Как найти чему равен амперметр

Как найти показание амперметра? физика

В схеме E1 = 2 В, E2 = 4 В,
R1 = 0,5 Ом. Падение потенциала на сопротивлении
R2 равно 1 В. Найдите показание амперметра.
Сопротивле-ниями элементов и амперметра пренебречь.

Хотя бы конечную формулу пожалуйста.

То, что в решении получился отрицательный ответ, значит лишь то, что выбрано не то направление тока. Меняя знак мы получаем правильный ответ.
Итоговый ответ: 6 А.

Как найти показания амперметра формула

По закону Ома, ток в замкнутом контуре равен алгебраической сумме ЭДС, действующих в контуре, деленному на полное сопротивление цепи.

Алгебраическая сумма ЭДС равна Е=12В-10В+2В=4В

Полное сопротивление цепи равно R=r1+r2+r3+R1234+R56

R1234 состоит из двух папаллельно включенных цепочек из двух последовательно включенных сопротивлений (R1,R2 и R3,R4 соответственно)

Полное сопротивление цепи равно 4+1+4+7.2+1=17,2 Ом

Амперметр А» показывает полный ток в цепи, и он покажет 4В/17,2Ом=»0,232558А» или примерно 0,233А

Чтобы найти показания амперметра А1, найдем напряжение на R56. U56=I2*R56=I2*1

Ток I1=U56/2=I2/2=0.116279А или примерно 0,116 А

Показание вольтметра равно разности падения напряжения на сопротивлениях R2 и R4. Чтобы найти эти значения, найдем падение напряжения на всей цепочке сопротивлений R1R2R3R4. U1234=I2*R1234=I2*7,2

Падение напряжения на R2 U2=U1234/(R1+R2)*R2=I2*7,2*12/18=I2*7,2*2/3

Падение напряжения на R4 U4=U1234/(R3+R4)*R4=I2*7,2*8/12=I2*7,2*2/3

Разность напряжений на R2 и R4 равна U2-U4=I2*7,2*2/3-I2*7,2*2/3=0, следовательно, показания вольтметра будут равны нулю.

Ответ: амперметр А2 покажет ток примерно 0,233А, амперметр А1 примерно 0,116А, а вольтметр покажет 0

Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.

Измерение тока.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи 🙂

Важным параметром этого прибора является его внутреннее сопротивление . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

Выразим ток шунта через ток амперметра:

Измеряемый ток равен:

Подставим в это уравнение предыдущее выражение для тока шунта:

Но сопротивление шунта нам также известно (). В итоге мы получаем:

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить 🙂

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения.

Прибор, предназначенный для измерения напряжения называется вольтметр, и, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток и, в связи с этим напряжение на резисторе уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример 😉

Здесь мы добавили в цепь добавочное сопротивление . Перед нами стоит задача измерить напряжение на резисторе : . Давайте определим, что при таком включении будет на экране вольтметра:

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

Таким образом: . То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра 🙂

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи – омметр – и мощности – ваттметр.

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!

Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.

Измерение тока.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи 🙂

Важным параметром этого прибора является его внутреннее сопротивление . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

Выразим ток шунта через ток амперметра:

Измеряемый ток равен:

Подставим в это уравнение предыдущее выражение для тока шунта:

Но сопротивление шунта нам также известно (). В итоге мы получаем:

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить 🙂

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения.

Прибор, предназначенный для измерения напряжения называется вольтметр, и, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток и, в связи с этим напряжение на резисторе уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример 😉

Здесь мы добавили в цепь добавочное сопротивление . Перед нами стоит задача измерить напряжение на резисторе : . Давайте определим, что при таком включении будет на экране вольтметра:

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

Таким образом: . То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра 🙂

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи – омметр – и мощности – ваттметр.

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!

Идеальные и реальные вольтметры и амперметры в цепях постоянного тока

вольтметр-7вольтметр 6

По закону Ома, ток в замкнутом контуре равен алгебраической сумме ЭДС, действующих в контуре, деленному на полное сопротивление цепи.

Алгебраическая сумма ЭДС равна Е=12В-10В+2В=4В

Полное сопротивление цепи равно R=r1+r2+r3+R1234+R56

R1234 состоит из двух папаллельно включенных цепочек из двух последовательно включенных сопротивлений (R1,R2 и R3,R4 соответственно)

Полное сопротивление цепи равно 4+1+4+7.2+1=17,2 Ом

Амперметр А» показывает полный ток в цепи, и он покажет 4В/17,2Ом=»0,232558А» или примерно 0,233А

Чтобы найти показания амперметра А1, найдем напряжение на R56. U56=I2*R56=I2*1

Ток I1=U56/2=I2/2=0.116279А или примерно 0,116 А

Показание вольтметра равно разности падения напряжения на сопротивлениях R2 и R4. Чтобы найти эти значения, найдем падение напряжения на всей цепочке сопротивлений R1R2R3R4. U1234=I2*R1234=I2*7,2

Падение напряжения на R2 U2=U1234/(R1+R2)*R2=I2*7,2*12/18=I2*7,2*2/3

Падение напряжения на R4 U4=U1234/(R3+R4)*R4=I2*7,2*8/12=I2*7,2*2/3

Разность напряжений на R2 и R4 равна U2-U4=I2*7,2*2/3-I2*7,2*2/3=0, следовательно, показания вольтметра будут равны нулю.

Ответ: амперметр А2 покажет ток примерно 0,233А, амперметр А1 примерно 0,116А, а вольтметр покажет 0

Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.

Измерение тока.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи

Приветствую всех, сегодня в рамках курса “Основы электроники” мы рассмотрим основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр и амперметр.

Измерение тока. Амперметр.

И начнем с измерения тока. Прибор, используемый для этих целей, называется амперметр, и в цепь он включается последовательно. Рассмотрим небольшой пример:

Амперметр.

Как видите, здесь источник питания подключен напрямую к резистору, символизирующему полезную нагрузку. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи:

I = frac{U}{R} = frac{12}{100} = 0.12

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи 👍

Важным параметром этого прибора является его внутреннее сопротивление r_А. Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится общее сопротивление, и мы получим следующее значение:

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

R = frac{r_А}{nmedspace-medspace 1}

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1 А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Шунтирование амперметра

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Напряжение в 1200 В взято исключительно ради примера, сокровенного практического смысла в этом нет ) Итак, из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

Использование амперметра

В данной задаче нам необходимо измерить ток I. Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и получим нужное значение. Для реализации задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

R = frac{r_А}{nmedspace-medspace 1}

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

I_Аmedspace r_А = I_Rmedspace R

Выразим ток шунта через ток амперметра:

I_R = I_Аmedspace frac{r_А}{R}

Измеряемый ток равен:

Подставим в это уравнение предыдущее выражение для тока шунта:

I = I_А + I_Аmedspace frac{r_А}{R}

Но сопротивление шунта нам также известно (R = frac{r_А}{nmedspace-medspace 1}). В итоге мы получаем:

I = I_Аmedspace (1 + frac{r_Аmedspace (nmedspace-medspace 1)}{r_А}enspace) = I_Аmedspace n

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нужно измерить.

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения. Вольтметр.

Прибор, предназначенный для измерения напряжения, называется вольтметр. И, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся, с чем это связано:

Вольтметр

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

I_1 = I_2 = frac{U}{R_1 + R_2} = frac{30}{10 + 20} = 1

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с R_2. Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (I_B = 0), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку r_В имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток. В связи с этим напряжение на резисторе R_2 уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

R_Д = r_Вmedspace (nmedspace-medspace 1)

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример:

Пример шунтирования вольтметра

Здесь мы добавили в цепь добавочное сопротивление R_3. Перед нами стоит задача измерить напряжение на резисторе R_2:medspace U_2 = R_2medspace I_2. Давайте определим, какой результат при таком включении выдаст нам вольтметр:

U_2 = I_2medspace R_2 = U_В + I_Вmedspace R_3

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

U_2 = U_В + I_Вmedspace (r_Вmedspace (nmedspace-medspace 1)) = U_В + I_Вmedspace r_Вmedspace nmedspace-medspace I_Вmedspace r_В = U_В + U_Вmedspace nmedspace-medspace U_В = U_Вmedspace n

Таким образом: U_В = frac{U_2}{n}. То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно значительно увеличить пределы измерения вольтметра.

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи (омметр) и мощности (ваттметр).

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями!

Амперметр

Для измерения силы тока используется амперметр. В идеале собственное сопротивление амперметра стремится к нулю, и оно никак не влияет на значение силы тока. Он включается в цепь последовательно с соблюдением полярности:

Вольтметр

Для измерения напряжения участка цепи используется вольтметр. В идеале собственное сопротивление вольтметра стремится к бесконечности, и устройство не проводит через себя ток. Он включается в электрическую цепь параллельно участку, в котором будет измеряться напряжение, с соблюдением полярности:

Как правильно записывать показания измерительных приборов с учетом погрешности

При записи величин (с учетом погрешности) следует пользоваться формулой:

A=a±Δa 

где A — измеряемая величина, a — результат измерений, Δa — погрешность измерений.

Важно!

Погрешность измерений равна половине цены деления шкалы измерительного прибора, если в задаче не указана другая величина погрешности.

Цена деления шкалы — разность значений величины, соответствующих двум соседним отметкам шкалы. Чтобы найти цену деления шкалы, нужно:

  1. Найти два ближайших штриха шкалы, возле которых написаны значения величин.
  2. Вычесть из большего значения меньшее.
  3. Полученное число разделить на число делений (промежутков), находящихся между ними.

Пример №1. Определите показания вольтметра (см. рисунок), если погрешность прямого измерения напряжения составляет половину цены деления вольтметра.

Видно, что стрелка вольтметра встала на значении «2,0» Вольт. Она немного не дотягивает до штриха «2», но к нему она находится ближе, чем к предыдущему штриху.

Два ближайших штриха шкалы с указанными значениями имеют значения 1 и 2 В. Всего между ними 5 промежутков. Следовательно, цена деления шкалы равна: (2 – 1)/5 = 0,2 (Вольт).

Так как по условию задачи погрешность равна половине цене деления шкалы, то она равна 0,1 Вольтам. Следовательно, вольтметр показывает: 2,0 ± 0,1 В.

Задание EF18821

Определите показания вольтметра (см. рисунок), если погрешность прямого измерения напряжения равна цене деления вольтметра.

Ответ: (____± ____) В.


Алгоритм решения

1.Определить цену деления шкалы измерительного прибора.

2.Определить погрешность измерений.

3.Определить показания прибора.

4.Записать показания прибора с учетом погрешности измерений.

Решение

Так как два ближайших штриха, обозначенными числовыми значениями, показывают 1 и 2 Вольта, а между ними 5 делений, то цена деления шкалы равна:

215=0,2 (В)

Согласно условию задачи, погрешность измерений равна цене деления шкалы. Стрелка вольтметра стоит в трех делениях от штриха, обозначенном цифрой «1». 3 деления по 0,2 Вольта равны 0,6 Вольтам. Следовательно, вольтметр показывает 1,6 В. С учетом погрешности: V = 1,6 ± 0,2 В.

Внимание! При записи ответа нужно использовать только десятичные числа без пробелов и знака «±».

Ответ: 1,60,2

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18883

Определите показания амперметра (см. рисунок), если погрешность прямого измерения силы тока равна цене деления амперметра.

Ответ: ( ____± ____) А.


Алгоритм решения

1.Определить цену деления шкалы измерительного прибора.

2.Определить погрешность измерений.

3.Определить показания прибора.

4.Записать показания прибора с учетом погрешности измерений.

Решение

Так как два ближайших штриха, обозначенными числовыми значениями, показывают 0 и 0,2 Ампера, а между ними 10 делений, то цена деления шкалы равна:

0,2010=0,02 (А)

Согласно условию задачи, погрешность измерений равна цене деления шкалы. Стрелка амперметра стоит на штрихе, обозначенном числом «0,2». Следовательно, амперметр показывает 0,2 А. Так как при измерении учитываются сотые доли Амперов, правильно результат измерения записывается так: I = 0,20 А. С учетом погрешности: I = 0,20 ± 0,02 А.

Внимание! При записи ответа нужно использовать только десятичные числа без пробелов и знака «±».

Ответ: 0,200,02

pазбирался: Алиса Никитина | обсудить разбор

Задание EF19038

Определите напряжение на лампочке (см. рисунок), если погрешность прямого измерения напряжения равна цене деления вольтметра.

Ответ: ( ____±____ ) В.


Алгоритм решения

1.Определить цену деления шкалы измерительного прибора.

2.Определить погрешность измерений.

3.Определить показания прибора.

4.Записать показания прибора с учетом погрешности измерений.

Решение

Так как два ближайших штриха, обозначенными числовыми значениями, показывают 2 и 4 Вольта, а между ними 10 делений, то цена деления шкалы равна:

4210=0,2 (В)

Согласно условию задачи, погрешность измерений равна цене деления шкалы. Стрелка вольтметра стоит в пяти делениях от штриха, обозначенном цифрой «2». 5 делени1 по 0,2 Вольта равны 1 Вольту. Следовательно, вольтметр показывает 3 В. Так как при измерении учитываются сотые доли Вольтов, правильно результат измерения записывается так: U = 3 В.С учетом погрешности: U = 3,0 ± 0,2 В.

Внимание! При записи ответа нужно использовать только десятичные числа без пробелов и знака «±».

Ответ: 3,00,2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 7.3k

На чтение 18 мин Просмотров 16 Опубликовано 11 апреля 2023 Обновлено 11 апреля 2023

Содержание

  1. Амперметр. Измерение силы тока
  2. Содержание
  3. Амперметр
  4. Амперметр в электрической цепи
  5. Правила подключения амперметра в электрическую цепь
  6. Измерение силы тока амперметром
  7. Безопасные и опасные пределы значений силы тока
  8. Это интересно: амперметр и Minecraft
  9. Упражнения
  10. Упражнение №1
  11. Упражнение №2
  12. Упражнение №3
  13. Упражнение №4
  14. Как найти показания амперметра формула
  15. Ответ
  16. Измерение тока.
  17. Измерение напряжения.
  18. Измерение тока.
  19. Измерение напряжения.

Амперметр. Измерение силы тока

Содержание

Сила тока $I$ — важная характеристика в электричестве. Она напрямую зависит от величины электрического заряда $q$, переносимого частицами, и от времени $t$, за которое этот заряд проходит через поперечное сечение проводника.

Далеко не всегда есть возможность заглянуть внутрь проводника, измерить переносимый заряд и рассчитать силу тока по формуле $I = frac$. Зато есть возможность измерить силу тока с помощью специального прибора.

Этот прибор называется амперметром. В данном уроке вы узнаете, как с его помощью измерять силу тока и как правильно подключать его к электрической цепи.

Амперметр

Амперметр — это прибор для измерения силы тока в электрической цепи.

По принципу работы и внешнему виду амперметр очень похож на гальванометр. Его устройство изменено, чтобы можно было не просто фиксировать наличие тока в цепи, но и измерять его силу.

В каких единицах градуируют шкалу амперметра? Так как он измеряет силу тока, то и его шкала будет проградуирована в амперах.

Различные виды амперметров могут отличаться друг от друга в зависимости от сферы использования. На рисунке 1, а изображен демонстрационный амперметр. Такие приборы чаще всего используют в школе при демонстрации опытов.

На рисунке 1, б представлен амперметр, который чаще используют для лабораторных работ.

Как вы видите, эти два амперметра рассчитаны на измерение определенного диапазона значений силы тока. Шкала первого амперметра покажет максимальное значение в $3 space А$, а второго — в $2 space А$. Превышать эти значения не рекомендуется, так как приборы могут выйти из строя.

Амперметр в электрической цепи

Амперметр — измерительный прибор. Поэтому, когда мы подключаем его к электрической цепи, он не будет влиять на величину силы тока. Он будет лишь показывать ее значение.

На схемах электрических цепей амперметр обозначается специальным условным знаком — кружочком с буквой “А” (рисунок 2).

Правила подключения амперметра в электрическую цепь

  1. Амперметр необходимо включать в цепь последовательно с тем прибором/проводником, силу тока в котором нужно измерить (рисунок 3)
  1. У амперметра имеется две клеммы для подсоединения проводников. Клемму, на которой стоит знак “+” нужно соединять с проводом, идущим от положительного полюса источника тока. И, соответственно, клемму, на которой стоит знак “-” нужно соединять с проводом, идущим от отрицательного полюса источника тока (рисунок 4).
  1. Нельзя подключать амперметр к цепи, в которой нет потребителя (приемника) тока (рисунок 5). Это может привести к выходу прибора из строя.

Измерение силы тока амперметром

Первое правило подключения амперметра в цепь говорит о его последовательном подключении. А есть ли разница, где именно при таком подсоединении мы расположим амперметр?

Давайте соберем электрическую цепь. Она будет состоять из источника тока, ключа, электрической лампочки и амперметра (рисунок 6).

После замыкания цепи, зафиксируем силу тока, которую показал амперметр.

А теперь давайте переместим амперметр в цепи так, чтобы он стоял после лампы, а не до нее (рисунок 7).

Амперметр покажет нам ту же величину силы тока, что и в предыдущем случае.

А теперь подключим в цепь сразу два амперметра (рисунок 8). И что мы увидим? Они будут показывать одинаковые значения силы тока, точно такие же, как и в предыдущих опытах.

В цепи с последовательным подключением проводников (так, что конец одного проводника соединяется с началом другого) сила тока во всех участках цепи одинакова.

Почему она одинакова? Дело в том, что заряд, который проходит через любое поперечное сечение проводников цепи за $t = 1 space с$, одинаков. Ведь ток равномерно протекает по всем проводам цепи, нигде не накапливаясь. Его течение можно сравнить с протеканием воды по трубам.

Безопасные и опасные пределы значений силы тока

Работа с электрическими цепями может быть опасной при несоблюдении правил безопасности. Если мы говорим о постоянном токе (величина силы тока и его направление со временем не изменяются), то эффекты воздействия такого тока на человеческий организм приведены в таблице 1.

$I$, $мА$ Воздействие на человеческий организм
0 — 3 Не ощущается
4 — 7 Зуд. Ощущение нагревания
8 — 10 Усиление нагревания
11 — 25 Еще большее усиление нагревания, незначительные сокращения мышц рук
26 — 80 Сильное ощущение нагревания. Сокращения мышц рук. Судороги, затруднение дыхания.
81 — 100 Паралич дыхания

Таблица 1. Действие постоянного тока на организм человека

Это интересно: амперметр и Minecraft

Упражнения

Упражнение №1

При включении в цепь амперметра так, как показано на рисунке 9, а, сила тока была $0.5 space А$. Каковы будут показания амперметра при включении его в ту же цепь так, как изображено на рисунке 9, б?

Сила тока будет точно такая же. Амперметр покажет значение в $0.5 space А$. Это объясняется тем, что в данной электрической цепи все элементы соединены последовательно. В этом случае сила тока на всех участках цепи одинакова.

Упражнение №2

Как можно проверить правильность показаний амперметра с помощью другого амперметра, точность показаний которого проверена?

Можно собрать цепь, как на рисунке 6, используя точный амперметр. Зафиксировать значение силы тока, которое он покажет. Потом заменить его другим — тем, правильность показаний которого мы хотим проверить. Далее останется просто сравнить показания этого амперметра с полученными ранее.

Можно сделать это и другим способом. Для этого нужно собрать цепь, как на рисунке 8 с последовательным соединений всех элементов. Мы уже знаем, что в такой цепи два исправных амперметра должны показывать одинаковые значения. Главное при такой проверке — это отметить для себя, какой амперметр показывает точные результаты измерений, чтобы не запутаться.

Упражнение №3

Рассмотрите амперметры, данные на рисунке 1. Определите цену деления шкалы каждого амперметра. Какую наибольшую силу тока они могут измерять? Перерисуйте шкалу амперметра (смотрите рисунок 1, а) в тетрадь и покажите, каково будет положение стрелки при силе тока $0.3 space А$ и $1.5 space А$.

Шкала демонстрационного амперметра с рисунка 1, а будет иметь цену деления, равную $0.2 space А$.

Шкала лабораторного амперметра с рисунка 1, б будет иметь цену деления, равную $0.05 space А$.

На рисунке 10, а мы изобразили шкалу демонстрационного амперметра, который показывает значение $I = 0.3 space А$,а на рисунке 10, б — $I = 1.5 space А$.

Упражнение №4

Имеется точный амперметр. Как, пользуясь им, нанести шкалу на другой, ещё не проградуированный амперметр?

Для этого нужно подключить оба амперметра в электрическую сеть. Например, как на рисунке 8.

Сначала перед замыканием ключа на пустую шкалу амперметра нанесем первую отметку — $0 space А$.

Замыкаем цепь. Точный амперметр покажет нам какое-то определенное значение силы тока. Его стрелка отклонится. Например, она покажет значение в $1 space А$. Стрелка второго амперметра тоже отклонится. Отметим ее положение — $1 space А$. Мы можем так сделать, потому что сила тока при последовательном соединении элементов в цепи на всех ее участках одинакова.

Затем можно, используя линейку, самостоятельно нанести дополнительную отметки на шкале амперметра, выбрав удобную для вас цену деления.

Источник

Как найти показания амперметра формула

найти показания амперметр и вольтметра в цепи. E1=12в E2=10В,E3=2 В, r1=4ом,r2=1 ом,r3=4 Ом, R1=6 Ом,R2=12 Ом,R3=4 Ом,R4=8 Ом,R5=2 Ом,R6=2Ом

помогите решить пожалуйста,не знаю что делать с 3 источниками ЭДС,получится что только один будет гнать напряжение(который 12в)?

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

Ответ

По закону Ома, ток в замкнутом контуре равен алгебраической сумме ЭДС, действующих в контуре, деленному на полное сопротивление цепи.

Алгебраическая сумма ЭДС равна Е=12В-10В+2В=4В

Полное сопротивление цепи равно R=r1+r2+r3+R1234+R56

R1234 состоит из двух папаллельно включенных цепочек из двух последовательно включенных сопротивлений (R1,R2 и R3,R4 соответственно)

Полное сопротивление цепи равно 4+1+4+7.2+1=17,2 Ом

Амперметр А» показывает полный ток в цепи, и он покажет 4В/17,2Ом=»0,232558А» или примерно 0,233А

Чтобы найти показания амперметра А1, найдем напряжение на R56. U56=I2*R56=I2*1

Ток I1=U56/2=I2/2=0.116279А или примерно 0,116 А

Показание вольтметра равно разности падения напряжения на сопротивлениях R2 и R4. Чтобы найти эти значения, найдем падение напряжения на всей цепочке сопротивлений R1R2R3R4. U1234=I2*R1234=I2*7,2

Падение напряжения на R2 U2=U1234/(R1+R2)*R2=I2*7,2*12/18=I2*7,2*2/3

Падение напряжения на R4 U4=U1234/(R3+R4)*R4=I2*7,2*8/12=I2*7,2*2/3

Разность напряжений на R2 и R4 равна U2-U4=I2*7,2*2/3-I2*7,2*2/3=0, следовательно, показания вольтметра будут равны нулю.

Ответ: амперметр А2 покажет ток примерно 0,233А, амперметр А1 примерно 0,116А, а вольтметр покажет 0

Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.

Измерение тока.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи 🙂

Важным параметром этого прибора является его внутреннее сопротивление . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

Выразим ток шунта через ток амперметра:

Подставим в это уравнение предыдущее выражение для тока шунта:

Но сопротивление шунта нам также известно (). В итоге мы получаем:

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить 🙂

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения.

Прибор, предназначенный для измерения напряжения называется вольтметр, и, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток и, в связи с этим напряжение на резисторе уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример 😉

Здесь мы добавили в цепь добавочное сопротивление . Перед нами стоит задача измерить напряжение на резисторе : . Давайте определим, что при таком включении будет на экране вольтметра:

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

Таким образом: . То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра 🙂

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи – омметр – и мощности – ваттметр.

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!

Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.

Измерение тока.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи 🙂

Важным параметром этого прибора является его внутреннее сопротивление . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

Выразим ток шунта через ток амперметра:

Подставим в это уравнение предыдущее выражение для тока шунта:

Но сопротивление шунта нам также известно (). В итоге мы получаем:

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить 🙂

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения.

Прибор, предназначенный для измерения напряжения называется вольтметр, и, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток и, в связи с этим напряжение на резисторе уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример 😉

Здесь мы добавили в цепь добавочное сопротивление . Перед нами стоит задача измерить напряжение на резисторе : . Давайте определим, что при таком включении будет на экране вольтметра:

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

Таким образом: . То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра 🙂

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи – омметр – и мощности – ваттметр.

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!

Источник

Как определить цену деления амперметра и вольтметра?

Школьный вопрос.

Запомнила еще с 7 класса, когда нам объяснял физик. Теперь пользуюсь всегда, даже когда готовлю что-нибудь и нужно понять, какова цена деления, например, измерительного пластикового контейнера в мультиварке. Из большего значения вычитаю меньшее, а после делю на количество промежутков между “черточками”.

Например, здесь. 120 мл минус 60 мл = 60 мл. Делим на три и получаем 20 мл. То есть цена одного деления равняется 20 мл.

автор вопроса выбрал этот ответ лучшим

Есть что-то общее между всеми измерительными приборами – это шкала, которая разбита делениями.

Например обычные ручные часы, мы привыкли, что на циферблате показаны шестьдесят делений, каждое из которых равно одной минуте. Но что делать если на современных часах всего четыре деления? Пятнадцать, тридцать, сорок пять и шестьдесят. Чему тогда равно деление?

Все очень, мы отнимаем от большего меньшее, например от 45 отнимем 15 и получим разность между делениями – 30. Теперь чтобы узнать цену деления мы должны эту разность поделить на 2 – число взятых делений. Получаем на таких часах цена деления равна 15 минутам.

Аналогично решаем задачу с любым измерительным прибором, амперметров или вольтметром. Отнимаем от большего обозначенного на шкале значения меньшее, и делим на количество необозначенных черточек-делений между ними.

Azama­tik
[55.3K]

6 лет назад 

Цену деления как амперметра, так и вольтметра будем определять по следующей формуле:

Ч2 – Ч1/n,

где Ч2 и Ч1 – это соседние значения (числа), которые написаны на приборе; а n – это количество делений между ними.

Определим цену деления приборов, изображенных на рисунке:

Амперметр: Ч2 – это, к примеру, три, а Ч1 – два. Отнимаем от большего меньшее и получаем единицу. Единицу делим на есть и поучаем 0,2. Цена деления апмерметра 0,2.

Вольтметр: от ста (Ч2) отнимаем пятьдесят (Ч1) и делим на десять (n). Получаем результат 5. Цена деления вольтметра равна 5.

Nelli­4ka
[114K]

6 лет назад 

Давайте разберемся на конкретном примере.

Берем пару любых соседних чисел – будь то 0 и 2, 2 и 4, 4 и 6 и т.д.

Находим разницу между этими числами. В нашем случае это 2.

Затем нужно посчитать, сколько делений находится между этими цифрами. Деления – это не сами полоски, а пространство между ними. У нас получается 4.

Далее мы делим на это число получившуюся ранее разницу: 2:4 = получаем 0,5. Таким образом, цена деления – 0,5.

Чтобы определить цену деления какого-то прибора (амперметра, вольтметра и т.д.), нужно найти два соседних числа, отнять от большего меньшее и поделить получившееся число на количество промежутков между делениями (которые расположены между двумя этими числами).

Пример из фото:

10-5=5

5:5=1

Цена деления=1.

Сахар­ный имбир­ь
[3.6K]

4 года назад 

Возьмем, допустим, мерный стакан. На нем указаны следующие числа: 0, 50, 100, 150, 200.

Между этими числами расположено четыре черточки, плюс напротив самих чисел они также имеются.

То есть между числами у нас есть пять делений, и нам нужно понять, чему они соответствуют.

Берем любые два соседних числа и отнимаем от большего меньшее. Например, от 150 отнимаем 100, получается 50. Потом это число делим на количество делений между “соседями”, то есть в нашем случае на 5. Получается 10 – это и есть цена деления на нашем мерном стакане.

Werte­p75
[1.5K]

4 года назад 

Первое действие – вычитание. Естественно, вычитать нужно меньшее из большего, а не наоборот, нам нужно найти положительное значение.

Второе действие – деление. Делить нужно то число, что стало результатом первого действия. Делить надо на число, соответствующее количеству промежутков (не чёрточек!) между двумя значениями.

MMM DANON­E
[27.1K]

4 года назад 

Цену деления данных приборов найти легко, пригодятся элементарные знания с уроков физики. Посчитайте, сколько делений у вас находятся между соседними числами. Затем произведите разность между соседними числами на шкале (от большего вычесть меньшее), полученную цифру поделите на высчитанное заранее число делений.

Нужно из максимального значения шкалы прибора, вычесть минимальное (начальное) Полученный результат разделить на количество самых маленьких делений имеющихся на шкале. Полученный результат и будет ценой каждого деления в отдельности.

Нэпэй­шни
[18.2K]

6 лет назад 

Цена деления амперметраа и вольтметра? вычисляется по простой формуле.Число1-Число2/n(число делений у шкалы.Например амперметр (число делений5):Ч1 это 4 Ч2 это 2.Отнимает и получаем 2.Двойку делим на n выходит единица.

Чтобы определить цену деления нужно посчитать количество делений между двумя соседними числами.Затем вычесть из большего числа меньшее и разделить на количество делений.

Знаете ответ?

Добавить комментарий