Математика
5 класс
Урок № 79
Координатный луч
Перечень рассматриваемых вопросов:
– координатный луч;
– единичный отрезок;
– соотношение единичного отрезка со знаменателем дроби;
– координата точки.
Тезаурус
Единичный отрезок – это расстояние от 0 до точки, выбранной для измерения.
Отрезок – часть прямой, ограниченная с двух сторон точками.
Луч – это часть прямой линии, расположенная по одну сторону от любой точки, лежащей на этой прямой.
Обязательная литература
- Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.
Дополнительная литература
- Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.
- Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.
Теоретический материал для самостоятельного изучения
Зададим прямую, на которой указано направление. Отметим на ней точку О. Примем её за начало отсчета.
Отложим на прямой вправо от точки О единичные отрезки.
Единичный отрезок – это расстояние от О до точки, выбранной для измерения.
Обозначим конец первого отрезка числом 1, второго – числом 2 и т. д.
Сформулируем определение.
Прямую с заданными на ней началом отсчёта, единичным отрезком и направлением отсчёта называют координатной осью или координатным лучом.
С помощью координатной прямой натуральные числа изображаются точками.
Точке О на координатной прямой соответствует число 0. Обозначают: О (0).
Число, которое соответствует данной точке на координатной оси, называют координатой данной точки.
Например, точка А имеет координату 5.
Обозначают А (5).
Таким образом, на координатной прямой можно найти точку, соответствующую натуральному числу. Также с помощью натуральных чисел и числа ноль можно указать положение любой точки на прямой.
А теперь рассмотрим, как отметить на координатном луче дробь.
Чтобы удобно было изображать дробные числа, нужно правильно выбрать длину единичного отрезка.
Удобный вариант – взять единичный отрезок из стольких клеточек, каков знаменатель дробей. Например, если требуется изобразить на координатном луче дроби со знаменателем 7, единичный отрезок лучше взять длиной в 7 клеточек. В этом случае изображение дробей на координатном луче будет несложным.
можно изобразить одним единичным отрезком и ещё двумя клеточками.
Если требуется отметить на координатном луче дроби с разными знаменателями, желательно, чтобы число клеточек в единичном отрезке делилось на все знаменатели. Например, для изображения на координатном луче дробей со знаменателями 6, 4 и 12 удобно взять единичный отрезок длиной в двенадцать клеточек. Чтобы отметить на координатном луче нужную дробь, единичный отрезок разбиваем на столько частей, каков знаменатель, и берём таких частей столько, каков числитель.
Возьмём единичный отрезок, разделим на шесть частей и возьмём одну из них.
Тренировочные задания
№ 1. Подберите правильные названия к числам. Разместите нужные подписи под изображениями.
Варианты ответов: смешанное число; правильная дробь; неправильная дробь.
Чтобы правильно выполнить задание, необходимо вспомнить, какую дробь называют правильной, а какую неправильной. А также, что называют смешанным числом.
Правильный ответ:
Варианты ответа: 9; 6; 4; 3; 2
Мы знаем, что удобный вариант – взять единичный отрезок из стольких клеточек, каков знаменатель дробей. Знаменатель равен 9, значит, единичный отрезок следует выбирать в 9 клеток.
Правильный ответ: 9.
Для определения размера какой-либо величины (длина, вес, температура и т.д.) мы используем измерительные приборы и инструменты со шкалами для отображения результата.
Шкала – это расположенный в определенной последовательности ряд отметок, которые соответствуют числовому значению измеряемой величины.
Например, в школьном курсе математики и геометрии для измерения длины геометрического объекта, в частности отрезка, используется линейка (рисунок 1).
Рисунок 1. Измерительная линейка.
Из урока Измерение величин вы уже знаете, что такое единица измерения, а их соотношения можете посмотреть в справочном разделе.
Деления шкалы – это равные части, на которые она разбита. Каждое деление шкалы обозначается отметками (черточками).
Нулевая отметка шкалы – это отметка, которая соответствует нулевому значению измеряемой нами величины.
Цена деления шкалы – это величина значения одного деления шкалы. То есть, это величина значения между двумя соседними отметками на шкале.
Чтобы узнать цену деления шкалы, нужно:
1. взять любые два значения на шкале (лучше брать соседние, обозначенные числами),
2. найти разность между ними,
3. посчитать количество делений шкалы, которые находятся между выбранными нами значениями,
4. результат деления числа, полученного в пункте 2, на число, полученной в пункте 3, и будет ценой деления данной шкалы.
Как мы видим на рисунке 1, деления, обозначенные большими черточками, пронумерованы, и значение каждого такого деления равно 1 см. В этом легко убедиться, если найти разницу между значениями каждого из соседних делений: 1-0=1, 2-1=3, …, 9-8=1, 10-9=1.
Но каждое из больших делений разделено девятью маленькими черточками на 10 делений. Мы знаем, что в 1 см содержится 10 мм, поэтому разделив эти 10 мм на 10 делений, мы получим цену деления линейки, равную 1 мм.
Цена деления может отличаться не только у разных же измерительных приборов, но и у одних и тех же.
Рисунок 2 Цена деления шкалы
Например, на рисунке 2 изображены два термометра. Как вы думаете, они показывают одинаковую температуру, или нет?
Конечно же разную! Хоть столбик этих двух термометров и находится на высоте двух делений над значением 20, цена этих делений разная. Левый термометр показывает температуру 22°C (читается как двадцать два градуса Цельсия), а правый — 24°C.
Давайте посмотрим, так ли это? На левом термометре разница между двумя соседними пронумерованными отметками равна 10°C: 10-0=10, 20-10=10, и т.д. На правом же термометре эта разница равняется уже 20°C: 20-0=20, 40-20=20, и т.д. На обоих термометрах маленькие черточки делят одно большое пронумерованное деление на 10 частей. Разделив разницу между значениями пронумерованных отметок (10 и 20 соответственно) на количество делений между ними (10), мы получим цену деления каждого из термометров:
- левый термометр – 10:10=1°C;
- правый термометр – 20:10=2°C.
Итак, оба термометра показывают 20°C и еще два деления. Но на левом термометре это означает 20°C и еще два раза по 1°C, то есть, 20+2=22°C, а на правом – 20°C и еще два раза по 2°C, то есть, 20+4=24°C.
Координатный луч, единичный отрезок, координаты точки
Различные прямые линии со шкалами играют важную роль в школьной математике. Сейчас я познакомлю вас с одной из них.
Нарисуем точку O и проведем от нее направо луч. Обозначим направление луча стрелкой.
Рис. 3. Луч с началом в точке O
Отметим на этом луче отрезок произвольной длины OP. Справа от него отметим равный ему отрезок PR, и продолжим отмечать далее подобным образом отрезки, равные отрезку OP, до тех пор, пока не закончится нарисованный нами луч. В итоге у нас получится следующее.
Рис. 4. Луч с равными отрезками
Поставим возле начала луча (точки O) число 0 (нуль). Возле второго конца отрезка OP (возле точки P) поставим число 1 (один). Таким образом мы обозначаем, что длина отрезка OP равна 1 (единице).
Отрезок OR у нас состоит из двух отрезков: OP и PR, то есть OR=OP+PR. А так как по условиям нашего построения PR=OP, то мы можем записать, что OR=OP+OP, или OR=1+1=2.
Поставим возле точки R найденное нами значение длины отрезка OR, то есть, число 2.
Аналогичным образом вы можете легко найти числа, соответствующей каждой поставленной нами на луче точке.
Рис. 5. Луч с отрезками и цифрами
Покажу еще раз на примере точки S:
OS=OR+RS,
так как RS=OP (по условиям построения данных отрезков),
тогда OS=OR+OP;
подставив известные нам значения длины отрезков OR и OP, получим:
OS=2+1, или OS=3.
Значит, точке S на нашем лучу соответствует число 3.
Оставим на луче только числовые значения, а все буквы кроме O отбросим. В итоге у нас получился вот такой луч с отрезками и числами, которые соответствуют концам этих отрезков.
Рис. 6. Координатный луч
Глядя на рисунок 6, легко заметить, что отрезки, лежащие на луче, это не что иное, как нанесенная на луч шкала. Действительно, смотрите сами.
Точка O с соответствующим ей числом 0 (нуль) называется точка отсчета, что аналогично нулевой отметке шкалы. Обычно этой буквой всегда помечают в рисунках точку отсчета.
Равные отрезки, на которые мы разбили луч, – это деления шкалы.
Единичный отрезок – это отрезок, длина которого принята нами за единицу длины и равна 1(единице). Точке, обозначающей правый конец единичного отрезка, соответствует число 1.
Другими словами, единичный отрезок можно назвать ценой деления.
Определение
Координатный луч – это луч с отмеченным на нем единичным отрезком, точкой начала отсчета, которой соответствует число 0 (нуль), и указанным направлением отсчета.
Координатный луч еще называют числовой луч.
Координатный луч — это не что иное, как бесконечная шкала.
Длина единичного отрезка может быть любой. Она выбирается каждый раз отдельно и при ее выборе ориентируются на то, чтобы на рисунке поместились все необходимые в данный момент числа. Например, на рисунке 7-а длина единичного отрезка составляет 5 см, а на рисунке 7-б всего 1 см.
Рис. 7. Разные варианты единичного отрезка
Как вы заметили из предыдущего рисунка, для разметки луча отрезками можно вместо кружочков использовать штрихи везде, кроме точки O (начала отсчета). Кружочки рисуют поверх этих штрихов тогда, когда необходимо отметить на числовом луче какое-то натуральное число. В этом случае мы дополнительно обозначаем его заглавной (большой) буквой латинского алфавита (смотрите рисунок 8).
Координатный луч служит для наглядного отображения и сравнения чисел натурального ряда.
Действительно, длина каждого отрезка числового луча отличается от длины предыдущего на единицу, точно так же, как и каждый элемент числового ряда отличается от предыдущего.
На числовом луче можно отобразить какое угодно число n, принадлежащее натуральному ряду. Для этого на нем отмечают точку (к примеру, A) на расстоянии n единичных отрезков от точки отсчета O. При этом число n называют координатой точки A и записывают в виде A(n), что читается как «точка A с координатой n» .
Запомните
Координата точки числового луча – это число, которое соответствует поставленной на числовом луче точке.
Для примера отметим на координатном луче точки A, B, C и определим их координаты.
Рис. 8. Координаты точек
Точке A соответствует число 5 координатного луча, точке B – число 8, точке C – число 13. Запишем полученные координаты точек: A(5), B(8), C(13).
В отдельных случаях для обозначения на координатном луче больших натуральных чисел, допускается не отображать на рисунке точку отсчета и единичный отрезок, показывая только тот участок луча, на котором расположены данные числа.
Рис. 9. Большие числа на координатном луче.
5.1. Координатный луч. Единичный отрезок
Натуральные числа можно изображать на луче. Построим луч с началом в точке О, направив его слева – направо, направление отметим стрелкой.
Началу луча (точке О) поставим в соответствие число 0 (ноль). Отложим от точки О отрезок ОА произвольной длины. Точке А поставим в соответствие число 1 (один). Длину отрезка ОА будем считать равной 1 (единице). Отрезок АВ = 1 называется единичным отрезком. Отложим от точки А в направлении луча отрезок АВ = ОА. Поставим точке В в соответствие число 2. Заметим, что точка В находится от точки О на расстоянии в два раза большем, чем точка А. Значит, длина отрезка ОВ равна 2 (двум единицам). Продолжая откладывать в направлении луча отрезки, равные единичному, будем получать точки, которым соответствуют числа 3, 4, 5, и т.д. Данные точки удалены от точки О соответственно на 3, 4, 5, и т.д. единиц.
Луч, построенный таким способом, называется координатным или числовым. Начало числового луча, точка О, называется точкой отсчета. Числа, поставленные в соответствие точкам на этом луче, называются координатами этих точек (отсюда: координатный луч). Пишут: О(0), А(1), В(2), читают: «точка О с координатой 0 (ноль), точка А с координатой 1 (один), точка В с координатой 2 (два)» и т.д.
Любое натуральное число n можно изобразить на координатном луче, при этом соответствующая ему точка P будет удалена от точки О на n единиц. Пишут: ОP = n и P(n) – точка P (читают: “пэ”) с координатой n (читают: “эн”). Например, чтобы отметить на числовом луче точку К(107), необходимо от точки О отложить 107 отрезков, равных единичному. В качестве единичного можно выбрать отрезок любой длины. Часто длину единичного отрезка выбирают такой, чтобы было возможно в пределах рисунка изобразить на числовом луче необходимые натуральные числа. Рассмотрите пример
5.2. Шкала
Важным применением числового луча являются шкалы и диаграммы. Они используются в измерительных приборах и устройствах, при помощи которых измеряют различные величины. Одним из основных элементов измерительных приборов является шкала. Она представляет собой числовой луч, нанесенный на металлическое, деревянное, пластиковое, стеклянное или другое основание. Часто шкала выполнена в виде окружности или части окружности, которые разделены штрихами на равные части (деления-дуги) подобно числовому лучу. Каждому штриху на прямой или круговой шкале поставлено в соответствие определенное число. Это значение измеряемой величины. Например, числу 0 на шкале термометра соответствует температура 00С, читают: «ноль градусов Цельсия». Это температура, при которой начинает таять лед (или начинает замерзать вода).
Используя измерительные приборы и инструменты со шкалами, определяют значение измеряемой величины по положению указателя на шкале. Чаще всего указателем служат стрелки. Они могут перемещаться вдоль шкалы, отмечая значение измеряемой величины (например, стрелка часов, стрелка весов, стрелка спидометра – прибора для измерения скорости, рисунок 3.1.). Подобна смещающейся стрелке граница столбика ртути или подкрашенного спирта в термометре (рисунок 3.1). В некоторых приборах движется не стрелка вдоль шкалы, а шкала перемещается относительно неподвижной стрелки (метки, штриха), например, в напольных весах. В некоторых инструментах (линейка, рулетка) указателем служат границы самого измеряемого предмета.
Промежутки (части шкалы) между соседними штрихами шкалы называются деления. Расстояние между соседними штрихами, выраженное в единицах измеряемой величины, называется ценой деления (разность чисел, которым соответствуют соседние штрихи шкалы.) Например, цена деления спидометра на рисунке 3.1. равна 20 км/ч (двадцать километров в час), а цена деления комнатного термометра на рисунке 3.1. равна 10С (один градус Цельсия).
Диаграмма
Для видимого изображения величин используют линейные, столбчатые или круговые диаграммы. Диаграмма состоит из числового луча-шкалы, направленного слева – направо или снизу – вверх. Кроме того на диаграмме помещены отрезки или прямоугольники (столбцы), изображающие сравниваемые величины. При этом длина отрезков или столбцов в единицах шкалы равна соответствующим величинам. На диаграмме возле числового луча-шкалы подписывают название единиц измерения, в которых отложены величины. На рисунке 3.2. изображена столбчатая диаграмма, а на рисунке 3.3 линейная.
3.2.1. Величины и приборы для их измерения
В таблице приведены названия некоторых величин, а также приборов и инструментов, предназначенных для их измерения. (Жирным шрифтом выделены основные единицы Международной системы единиц).
5.2.2. Термометры. Измерение температуры
На рисунке 3.4 приведены термометры, в которых использованы разные температурные шкалы: Реомюра (°R), Цельсия (°С) и Фаренгейта (°F).В них использован один и тот же температурный интервал – разность температур кипения воды и плавления льда. Этот интервал разделён на различное число частей: в шкале Реомюра – на 80 частей, шкале Цельсия – на 100 частей, в шкале Фаренгейта – на 180 частей. При этом в шкалах Реомюра и Цельсия температуре таяния льда соответствует число 0 (ноль), а в шкале Фаренгейта – число 32. Единицы температуры в этих термометрах: градус по Реомюру, градус по Цельсию, градус по Фаренгейту. В устройстве термометров используется свойство жидкостей (спирта, ртути) расширяться при нагревании. При этом различные жидкости по-разному расширяются при нагревании, что видно на рисунке 3.5, где штрихи для столбика спирта и ртути не совпадают при одинаковой температуре.
5.2.3. Измерение влажности воздуха
Влажность воздуха зависит от количества в нём водяных паров. Например, летом в пустыне воздух сухой, влажность его низкая, так как в нём содержится мало паров воды. В субтропиках, например, в Сочи влажность высокая, в воздухе много водяных паров. Измерить влажность можно с помощью двух термометров. Один из них обычный (сухой термометр). У второго шарик обёрнут влажной тканью (влажный термометр). Известно, что при испарении воды температура тела понижается. (Вспомните озноб при выходе из моря после купания). Поэтому влажный термометр показывает более низкую температуру. Чем суше воздух, тем больше разность показаний двух термометров. Если показания термометров одинаковы (разность равна нулю), то влажность воздуха равна 100 %. В этом случае выпадает роса. Прибор, измеряющий влажность воздуха, называется психрометром (рисунок 3.6). Он снабжён таблицей, в которой приведены: показания сухого термометра, разность показаний двух термометров, влажность воздуха в процентах. Чем ближе влажность к 100%, тем более влажный воздух. Нормальная влажность в помещениях должна быть равна около 60%.
Блок 3.3. Самоподготовка
5.3.1. Заполните таблицу
Отвечая на вопросы таблицы, заполняйте свободную колонку («Ответ»). При этом используйте рисунки приборов в блоке «Дополнительный».
760 мм. рт. ст. считается нормальным. На рисунке 3.11 показано изменение атмосферного давления при подъёме на самую высокую гору Эверест.
Постройте линейную диаграмму изменения давления, отложив на вертикальном луче высоту над уровнем моря, а по горизонтали давление.
Блок 5.4. Проблемный
Построение числового луча с единичным отрезком заданной длины
Для решения этой учебной проблемы работайте по плану, приведенному в левой колонке таблицы, при этом правую колонку рекомендуется закрыть листом бумаги. Ответив на все вопросы, сопоставьте свои выводы с приведёнными решениями.
Блок 5.5. Фасетный тест
Числовой луч, шкала, диаграмма
В задачах фасетного теста использованы рисунки из таблицы. Все задачи начинаются так: «ЕСЛИ числовой луч представлен на рисунке …., то…»
ЕСЛИ: числовой луч представлен на рисунке… Таблица
ТО:
- Количество единиц между соседними штрихами числового луча.
- Координаты точек А, В, С, D.
- Длина (в сантиметрах) отрезков АВ, ВС, АD, ВD соответственно.
- Длина (в метрах) отрезков АВ, ВС, АD, ВD соответственно.
- Натуральные числа, расположенные на числовом луче левее точки D.
- Натуральные числа, расположенные на числовом луче между точками А и С.
- Количество натуральных чисел, лежащих на числовом луче между точками А и D.
- Количество натуральных чисел, лежащих на числовом луче между точками В и С.
- Цена деления шкалы прибора.
- Скорость автомобиля в км/ч, если стрелка спидометра указывает на точки А, В, С, D соответственно.
- Величина (в км/ч), на которую увеличилась скорость автомобиля, если стрелка спидометра переместилась из точки В в точку С.
- Величина скорости автомобиля после того, как водитель уменьшил скорость на 84 км/ч (перед уменьшением скорости стрелка спидометра указывала на точку D).
- Масса груза на весах в центнерах, если стрелка – указатель весов – расположена напротив точек А, В, С соответственно.
- Масса груза на весах в килограммах, если стрелка – указатель весов – расположена напротив точек А, В, С соответственно.
- Масса груза на весах в граммах, если стрелка – указатель весов – расположена напротив точек А, В, С соответственно.
- Количество учеников в 5 классе.
- Разность между количеством учеников, успевающих на «4», и количеством учеников, успевающих на «3».
- Отношение количества учеников, успевающих на «4» и «5», к количеству учеников, успевающих на «3».
РАВНО (равна, равны, это):
а) 10 б) 6,12,3,3 в) 1 г) 99,102,106,104 д) 2 е) 201,202 ж) 49 з) 3500,3000,8000,4500
и) 5,2,1,4 к) 599 л) 6,3,3,9 м) 10,4,16,7 н) 100 о) 4 км/ч п) 65,85,105,115 р) 7,2,4,6 с) 20,20,50,30 т) 0 у) 700,600,1600,900 ф) 1,2,3,4,5,6 х) 25,10,5,20 ц) 3,4,5,2 ч) 203,197,200,206 ш) 15,20,25,10 щ) 1599 ы) 11,12,13,14,15 э) 30,60,15,15 ю) 0,700,1300,1600 я) 100,100,250,150 аа) 30,15,15,45 бб) 4 вв) 1,2,3,4,5 гг) 17 дд) 500 кг ее) 19 жж) 80 зз) 100,101,102,103,104,105 ии)5,6 кк) 28,64,100,164 лл) 1500000,3000000,4500000 мм) 11 нн) 36 оо) 1500,3000,4500 пп) 7 рр) 24 сс) 15,30,45
Блок 5.6. Учебная мозаика
В заданиях мозаики использованы приборы из блока «Дополнительный». Ниже приведено поле мозаики. На нём указаны названия приборов. Кроме того для каждого прибора обозначены: измеряемая величина (В), единица измерения величины (Е), показание прибора (П), цена деления шкалы (Ц). Далее помещены ячейки мозаики. Прочитав ячейку, вы должны сначала определить прибор, к которому она относится, и поставить в окружность ячейки номер прибора. Затем надо догадаться, о чём эта ячейка. Если речь идёт об измеряемой величине, надо к номеру приписать букву В. Если это единица измерения – поставить букву Е, если показание прибора – букву П, если цена деления – букву Ц. Таким образом надо обозначить все ячейки мозаики. Если ячейки вырезать и расположить так, как на поле, то можно систематизировать сведения о приборе. В компьютерном варианте мозаики при правильном расположении ячеек создаётся рисунок.
Числовой отрезок – это отрезок, по длине которого отложены равные отрезки, обозначенные цифрами.
Давайте взглянем на рисунок:
Характерной чертой числового отрезка является его конечность. Как видно на изображении, прямая ограничена с обеих сторон. Также мы замечаем числа – благодаря им отрезок и носит название числового. Каждый короткий отрезочек – расстояние от 0 до 1, от 1 до 2, от 2 до 3 – равен друг другу и называется единичным отрезком.
Но если Вы видите, что отрезок начинается нулём, а заканчивается стрелкой, знайте – это числовой луч.
Числовой луч – это часть прямой линии, разъединённой на единичные отрезки.
Особенностью числового луча является то, что он бесконечен.
А теперь давайте посмотрим, как умение работать с числовыми отрезками может помочь нам при счёте.
6 – точка, в которой мы изначально находимся. От этой точки предлагают сделать ещё 9 шагов. Наша задача – определить, какая длина числового отрезка получится после того, как мы переместимся на 9 единичных отрезков вправо.
Рассуждаем:
Один единичный отрезок равен единице. Каждый единичный отрезок равен между собой. Длина известного числового отрезка составляет 6 единичных отрезков. Нам необходимо прибавить 9 единичных отрезков, чтобы узнать длину увеличенного числового отрезка.
На этом этапе можно поставить пальчик ребёнка на начало пути – точку 6 – и, двигаясь вправо, переходить с числа на число, считая каждый шаг и проговаривая, на каком числе Вы оказались:
Один шаг – 7, два шага – 8, три шага – 9 и так далее. До тех пор, пока Вы не сделаете все 9 шагов и не окажетесь в нужной нам точке – числе 15, которое станет известно благодаря пошаговому счёту. Так, длина интересующего нас числового отрезка составляет 15 единичных отрезков.
Вне числового луча этот пример имеет вид:
6 + 9 = 15
Помимо того, что числовые лучи и отрезки помогают при счёте, они приходятся очень кстати при сравнении чисел.
На числовом луче мы видим две отмеченные точки: 4 и Х. Х – неизвестное число. Узнать его не составляет труда: надо к 4 прибавить то количество единичных отрезков, которое расположено между 4 и Х:
4 + 4 = 8
Очевидно, что число 8, которое пряталось за переменной Х, больше числа 4. Но если бы нас попросили дать быстрый ответ, значение какой из точек – 4 или Х – больше, мы бы смогли ответить без долгих раздумий. Потому что значение точки, которая на числовом луче или числовом отрезке стоит правее, всегда больше, чем значение точки слева.
Попробуйте определить, значение какой точки – 6 или Х – меньше?
Преподаватели онлайн-школы World of Math подготовили для Вашего чада задания, которые помогут систематизировать знания по теме “Числовой отрезок”. Много практики и толковое разъяснение материала ждут Вас на бесплатном уроке!
Записаться можно здесь
- Главная
- Справочники
- Справочник по математике для начальной школы
- Виды линий
- Отрезок. Луч
- Числовой отрезок
Числовой отрезок – это отрезок, на котором находятся числа. Для того чтобы построить числовой отрезок, нужно выбрать единичный отрезок. То есть решить, сколько клеточек вправо мы будем шагать, чтобы получить каждое следующее число. Можете выбрать единичный отрезок, который равен любому количеству клеток.
Свойства числового отрезка:
1) Части числового отрезка между соседними числами одинаковы;
2) Числа показывают, сколько частей отложено;
3) Чтобы получить следующее число, надо к данному числу прибавить 1.
4) Чтобы получить предыдущее число, надо из данного числа вычесть 1.
Советуем посмотреть:
Точка. Кривая. Прямая линия
Отрезок. Луч
Ломаная линия
Длиннее. Короче. Уже. Шире. Одинаковые по длине и ширине
Виды линий
Правило встречается в следующих упражнениях:
1 класс
Страница 59. Урок 36,
Петерсон, Учебник, часть 1
Страница 2. Урок 2,
Петерсон, Учебник, часть 2
Страница 5. Урок 3,
Петерсон, Учебник, часть 2
Страница 11. Урок 6,
Петерсон, Учебник, часть 2
Страница 39. Урок 20,
Петерсон, Учебник, часть 3
Страница 61. Урок 31,
Петерсон, Учебник, часть 3
2 класс
Страница 13. Урок 4,
Петерсон, Учебник, часть 2
Страница 22. Урок 7,
Петерсон, Учебник, часть 2