моментами, вычисленными в примере 42.

Из примера 41 имеем:

Вариационный ряд - определение и вычисление с примерами решения

По формулам центральных моментов получаем, используя начальные моменты:

Вариационный ряд - определение и вычисление с примерами решения

Сравнивая центральные моменты первых четырех порядков, вычисленные по указанным формулам, с центральными моментами, вычисленными в примере 42 непосредственно по формуле Вариационный ряд - определение и вычисление с примерами решения убеждаемся в сравнительной простоте исчисления центральных моментов по приведенным в этом параграфе формулам.

Аналогично используются и формулы центральных моментов высших порядков по центральным моментам низших порядков.

Вычислим третий центральный момент по второму центральному моменту и начальным относительно Вариационный ряд - определение и вычисление с примерами решения моментам:

Вариационный ряд - определение и вычисление с примерами решения

Вычислим и четвертый центральный момент по третьему и второму центральным моментам и начальным относительно Вариационный ряд - определение и вычисление с примерами решения моментам:

Вариационный ряд - определение и вычисление с примерами решения

Исчисление центральных моментов сводится к:

  1. нахождению начальных моментов Вариационный ряд - определение и вычисление с примерами решения и их проверке:
  2. нахождению начальных моментов относительно произвольно выбранного начала отсчета Вариационный ряд - определение и вычисление с примерами решения
  3. использованию формул перехода от начальных моментов относительно произвольно выбранного начала отсчета к центральным моментам Вариационный ряд - определение и вычисление с примерами решения

Пример 45.

По данным табл. 38 (колонки 1, 2 и 3) вычислить центральные моменты первых четырех порядков:
Вариационный ряд - определение и вычисление с примерами решения
Начнем с вычисления начальных моментов. Для этого выбираем Вариационный ряд - определение и вычисление с примерами решения = 44,5, находим отклонения вариантов х от Вариационный ряд - определение и вычисление с примерами решенияи делим эти отклонения на общий множитель с=3.

Все действия производим в табл. 38 и получаем колонку Вариационный ряд - определение и вычисление с примерами решения(колонка 4). Далее, произведя расчеты по формуле  Вариационный ряд - определение и вычисление с примерами решения находим начальные моменты. Для этого рассчитываем колонки 5, 6, 7 и 8.

Для простоты расчета числа колонки 5 получают перемножением чисел, расположенных в колонках 2 и 4, числа колонки 6 получают перемножением чисел колонок 4 и 5, числа колонки 7— перемножением чисел колонок 4 и 6 и т. д.
Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
Проверяем вычисление начальных моментов первых четырех порядков. Для этого вычисляем колонки 9 и 10.

Числа колонки 9 получают прибавлением к числам колонки 4 единицы. Числа колонки 10 (а можно и 8) получают, используя таблицу, имеющую следующий вид:

Вариационный ряд - определение и вычисление с примерами решения
В колонке 1 таблицы указаны частоты (m) от 1 до 50, а в верхнем заголовке — числа х’ или х”. Произведения Вариационный ряд - определение и вычисление с примерами решения или Вариационный ряд - определение и вычисление с примерами решения находятся на пересечении соответствующей строки и столбца.

Так, если Вариационный ряд - определение и вычисление с примерами решения

если Вариационный ряд - определение и вычисление с примерами решения

и т. д. (см. приложение VII).

Используя формулу Вариационный ряд - определение и вычисление с примерами решения получаем:

Вариационный ряд - определение и вычисление с примерами решения

Исчисляя Вариационный ряд - определение и вычисление с примерами решения непосредственно по формуле Вариационный ряд - определение и вычисление с примерами решения получаем:

Вариационный ряд - определение и вычисление с примерами решения
Результаты вычисления Вариационный ряд - определение и вычисление с примерами решения по двум формулам совпадают, что свидетельствует о правильности расчета первых четырех начальных моментов.

Находим начальные моменты первых четырех порядков относительно выбранного начала отсчета 44,5 по формулеВариационный ряд - определение и вычисление с примерами решения

Находим центральные моменты, используя формулы перехода от начальных моментов, вычисленных относительно Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения

Вычисление моментов способом сумм

Вычисление моментов при равно отстоящих значениях признака может производиться двумя способами: 1) способом произведений, использованным нами ранее во всех случаях вычислений моментов, и 2) способом сумм, являющимся более упрощенным.

Таблица, в которой производятся все подготовительные расчеты для вычисления начальных четырех моментов, включает в себя колонки х и m и, кроме этого, 4 нумерованные колонки.

Рассмотрим пример вычисления начальных моментов способом сумм по данным табл. 38 (см. табл. 40).

Вся таблица делится на две части чертой, проведенной против частости, соответствующей Вариационный ряд - определение и вычисление с примерами решения В каждой части таблицы суммирование частот производится отдельно. Для верхней части таблицы в колонке 1 идут накопленные частоты начиная сверху, а для нижней части таблицы — начиная снизу. В остальных колонках накопление производится так же и заканчивается на одну клетку раньше, чем в предыдущей колонке.

Для получения Вариационный ряд - определение и вычисление с примерами решения( —) суммируются числа верхней части таблицы, а для Вариационный ряд - определение и вычисление с примерами решения( + ) —нижней части таблицы.

Величины S и D получаются сложением и вычитаниемВариационный ряд - определение и вычисление с примерами решения(—) и Вариационный ряд - определение и вычисление с примерами решения ( + ). Так: S =Вариационный ряд - определение и вычисление с примерами решения(-) + Вариационный ряд - определение и вычисление с примерами решения ( + ), a D =Вариационный ряд - определение и вычисление с примерами решения (—) — Вариационный ряд - определение и вычисление с примерами решения ( + ).

Вариационный ряд - определение и вычисление с примерами решения

Для вычисления начальных моментов по способу сумм используют следующие формулы:

Вариационный ряд - определение и вычисление с примерами решения
Как видим, результаты вычислений по способу сумм совпадают с результатами примера 45.

Нормированные моменты

Второй центральный момент равен дисперсии, т. е. Вариационный ряд - определение и вычисление с примерами решения Если среднее квадратическое отклонение Вариационный ряд - определение и вычисление с примерами решения т. е. корень из дисперсии, иначе говоря, корень из второго центрального момента Вариационный ряд - определение и вычисление с примерами решенияпринять за стандарт, то отношение центрального момента k-гo порядка к стандарту в k-й степени сбудет называться нормированным моментом и обозначаться Вариационный ряд - определение и вычисление с примерами решения

Вариационный ряд - определение и вычисление с примерами решения
Пример 46. По найденным в примере 45 центральным моментам найти нормированные моменты первых четырех порядков.

Из примера 45 имеем:

Вариационный ряд - определение и вычисление с примерами решения

Находим сначала стандарт:

Вариационный ряд - определение и вычисление с примерами решения

а затем нормированные моменты:

Вариационный ряд - определение и вычисление с примерами решения

Использование нормированных моментов

Нормированные моменты используются при изучении вариационных рядов. Третий нормированный момент Вариационный ряд - определение и вычисление с примерами решения называется мерой или. косости вариационного ряда.Знак перед Вариационный ряд - определение и вычисление с примерами решения указывает на направление асимметрии ряда. Если Вариационный ряд - определение и вычисление с примерами решения то вариационный ряд будет с левосторонней скошенностью, а если Вариационный ряд - определение и вычисление с примерами решения — с правосторонней скошенностью. В симметричном ряде Вариационный ряд - определение и вычисление с примерами решения

Четвертый нормированный момент Вариационный ряд - определение и вычисление с примерами решения называется мерой крутости.

Если Вариационный ряд - определение и вычисление с примерами решения то распределение высоковершинное, если Вариационный ряд - определение и вычисление с примерами решения то распределение низковершинное, если Вариационный ряд - определение и вычисление с примерами решения то распределение близко к нормальному (см. раздел IV).

По результатам вычисления нормированных моментов в примере 46 видно, что Вариационный ряд - определение и вычисление с примерами решения отрицателен (—0,81), т. е. распределение с незначительной правосторонней скошенностью, а Вариационный ряд - определение и вычисление с примерами решения больше 3. Это указывает на высоковершинность данного распределения. В целом данное распределение не очень сильно отличается от нормального.

Коэффициент асимметрии

В качестве показателя отклонения вариационного ряда от симметрии применяется простой эмпирический коэффициент асимметрии Вариационный ряд - определение и вычисление с примерами решения представляющий собой отношение разности между средней арифметической и модой к среднему квадратическому отклонению:

Вариационный ряд - определение и вычисление с примерами решения
Если Вариационный ряд - определение и вычисление с примерами решения то скошенность левосторонняя;

если Вариационный ряд - определение и вычисление с примерами решения то скошенность правосторонняя;

если Вариационный ряд - определение и вычисление с примерами решения то вариационный ряд симметричен.

Пример 47.

По данным примера 31 (табл. 27) вычислим коэффициент асимметрии.

Имеем: Вариационный ряд - определение и вычисление с примерами решения

Вычислим моду по формулеВариационный ряд - определение и вычисление с примерами решения

В данном случае асимметрия небольшая и скошенность левосторонняя.

  • Законы распределения случайных величин
  • Дисперсионный анализ
  • Математическая обработка динамических рядов 
  • Корреляция – определение и вычисление
  • Статистическая проверка гипотез
  • Статистические оценки
  • Теория статистической проверки гипотез
  • Линейный регрессионный анализ

13 / 9 / 5

Регистрация: 12.10.2020

Сообщений: 156

1

Найти частоту встречаемости признака по условию

06.11.2020, 16:19. Показов 5533. Ответов 15


Студворк — интернет-сервис помощи студентам

Всем привет!
Как посчитать частоту встречаемости признака по условию:
В группе из 220 человек 47 имеют заболевание, рассчитать частоту встречаемости заболеваний на 100 человек
Очень прошу помощи



0



571 / 403 / 67

Регистрация: 09.01.2018

Сообщений: 1,332

06.11.2020, 18:32

2

По-моему, это не задача из статистики. Это задача из математики для 6-го класса на пропорции.



0



13 / 9 / 5

Регистрация: 12.10.2020

Сообщений: 156

06.11.2020, 19:45

 [ТС]

3

Я вот не знаю точно ли это на пропорции, может тут нужны ещё какие-нибудь критерии



0



571 / 403 / 67

Регистрация: 09.01.2018

Сообщений: 1,332

06.11.2020, 20:33

4

А причем тут “критерии”? Критерии чего? И какие “другие критерии” вы знаете но сомневаетесь в их применимости?



0



13 / 9 / 5

Регистрация: 12.10.2020

Сообщений: 156

07.11.2020, 07:38

 [ТС]

5

Предположу, что может понадобится использование вероятности появления признака



0



571 / 403 / 67

Регистрация: 09.01.2018

Сообщений: 1,332

07.11.2020, 07:56

6

Понадобиться. А как вы ее посчитаете?



0



13 / 9 / 5

Регистрация: 12.10.2020

Сообщений: 156

07.11.2020, 18:18

 [ТС]

7

P=47/220



0



571 / 403 / 67

Регистрация: 09.01.2018

Сообщений: 1,332

07.11.2020, 18:25

8

Фантастика! Теперь осталось это число в виде десятичной дроби представить. И ключик (почти) у вас в кармане!



0



13 / 9 / 5

Регистрация: 12.10.2020

Сообщений: 156

07.11.2020, 18:39

 [ТС]

9

~0.213



0



571 / 403 / 67

Регистрация: 09.01.2018

Сообщений: 1,332

07.11.2020, 18:58

10

И что, никаких дальнейших самостоятельных мыслей?



0



13 / 9 / 5

Регистрация: 12.10.2020

Сообщений: 156

07.11.2020, 21:40

 [ТС]

11

0.213*4700/220≈10
Если это так делается, то я сильно удивлюсь



0



571 / 403 / 67

Регистрация: 09.01.2018

Сообщений: 1,332

07.11.2020, 22:12

12

Простите, вы в каком классе учитесь? В шестом или седьмом?
Еще раз. В группе из 220 человек зафиксировано 47 заболеваний.
Сколько заболеваний было бы зафиксировано, если бы в группе было 100 человек?



0



13 / 9 / 5

Регистрация: 12.10.2020

Сообщений: 156

08.11.2020, 07:58

 [ТС]

13

Простите, я совсем недавно столкнулся с статистикой. И меня одолевает скептицизм, что на фоне критерия Фишера или хи-квадрат, или много чего ещё, для обычной пропорции выделяют целый пункт в задании
Если через пропорции то 22.



0



571 / 403 / 67

Регистрация: 09.01.2018

Сообщений: 1,332

08.11.2020, 12:44

14

Лучший ответ Сообщение было отмечено Gasych как решение

Решение

Думаю, дело было так. Вам лектор рассказал, в двух предложениях в силу элементарности предмета, как можно посчитать процент заболеваемости (или что тоже самое – количество заболевших на 100 человек) исходя из известных цифр заболевших и объема выборки. И пошел себе излагать более сложный материал. Кто его внимательно слушал – тот понял. Кто в это время занимался своими делами – тот очень удивился, увидев вопрос на эту тему в перечне домашних заданий. Мораль – лектора надо слушать всегда, внимательно и при непонятках – сразу-же задавать вопросы.
Кстати, это – надеюсь – это не медицинский вуз, а предмет – не медицинская статистика?
P.S. Не забудте нам потом рассказать, помогла-ли вам моя подсказка.



0



13 / 9 / 5

Регистрация: 12.10.2020

Сообщений: 156

08.11.2020, 13:18

 [ТС]

15

Нет, я из института информационной безопасности, второй курс. А это задание друг попросил сделать, он кстати из медицинского. Только ситуации у нас схожи, на фоне дистанционного обучения преподаватели решили устроить себе отпуск, отправили перечень заданий, а информацию мы должны искать по интернету.
P.s. полное задание нужно было отправить в день создания этой темы. Этот пункт с 47:220 я в итоге пропустил



0



Эксперт по математике/физике

3968 / 2948 / 893

Регистрация: 19.11.2012

Сообщений: 6,061

08.11.2020, 15:24

16

Цитата
Сообщение от Gasych
Посмотреть сообщение

я из института информационной безопасности

Наша будущая информационная безопасность тоже будет в надежных руках.



0



Черепанов Евгений Васильевич
Институт экономики и комплексных проблем связи
главный специалист, к.т.н.

Cherepanov Evgeniy Vasilevich
Institute of Economics and Complex Communication Problems
Chief Specialist, Ph.D.

Библиографическая ссылка на статью:
Черепанов Е.В. Выборочные оценки частот встречаемости качественных признаков на случайных выборках: массовые опросы населения // Современные научные исследования и инновации. 2011. № 7 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2011/11/5057 (дата обращения: 11.05.2023).

Введение

Изначально в основу любых методик прикладных социологических и маркетинговых исследований был положен выборочный метод [1]. Его использование базируется на законе больших чисел (в форме теоремы Я. Бернулли [2]), согласно которому выборочная частота встречаемости признака в серии независимых опытов асимптотически (по объему выборки) сходится к истинной вероятности события. Но возникает принципиальная сложность: кроме условия случайности наблюдений и их независимости, требуется априорная однородность наблюдений. А население – структури-рованное (причем, по многим номинальным шкалам) множество. В этой связи, при относительно небольших объемах выборки (скажем, 2-3 тысячи случайно опрошенных респондентов), различия в структурах выборки и гене-ральной совокупности (всего населения) могут существенно испортить точ-ность выборочной оценки частоты встречаемости исследуемого признака [3].

В принципе существует лишь два решения этой проблемы. 1) При расчетах математически строго учесть различия в структурах выборочного ансамбля и генеральной совокупности. 2) Постараться так подобрать выборку, чтобы ее структура по многим классификациям (пол, возраст, образование, национальность и т.п.) дублировала бы генеральную совокуп-ность (построить так называемую «квотную» выборку). Поскольку в 30- е гг. прошлого века вычислительной техники не существовало, то у пионеров прикладной социологии, в общем-то, и выбора практически не было: раз считать условные вероятности не на чем, будем создавать квотные выборки.

Таким образом, эксплуатируя квотные выборки, почти век развивалась прикладная социология. В 60-70 -е гг. появились ЭВМ, которые стали использовать в эмпирической социологии, а позже и в маркетинге рынков. Но использовать «в лоб», для прямого обсчета данных, полученных при социологических опросах на квотных выборках. Это значит, что применялись «традиционные» методы математической статистики [4], которые были заимствованы из стохастического анализа однородных данных в естественнонаучных областях знания. А в части структурированности населения (избирателей, покупателей и т.п.) «молча» предполагалось, что все связанные с ней проблемы разрешены на этапе квотного опроса населения.

Российская социологическая наука в 80-90 гг. стала формироваться, к сожалению, на устаревших квотных технологиях, которые не могут дать ре-шение многих современных задач. Причем вопрос о правомерности исполь-зования
вероятностного формализма на квотных, по самому своему постро-ению не вполне случайных выборках, требует отдельного обсуждения. Что было сделано автором в работе [5]. Кроме того, формирование, поддержание и «ремонт» квотных выборок для больших территорий, что следует, напри-мер, из статьи М.С. Косолапова [6], занятие трудоемкое и дорогостоящее.

Между тем, создание точных и дешевых методов работы со случай-ными выборками, которые активно используют современные компьютерные технологии [7,8] и описываются в терминах классической теории вероятнос-тей, в общем-то, «лежит на поверхности». Такие методы [9,10], основанные на исчислении статистик бинарного отношения на множествах [11], исполь-зуют многомерные обобщения гипергеометрического распределения [12,13].

Построение процедур статистического анализа случайных выборок должно решить три важные прагматические проблемы.

Во-первых, повысить точность результатов выборочного оценивания за счет привлечения априорной статистической информации (например, данных по переписи населения) об изучаемой генеральной совокупности.

Во-вторых, получать результаты, обладающие высокой стабильностью (малой чувствительностью к вариациям выборочного ансамбля).

И, в-третьих, что самое главное, получать оценки частот качественных признаков (с указанием погрешностей) и по населению в целом, и по его социально-демографическим категориям, отраженных в «паспорте» анкеты.

1. Формализация задачи социологического опроса населения

Ниже предложены процедуры выборочного оценивания частот встречае-мости дихотомических признаков по данным массового социологического опроса населения непосредственно по случайным выборкам. Изложен наи-более простой путь построения таких процедур статистического оценивания, использующий идею исчисления условных вероятностей для статистик бинарного отношения на множествах многомерных наблюдений и их дихотомических признаков. Причем, по своей сути, этот подход не имеет ничего общего с эмпирическим «провешиванием» наблюдений, как это иногда практикуется при «ремонте» квотных выборок в социологических работах.

Формализуем задачу. Пусть изучается генеральная совокупность населения, мощность которой равна N. Для социологического опроса составлен инструментарий из некоторого числа «содержательных вопросов», общее число вариантов ответов на которые равно р. При опросе используются s номинальных шкал, данные по которым имеются в Госкомстате (обычно, это данные последней переписи населения).

Для простоты в дальнейшем будем обозначать:

  • индексом « k » – номер варианта ответа на содержательный вопрос анкеты, иначе говоря, « k » определяет номер соответствующего дихотоми-ческого признака, характеризующего наблюдения изучаемой совокупности;

  • индексом « i » – номер априорной классификации (номинальной шкалы), данные по которой есть в Госкомстате;

  • индексом « j » – номер социально – демографической категории населе-ния, определенной i-й априорной классификацией.

    Таким образом, можно записать:

    Общее число жителей, относящихся к j- й категории i- й класси-фикации, обозначим . Для всех априорных классификаций населения справедливо соотношение вида . Мощность подмножества лиц, обладающих k-м «содержательным» признаком, одновременно относясь к j-й категории i-й классификации, обозначим . Общее число жителей, обладающих k -м признаком, равно для любой априорной классификации (при любом « i »).

    В ходе случайного опроса было проинтервьюировано n (n << N) респонден-тов. Пусть в выборку попало лиц, относящихся к j- й категории i- й классифи-кации, причем k-м изучаемым признаком обладают из них. Общее чис-ло респондентов, имеющих k-й признак, равно:
    .

    2. Статистические оценки частот встречаемости

    бинарных признаков по населению в целом

    Введем априорные частоты вида , а также частоты встречаемости k-го признака среди представителей j-й категории i-й классификации: . Частота встречаемости k -го признака по населению в целом определяется в виде . C помощью категорий априорной классификации населения эта частота выражается в виде . (1)

    «Грубая» оценка частоты встречаемости k–го булевого признака среди лиц jй категории i-й классификации имеет вид . (2)

    Несложно показать [9,10], что оценка (2) является состоятельной, несмещенной и асимптотически (по n) нормальной оценкой истинной частоты . Но, как правило, значения настолько малы, что обгаружи-ваются слишком большие погрешности оценок (2). Поэтому эти оценки используются только как вспомогательные для оценивания частот встречаемости исследуемых дихотомических признаков.

    Определим оценку вида . (3)

    С учетом того, что справедливо приближение вида [12,13]


    , (4)

    а ковариации величин и вычисляется (в достаточно точном приближении [12,13]) в виде:

    , (5)

    дисперсия оценки (3) запишется в виде


    . (6)

    Несложно показать состоятельность и несмещенность оценок (3).

    Пока для оценки частот встречаемости содержательных признаков мы использовали только одну из вспомогательных номинальных шкал. Но число таких шкал s > 1. Причем каждую из s оценок вида (3) можно рассмат-ривать как некоторое измерение искомой частоты встречаемости k- го признака, точность которого определена ее дисперсией вида (6).

    Такой подход, с одной стороны, «созвучен» мыслям Ю.Н. Толстовой и Е.В. Масленникова [14] о том, что любой эмпирическое исследование в социологии правомерно (в широком смысле) рассматривать как измерение состояния изучаемого социума. С другой стороны, идея получения итоговой оценки частоты встречаемости изучаемого признака в виде суперпозиции ее отдельных неравноточных «измерений» соответствует традициям теории обработки результатов экспериментов в физике [15,16].

    В том случае, если величину независимо измеряют несколькими приборами (с различной точностью), итоговое значение величины вычисляется как линейная суперпозиция полученных результатов с «весами», которые определяются погрешностями измерений. Будем рассматривать «частные» оценки частоты как неравноточные и независимые (что правомерно с содержательной точки зрения) измерения истинного значения частоты . Это позволяет, как принято при статис-тической обработке неравноточных измерений, итоговую оценку частоты представить в виде линейной суперпозиции (7)

    В силу требования несмещенности итоговой оценки, необходимо условие ограничения на вектор вида . С учетом этого требования, значения компонент вектора определим из условия минимизации дисперсии итоговой оценки: . (8)

    Несложно показать, что решение этой задачи определяется в виде

    ; ().

    Тогда итоговая оценка частоты встречаемости k-го признака равна:

    , (9)

    а ее дисперсия вычисляется в виде

    . (10)

    Заметим, что полученные в этом пункте соотношения применимы и к результатам квотного опроса, поскольку он представляет собой частный случай изложенного при значениях ,

    где – априорные частоты категорий i –й используемой классификации.

    Из (10) следует, что дисперсия итоговой оценки частоты меньше, чем минимальная из дисперсий частных оценок этой частоты вида
    На практике дисперсия (10) обычно оказывается кратно (иногда порядково) меньше минимального из значений .

    3. Пример статистического оценивания: социология форума

    Приведем один, весьма убедительный для демонстрации прагматической полезности изложенного метода, пример из практики автора. В 1992 -м году администрацией Президента РФ было решено пригласить на очередной VII Съезд народных депутатов России, как это практикуется в Конгрессе США, семь коллективов социологов, шесть из которых являлись наиболее извест-ными социологическими центрами РФ. Седьмой организацией, приглашен-ной к работе, был Институт системных исследований и социологии (ИСИС), небольшая и недавно организованная частная структура, зам. директора по научной работе которого тогда был автор.

    На съезде остро встал вопрос, который был крайне актуален для администрации Президента РФ: имеет ли шансы Е.Т. Гайдар, еще возглав-лявший правительство РФ, сохранить свой пост. Кураторы работ А.Н. Лифшиц (впоследствии ставший министром финансов России) и И.Г. Яковлев (ныне профессор Московского городского университета управ-ления) задали этот вопрос работавшим на съезде социологам. Шесть команд социологов, занимавшихся описательным процессом позиций депутатов, не смогли дать сколько-либо вразумительный ответ о шансах Е.Т. Гайдара.

    ИСИС через час после поступления вопроса выдал ответ: «За» Е.Т. Гайдара будут 470 депутатов плюс-минус 6 «голосов». Это значило, что действующий премьер ни в коем случае не сможет получить поддержку большинства депутатов (которая составляла 521 голос). Через сутки проце-дура тайного голосования дала результат: за сохранение поста Е.Т. Гайдаром было отдано 467 «голосов» народных депутатов РФ.

    Подход состоял в следующем. Все команды социологов получили распечатки поименных голосований депутатов на предыдущих съездах. Нашими коллегами эти распечатки использовались для сопоставительного анализа позиций депутатского корпуса. Мы же отобрали 125 голосований по важнейшим вопросам и использовали их как номинальные шкалы (априорные классификации) со значениями: «за», «отсутствовал» и «прочее» (позиции «против» и «воздержался» были равнозначны с точки зрения итогов голосования). В результате каждый депутат обрел «опросный паспорт» из 125 номинальных шкал, который использовался при решении задачи прогнозирования итогов голосований. Первым вопросом, который задавался каждому из опрашиваемых депутатов (для его идентификации в базе данных), был: «Пожалуйста, представьтесь». Ответив, респондент автомати-чески «заполнял» «социологический паспорт», априорные частоты которого нам были известны из распечатки результатов предыдущих голосований. В кибернетике такой подход относят к методам «распознавания с обучением».

    Практика показала, что изложенный метод в реальных исследованиях (1991-2007 гг.) политологического, социологического и маркетингового ха-рактера обычно обеспечивает, при объемах случайного выборочного ансамб-ля 1500 -2000 наблюдений, погрешности оценок порядка 0.005 – 0.015.

    4. Статистические оценки частот встречаемости дихотомических

    признаков по категориям населения

    Ниже предложен простой метод оценивания частот встречаемости дихотомических признаков по категориям населения, который, тем не менее, дает достаточно точные результаты. В работах [9,10,12,13] приведены некоторые более тонкие (и более точные) алгоритмы решения задачи. Но ниже изложенный алгоритм, в силу его «прозрачности», наиболее нагляден.

    Запишем соотношение вида , где Pr{…} обозначает вероятность события {…}, а hy{…} – общепринятое стандартное обозначение гипергеометрического распределения [17]. Отсюда, математическое ожидание этого распределения запишется в виде

    ; . (11)

    Откуда можно сделать вывод, о том, что

    ; . (12)

    Отсюда следует естественный вид оценки для частоты встречаемости k–го признака для населения из j–й категории i–й номинальной шкалы паспорта:

    ; . (13)

    Оценка (13) является асимптотически несмещенной, причем:

    . (14)

    где «  » обозначает «сходимость по вероятности». Очевидно, что оценка (13) является состоятельной. Дисперсия оценки (13) вычисляется в виде

    . (15)

    Таким образом, мы получили и обосновали методику оценки значений частот встречаемости дихотомических признаков по любым априорным классификациям (данные по которым есть в Госкомстате РФ). Насколько известно автору,
    ранее подобного рода результаты опубликованы не были.

    Приведем, еще один пример из практики автора. Осенью 1993-го года с личной просьбой об аналитическом сопровождении предвыборной кампании ЛДПР к автору обратился В.В. Жириновский. Работа ИСИС свелась к тому, чтобы проанализировали тезисы выступлений и статей лидера ЛДПР за предыдущий год (подробнее см. [18]). Эти тезисы были оформлены в виде вопросов анкеты. С помощью социологических организаций – партнеров был проведен всероссийский опрос в 12 регионах (Москва, С.- Петербург, Тула, Воронеж, Ростов, Самара, Нижний Новгород, Екатеринбург, Уфа, Омск, Иркутск и Владивосток). Случайным образом опрашивалось городское и сельское население, в «социологическом паспорте» анкеты фигурировали 6 номинальных шкал априорных классификаций электората. Результаты опроса были компьютерно обработаны по методологии, изложенной выше.

    В результате были выделены 8 тезисов, которые однозначно хорошо воспринимались абсолютным большинством населения. На эти тезисы лидер ЛДПР стал опираться в своих выступлениях, ориентированных на широкие слои всех избирателей (телевыступления, публичные дебаты, статьи и заметки в крупных газетах). Для основных социальных категорий электората были выделены «свои» 6-7 тезисов, доминанты политических ожиданий этих групп населения. Затем автор совместно с В.В. Кобелевым, тогда 1- м замес-тителем лидера ЛДПР, придали выделенным тезисам «публицистический вид». С этим материалом В.В. Жириновский выступал в специализированных СМИ и на телевидении, где были организованы (заранее широко анонсированные) «телевстречи» с различными категориями избирателей.

    Люди старшего возраста хорошо помнят неожиданный для многих и триумфальный для ЛДПР подсчет итогов голосования по выборам в Государственную Думу, проходивший в прямом телеэфире в декабре 1993 г.

    Заключение

    В целом отметим, что при использовании изложенных методов работы со случайными выборками точность оценок (по сравнению с «квотными» методами) значительно возрастает, стоимость опросов падает и оперативность исследований повышается. А возможность анализа общественного мнения социально – демографических категорий населения резко повышает информативность экспертного анализа социума.

    Ряд теоретических аспектов рассматриваемой проблемы, не отраженных в этой публикации, заинтересованный читатель может найти в статье [19].

    Автор воздержался от иллюстративных примеров использования изло-женных методов – это увеличило бы объем публикации вдвое. Но можно указать на две, вышедшие в изданиях РГСУ, статьи [20,21], которые дают достаточное представление о прикладном использовании аппарата.

Библиографический список

  1. Кокрен У. Методы выборочных исследований / Пер. с англ. М.: Статис-тика, 1976.
  2. Бернулли Я. О законе больших чисел / Пер. с лат. Юбилейное издание с предисловиями А.А. Маркова и А.Н. Колмогорова. М.: Наука, 1986.
  3. Черепанов Е.В. К вопросу корректности использования стохастического формализма в социологических и социально – экономических исследо-ваниях // Безопасность Евразии. 2007, 2 (28), с. 386-402.
  4. Крамер Г. Математические методы статистики / Пер. с англ. М.: Мир, 1975.
  5. Черепанов Е.В. Стохастическое описание выборочного метода // Социология: методология, методы, математическое моделирование. 2007, 25, с. 167-189.
  6. Косолапов М.С. Принципы построения многоступенчатой вероятностной выборки для субъектов Российской Федерации // Социологические иссле-дования. 1997, 10, с. 98-109.
  7. Черепанов Е.В. и др. Компьютерно-математические технологии в маркетинге и социологии // Математические методы и компьютерные технологии в маркетинговых и социальных исследованиях. Сб. научн. работ. М.: Академия менеджмента инноваций (АМИ), 2004, с.73-78.
  8. Черепанов Е.В. и др. Современные компьютерные технологии в социальных исследованиях // Безопасность Евразии. 2005, 1, с. 264-281.
  9. Черепанов Е.В. Вероятностно-статистические основы прикладной социо-логии и маркетинговых исследований. М.: АМИ, 2006.
  10. Черепанов Е.В. Статистическая методология для задач социологических и социально – экономических исследований. М.: АМИ, 2007.
  11. Черепанов Е.В. и др. Статистики бинарного отношения на множествах // Проблемы перспективного планирования и управления. Сборник научных трудов. М.: изд. Госплана СССР, 1990, с. 88-98.
  12. Черепанов Е.В. Многомерное структурированное гипергеометрическое распределение как стохастическая основа прикладной социологии // Анализ социально – экономических и политических процессов и систем. Вып. 3. М.: Академия менеджмента инноваций, 2006, с. 125-146.
  13. Черепанов Е.В. Статистические оценки частот встречаемости признаков на случайных выборках из неоднородных совокупностей. // Современные проблемы формирования методного арсенала социолога. Матер. III Всероссийской научной конфер. М.: ГУ ВШЭ, 2009, с.378-390.
  14. Толстова Ю.Н., Масленников Е.В. Качественная и количественная стра-тегии: эмпирическое исследование как измерение в широком смысле // Социологические исследования. 2000, 10, с. 101-109.
  15. Свешников А.А. Основы теории ошибок. Ленинград: изд. ЛГУ, 1972.
  16. Мудров В.И., Кушко В.Л. Методы обработки измерений. М.: Советское радио, 1976.
  17. Миттаг Х.-Й., Ринне Х. Статистические методы обеспечения качества / Пер. с нем. М.: Машиностроение, 1995.
  18. Попов А.В., Черепанов Е.В. Уроки на завтра // Ваш Выбор. Научно-политический журнал. 1994, 1, с. 14-17.
  19. Черепанов Е.В. Стохастические методы анализа данных выборочных маркетинговых и социальных обследований // Прикладная экономет-рика. Научно-практич. журнал. М.: ЦЭМИ РАН, 2011, 2 (22), с.48-61.
  20. Черепанов Е.В. Негосударственное пенсионное страхование: состояние и перспективы (по результатам ряда социологических исследований 2006 года) // Социальная политика и социология. М.: Российский государственный социальный университет (РГСУ), 2007, 2(34), с.87-98.
  21. Черепанов Е.В. Социологический анализ структуры пользователей стра-ховых услуг (на примере региональных исследований 2006 года по стра-хованию жизни и страхованию от несчастных случаев) // Социальная политика и социология. М.: РГСУ, 2007, 4 (36), с. 78-89.


Количество просмотров публикации: Please wait

Все статьи автора «Черепанов Евгений Васильевич»

Построение вариационного ряда

Любое
статистическое исследование должно
начинаться с установления характера
распределения изучаемых признаков.
Распределение
– это соотно­шение между значениями
случайной величины и частотой их
встречаемости
.
Бóльшая повторяемость одних значений
по сравнению с другими заставляет
задумываться о причинах наблюдаемых
процессов. Если значения признака
откладывать по оси абсцисс, а частоты
их встречаемости по оси ординат, то
можно построить гистограмму,
частотную
диаграмму
,
удобную для целей иллюстрации и
исследования.

Основой
для построения гистограммы служит
вариационный
ряд – представленный в виде таблицы
ряд значений изучаемого признака
,
расположенных
в порядке возрастания с соответствующими
им частотами их встречаемости в выборке
.

Начнем
с примера изучения плодовитости
серебристо-черных лисиц, которое дало
следующие результаты (число щенков на
самку): 5 5 6 5 5 6 4 4 4 5 6 4 6 6 4 6 4 5 5 8 5 3 6 5 5 5 5 5
6 3 6 4 6 4 6 2 5 6 5 3 7 6 3 4 6 8 6 3 5 5 6 5 4 3 8 4 7 5 4 3 1 6
5 3 4 5 6 7 4 4 6 5 6 4 6 5.

Для
дискретного признака (такова плодовитость)
построение вариационного ряда обычно
не представляет сложности, достаточно
подсчитать встречаемость конкретных
значений.

Плодовитость,
x

Частота,

a

1

1

2

1

3

8

4

16

5

23

6

21

7

3

8

3

Гистограмма,
построенная по данным о плодовитости
лисиц (рис. 2), сразу же обнаруживает
характерное поведение случайной величины
– высокие частоты встречаемости значений
в центре распределения и низкие по
периферии.

Рис.
2.
Распределение
плодовитости лисиц

Если
же изучаемый признак непрерывен (таковы
размерно-весовые характеристики), то
для построения вариационного ряда
сначала весь диапазон изменчивости
признака разбивается на серию равных
интервалов (классов вариант), затем
подсчитывают, сколько вариант попало
в каждый интервал. Число классов для
больших выборок (n > 100)
должно быть не менее 7 и не более 12, их
оптимальное число можно приблизительно
определить по эмпирической форму­ле:

k
=
1 + 3.32 ∙ lg(n),
где п
– объем выборки

(число
вариант в выборке
).

Составим
для примера вариационный ряд для
непрерывного признака – по данным о
весе 63 взрослых землероек (г):

9.2

11.6

8.1

9.1

10.1

9.6

9.3

9.7

9.9

9.9

9.6

7.6

10.0

9.7

8.4

8.6

9.0

8.8

8.6

9.3

11.9

9.3

9.2

10.2

11.2

8.1

10.3

9.2

9.8

9.9

9.3

9.1

9.4

9.6

7.3

8.3

8.8

9.2

8.0

8.6

8.8

9.0

9.5

9.1

8.5

8.8

9.7

11.5

10.5

9.8

10.0

9.4

8.7

10.0

7.9

8.6

8.7

9.1

8.2

9.2

9.4

8.8

9.8

1)
Все
операции могут быть выполнены вручную.
Вначале следует определить объем выборки
n =
63.

2)
Рассчитать
пределы размаха
изменчивости

значений, лимит
– разность
между максимальным и минимальным
значением
:

Lim
=
xmax  xmin
=
11.9 −7.3 = 4.6.

3)
Найти
число классов вариационного ряда по
формуле:

k
=
1 + 3.32 ∙ lg(63)
= 6.973811 ≈ 7.

4)
Найти
длину интервала dx
(допустимо округление):

dx
= Limk
= 4.6/ 7
≈ 0.7.

5)
Установить
границы классов; в качестве первой
границы имеет смысл взять округленное
минимальное значение: xmin
=
7.

6)
Вычислить
центральное значение признака в каждом
классе; исходным берется значение центра
первого интервала; для первого класса
7–7.7, для второго – 7.8–8.4…

7)
Произвести разноску вариант в
соответствующие классы с подсчетом их
числа методом конверта (табл. 2):

1
2 3 4 5 6   7 8 9 10 .

Теперь
данные можно пред­ставить графически,
в виде полигона частот (ломаной кривой)
или гистограммы (столбиками) (рис. 3).

Таблица 2

Классы

Центр
классового интервала

Подсчет

частот

Частоты,
а

7–7.7

7.35

2

7.8–8.4

8.05

7

8.5–9.1

8.75

18

9.2–9.8

9.45

22

9.9–10.5

10.15

10

10.6–11.2

10.85

1

11.3–11.9

11.55

3

Сумма

63

Рис.
3.

Распределение бурозубок по весу тела

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Закономерности изменчивости.
Изменчивость признаков. Норма реакции

Ключевые слова конспекта: изменчивость: прерывистая (дискретная), непрерывная; признаки: качественные, количественные; варианта; вариационный ряд; вариационная кривая: вариационная кривая нормального распределения; предел изменчивости признака; норма реакции.
Раздел ЕГЭ: 3.6. Закономерности изменчивости… Норма реакции… Значение изменчивости в жизни организмов и в эволюции

Организм наряду с наследственностью обладает изменчивостью. Изменчивость — это способность организма изменять свои признаки, она зависит от генотипа и воздействия окружающей среды. Изменчивость есть результат взаимодействия генотипа со средой. Способность организма изменяться под воздействием окружающей среды обеспечивает его приспособление к условиям существования.

Существуют две формы изменчивости: дискретная (прерывистая) и непрерывная. При дискретной изменчивости различия между особями резко выражены, при непрерывной имеется вариационный ряд, отражающий предел изменчивости признака — норму реакции.

Различают два вида изменчивости: ненаследственную (модификационную) и наследственную.

Закономерности изменчивости

Модификационная, или фенотипическая, изменчивость носит адаптивный характер и не наследуется.

Наследственная изменчивость затрагивает генотип. Наследственные изменения имеют случайный характер. Выделяют два вида наследственной, или генотипической, изменчивости: комбинативную и мутационную. Комбинативная изменчивость возникает в результате комбинации генов и хромосом в процессе мейоза, а также случайного сочетания гамет при оплодотворении. Мутации происходят из-за нарушения структуры ДНК, отдельных хромосом и всего генома, что приводит к изменению генотипа. Мутации чаще вредны, так как снижают адаптивные свойства организма. Однако именно мутации создают резерв наследственной изменчивости, накапливаясь у гетерозигот. Выявлена закономерность в проявлении мутаций у близкородственных видов организмов. Закон гомологических рядов в наследственной изменчивости, установленный Н. И. Вавиловым, имеет большое значение в селекционной работе при выведении новых сортов культурных растений и пород домашних животных.

Качественные и количественные признаки

При одном и том же генотипе могут формироваться разные фенотипы. Фенотип есть результат взаимодействия генотипа с факторами среды. На одном дереве листья (цветки, плоды) отличаются друг от друга. Под влиянием внешних факторов фенотип может изменяться.

Качественные признаки: форма и окраска семян у гороха посевного

Качественные признаки: форма и окраска семян у гороха посевного

Все признаки организмов разделяют на качественные и количественные. Форма плодов или семян, окраска цветков, шерсти животных — это качественные признаки, по которым особи резко отличаются друг от друга.

Если признаки поддаются измерению (высота стебля, размеры листьев, надои молока, яйценоскость) — это количественные признаки.

Количественный признак — размеры листьев у лавровишни

Количественный признак — размеры листьев у лавровишни

Жёлтая и зелёная окраска, гладкая и морщинистая форма семян гороха — примеры качественных признаков. По таким признакам особи легко различаются, так как между ними нет промежуточных форм. Изменчивость признаков в этом случае носит скачкообразный, прерывистый характер. Изменчивость признаков, при которой можно чётко выделить определённые группы особей, называют прерывистой или дискретной.

В другом случае, при наследовании, например, массы семян или высоты стебля, наблюдаются различия в степени интенсивности развития признака.

В данном случае строгое деление на группы невозможно, и признак требует какой-то количественной оценки. Один из примеров количественного изменения признака — величина листьев у одного растения, например лавровишни. Изменчивость, при которой у отдельных особей отсутствуют чёткие границы между признаками, называют непрерывной.

Прерывистую и непрерывную изменчивость могут иметь как количественные, так и качественные признаки. Например, количественный признак — плодовитость свиней — относится к прерывистому виду изменчивости, так как позволяет сгруппировать свиноматок по количеству поросят: 5, 7, 8, 10 и т. д. Но при исследовании такого количественного признака, как масса новорождённых поросят, мы встречаемся с непрерывной изменчивостью.

Такие качественные признаки, как окраска и форма семян гороха посевного, цветков душистого горошка, ночной красавицы, являются примерами прерывистой изменчивости, а другие — цвет волос и кожи у человека, окраска зёрен пшеницы при скрещивании белозёрного сорта с краснозёрным — пример непрерывной изменчивости.

Определение характера изменчивости количественных признаков

Количественные признаки поддаются определённому описанию. Если измерить величину семян тыквы одного сорта растения или даже одной особи, то окажется, что они имеют разную длину. То же самое можно наблюдать, если измерить высоту стеблей различных особей одного сорта гороха посевного. Следовательно, для характеристики количественных признаков особи или сорта (величины и массы семян, длины стебля) необходимо произвести измерения и определить их среднюю величину.

В качестве примера определим среднюю величину семян тыквы одного сорта. Измерим длину (в мм) 50 произвольно взятых семян:

Расположим числа, отображающие последовательное изменение признака, в порядке его увеличения: от самого малого значения до самого большого. Каждое число в ряду представляет собой варианту. Если расположить все значения длины семян в порядке их возрастания, то получится вариационный ряд.

Вариационный ряд длины семян тыквы: 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 19.

Вариационный ряд — это ряд изменчивости признака, который образован отдельными значениями вариант, расположенных в порядке увеличения или уменьшения выраженности признака.

Для установления предела изменчивости признака определим частоту встречаемости каждой варианты. Подсчитаем количество семян, имеющих одинаковую длину. Для удобства составим Таблицу, где первый ряд чисел отображает величину изменения признака, а второй — соответствует частоте встречаемости изменений (количество семян каждой длины).

Таблица. Изменение признака и частота его встречаемости

Таблица. Изменение признака и частота его встречаемости

На основании полученных результатов построим график. Для этого по оси абсцисс отложим значения отдельных вариант (длину семян), по оси ординат — числа, соответствующие частоте встречаемости каждой варианты (признака). Соединив точки на графике, получим вариационную кривую, которая является графическим выражением характера изменчивости признака; она отражает размах вариаций и частоту встречаемости вариант.

Вариационная кривая, отражающая распределение семян тыквы по их величине

Вариационная кривая, отражающая распределение семян тыквы по их величине

Из графика видно, что варианты со средним значением встречаются чаще, а варианты с двумя крайними значениями — реже. Они являются отклонениями от нормы — средней величины, причём чем сильнее отклонение, тем меньше частота встречаемости варианты. Для объективной характеристики изменчивости признака определяется его среднее значение по формуле где М — средняя величина; ∑ — знак суммирования; υ — значение варианты; p — частота встречаемости этой варианты; n — общее число вариант ряда.

Определим среднее значение величины семян тыквы по формуле. Средней величине признака на графике соответствует самая высокая точка.

Полигон распределения семян фасоли по величине (I) и массе (II) (по В. Иоганнсену)

Полигон распределения семян фасоли по величине (I) и массе (II) (по В. Иоганнсену)

Эта закономерность касается не только рассмотренного примера, но и других количественных признаков. Датский учёный Вильгельм Иоганнсен, изучая варьирование массы семян в чистой линии фасоли, установил изменчивость этого признака и построил вариационную кривую. Так как в чистой линии фасоли все семена имели одинаковый генотип, то различия в их массе были связаны с влиянием внешних факторов: глубины заделки семян в почву, различий в количестве влаги и структуре почвы, распределения в почве минеральных веществ. На рисунке видно, как комбинация благоприятных и неблагоприятных факторов оказывает определённое воздействие на формирование семян, их величину и массу.

Норма реакции

Предел вариации любого признака у особей с одинаковой наследственностью графически представляет собой вариационную кривую нормального распределения, имеющую форму колокола. Для получения достоверных результатов число исследуемых вариант должно быть достаточно большим. В этом случае кривая нормального распределения имеет плавный, постепенно повышающийся и постепенно понижающийся характер.

Вариационная кривая нормального распределения

Вариационная кривая нормального распределения

В биологии по характеру вариационной кривой судят о степени изменчивости признака. Две крайние точки графика означают предел изменчивости признака, его верхнюю и нижнюю границы. Весь полигон распределения соответствует норме реакции признака. Норма реакции — это предел изменчивости признака, который обусловлен данным генотипом. Центральная часть графика — это средняя величина признака.

Изучив по графику характер изменчивости признака, можно сделать вывод, что наследуется не признак, а норма реакции. Она бывает широкой или узкой. Чем шире диапазон, тем шире норма реакции, т. е. различные признаки могут изменяться в большем или меньшем диапазоне. Широкой нормой реакции обладают такие признаки, как масса тела и цвет волос у человека, масса тела и надои молока у коров и т. д. Узкая норма реакции характерна для таких признаков, как рост человека, жирность молока у коров, длина шерсти у овец. Эти признаки в меньшей степени зависят от внешних условий.

Чем шире норма реакций, тем пластичнее признак, тем более он адаптирован к условиям среды. Это увеличивает вероятность выживания вида в изменяющихся условиях. Однако есть признаки, которые остаются неизменными независимо от среды, например группа крови у человека.

Значение изменчивости в жизни организмов и в эволюции


Это конспект для 10-11 классов по теме «Закономерности изменчивости. Норма реакции». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по Биологии.
  • Найти конспект в Кодификаторе ЕГЭ по биологии

Добавить комментарий