Как найти через какие точки проходит прямая

Данная статья раскрывает получение уравнения прямой, проходящей через две заданные точки в прямоугольной системе координат, расположенной на плоскости. Выведем уравнение прямой, проходящей через две заданные точки в прямоугольной системе координат. Наглядно покажем и решим несколько примеров, касающихся пройденного материала.

Уравнение прямой, проходящей через две заданные точки на плоскости

Перед получением уравнения прямой, проходящей через две заданные точки необходимо обратить внимание на некоторые факты. Существует аксиома, которая говорит о том, что через две несовпадающие точки на плоскости возможно провести прямую и только одну. Иначе говоря, две заданные точки плоскости определяются прямой линией, проходящей через эти точки.

Если плоскость задана прямоугольной системой координат Оху, то любая изображенная в нем прямая будет соответствовать уравнению прямой на плоскости. Также имеется связь с направляющим вектором прямой. Этих данных достаточно для того, чтобы произвести составление уравнения прямой, проходящей через две заданные точки.

Рассмотрим на примере решения подобной задачи. Необходимо составить уравнение прямой a, проходящей через две несовпадающие точки M1(x1, y1) и M2(x2, y2), находящиеся в декартовой системе координат.

В каноническом уравнении прямой на плоскости, имеющего вид x-x1ax=y-y1ay, задается прямоугольная система координат Оху с прямой, которая пересекается с ней в точке с координатами M1(x1, y1) с направляющим вектором  a→=(ax, ay).

Необходимо составить каноническое уравнение прямой a, которая пройдет через две точки с координатами M1(x1, y1) и M2(x2, y2).

Прямая а имеет направляющий вектор M1M2→ с координатами(x2-x1, y2-y1), так как пересекает точки М1 и М2. Мы получили необходимые данные для того, чтобы преобразовать каноническое уравнение  с координатами направляющего вектора M1M2→=(x2-x1, y2-y1) и координатами лежащих на них точках M1(x1, y1) и M2(x2, y2). Получим уравнение вида x-x1x2-x1=y-y1y2-y1 или x-x2x2-x1=y-y2y2-y1.

Рассмотрим рисунок, приведенный ниже.

Уравнение прямой, проходящей через две заданные точки на плоскости

Следуя по вычислениям, запишем параметрические уравнения прямой на плоскости, которое проходит через две точки с координатами M1(x1, y1) и M2(x2, y2). Получим уравнение вида x=x1+(x2-x1)·λy=y1+(y2-y1)·λ или x=x2+(x2-x1)·λy=y2+(y2-y1)·λ.

Рассмотрим подробней на решении нескольких примеров.

Пример 1

Записать уравнение прямой, проходящей через 2 заданные точки с координатами M1-5, 23, M21, -16.

Решение

Каноническим уравнением для прямой, пересекающейся в двух точках с координатами x1, y1 и x2, y2 принимает вид x-x1x2-x1=y-y1y2-y1. По условию задачи имеем, что x1=-5, y1=23, x2=1, y2=-16.  Необходимо подставить числовые значения в уравнение x-x1x2-x1=y-y1y2-y1. Отсюда получим, что каноническое уравнение примет вид x-(-5)1-(-5)=y-23-16-23⇔x+56=y-23-56.

Ответ: x+56=y-23-56.

При необходимости  решения задачи с другим видом уравнения, то для начала можно перейти к каноническому, так как из него проще прийти к любому другому.

Пример 2

Составить общее уравнение прямой, проходящей через точки с координатами M1(1, 1) и M2(4, 2) в системе координат Оху.

Решение

Для начала необходимо записать каноническое уравнение заданной прямой, которая проходит через заданные две точки. Получим уравнение вида x-14-1=y-12-1⇔x-13=y-11.

Приведем каноническое уравнение к искомому виду, тогда получим:

x-13=y-11⇔1·x-1=3·y-1⇔x-3y+2=0

Ответ: x-3y+2=0.

Примеры таких заданий были рассмотрены в школьных учебниках на уроках алгебры. Школьные задачи отличались тем, что известным было уравнение прямой с угловым коэффициентом, имеющее вид y=kx+b. Если необходимо найти значение углового коэффициента k и числа b, при которых уравнение y=kx+b определяет линию в системе Оху, которая проходит через  точки M1(x1, y1) и M2(x2, y2), где x1≠x2. Когда x1=x2 , тогда угловой коэффициент принимает значение бесконечности, а прямая М1М2 определена общим неполным уравнением вида x-x1=0.

Потому как точки М1 и М2 находятся на прямой, тогда их координаты удовлетворяют уравнению y1=kx1+bи y2=kx2+b. Следует решить систему уравнений y1=kx1+by2=kx2+b относительно k и b.

Для этого найдем k=y2-y1x2-x1b=y1-y2-y1x2-x1·x1 или k=y2-y1x2-x1b=y2-y2-y1x2-x1·x2.

С такими значениями k и b уравнение прямой, проходящее через заданные две точки, принимает следующий вид y=y2-y1x2-x1·x+y2-y2-y1x2-x1·x1 или y=y2-y1x2-x1·x+y2-y2-y1x2-x1·x2.

Запомнить сразу такое огромное количество формул не получится. Для этого необходимо учащать количество повторений в решениях задач.

Пример 3

Записать уравнение прямой с угловым коэффициентом, проходящей через точки с координатами M2(2, 1) и y=kx+b.

Решение

Для решения задачи применяем формулу с угловым коэффициентом, имеющую вид y=kx+b. Коэффициенты k и b должны принимать такое значение, чтобы данное уравнение соответствовало прямой, проходящей через две точки с координатами M1(-7, -5) и M2(2, 1).

Точки М1 и М2  располагаются на прямой, тогда их координаты должны обращать уравнение y=kx+b  верное равенство. Отсюда получаем, что -5=k·(-7)+b и 1=k·2+b. Объединим уравнение в систему -5=k·-7+b1=k·2+bи решим.

При подстановке получаем, что

-5=k·-7+b1=k·2+b⇔b=-5+7k2k+b=1⇔b=-5+7k2k-5+7k=1⇔⇔b=-5+7kk=23⇔b=-5+7·23k=23⇔b=-13k=23

Теперь значения k=23 и b=-13 подвергаются подстановке в уравнение y=kx+b. Получаем, что искомым уравнением, проходящим через заданные точки, будет уравнение, имеющее вид y=23x-13.

Такой способ решения предопределяет траты большого количества времени. Существует способ, при котором задание решается буквально в два действия.

Запишем каноническое уравнение прямой, проходящей через M2(2, 1) и M1(-7, -5), имеющее вид x-(-7)2-(-7)=y-(-5)1-(-5)⇔x+79=y+56. 

Теперь переходим к уравнению в угловым коэффициентом. Получаем, что: x+79=y+56⇔6·(x+7)=9·(y+5)⇔y=23x-13.

Ответ: y=23x-13.

Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве

Если в трехмерном пространстве имеется прямоугольная система координат Охуz с двумя заданными несовпадающими точками с координатами M1(x1, y1, z1) и M2(x2, y2, z2), проходящая через них прямая M1M2, необходимо получить уравнение этой прямой.

Имеем, что канонические уравнения вида x-x1ax=y-y1ay=z-z1az и параметрические вида x=x1+ax·λy=y1+ay·λz=z1+az·λспособны задать линию в системе координат Охуz, проходящую через точки, имеющие координаты (x1, y1, z1) с направляющим вектором a→=(ax, ay, az).

Прямая M1M2 имеет направляющий вектор вида M1M2→=(x2-x1, y2-y1, z2-z1), где прямая проходит через точку M1(x1, y1, z1) и M2(x2, y2, z2), отсюда каноническое уравнение может быть вида x-x1x2-x1=y-y1y2-y1=z-z1z2-z1 или x-x2x2-x1=y-y2y2-y1=z-z2z2-z1, в свою очередь параметрические x=x1+(x2-x1)·λy=y1+(y2-y1)·λz=z1+(z2-z1)·λ или x=x2+(x2-x1)·λy=y2+(y2-y1)·λz=z2+(z2-z1)·λ.

Рассмотрим рисунок, на котором изображены 2 заданные точки в пространстве  и уравнение прямой.

Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве

Пример 4

Написать уравнение прямой, определенной в прямоугольной системе координат Охуz трехмерного пространства, проходящей через заданные две точки с координатами M1(2, -3, 0) и M2(1, -3, -5).

Решение

Необходимо найти каноническое уравнение. Так как речь идет о трехмерном пространстве, значит при прохождении прямой через заданные точки, искомое каноническое уравнение примет вид x-x1x2-x1=y-y1y2-y1=z-z1z2-z1.

По условию имеем, что x1=2, y1=-3, z1=0, x2=1, y2=-3, z2=-5. Отсюда следует, что необходимые уравнения запишутся таким образом:

x-21-2=y-(-3)-3-(-3)=z-0-5-0⇔x-2-1=y+30=z-5

Ответ: x-2-1=y+30=z-5.

Получить уравнение прямой, проходящей через две точки помогут созданные нами калькуляторы. Предлагаем найти каноническое и параметрическое уравнение прямой, а также уравнение прямой с угловым коэффициентом как на плоскости, так и в пространстве.

Прямая – это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.

Уравнения прямой, проходящей через две точки могут быть следующих видов:

  • каноническое уравнение,
  • параметрическое уравнение,
  • общее уравнение прямой,
  • уравнение прямой с угловым коэффициентом,
  • уравнение прямой в полярных координатах и другие.

Для получения уравнений введите координаты двух точек прямой. Онлайн-калькулятор найдет уравнения и выдаст результат с подробным решением.

Каноническое уравнение прямой на плоскости

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

xa и ya – координаты первой точки A,

xb и yb – координаты второй точки B

Параметрическое уравнение прямой на плоскости

{begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases}}

xa, ya – координаты точки, лежащей на прямой,

{l;m} – координаты направляющего вектора прямой,

t – произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Каноническое уравнение прямой в пространстве

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a} = dfrac{z-z_a}{z_b-z_a}}

xa, ya и za – координаты первой точки A,

xb, yb и zb – координаты второй точки B

Параметрическое уравнение прямой в пространстве

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a \ z=n cdot t + z_a end{cases} }

xa, ya и za – координаты точки, лежащей на прямой,

{l;m;n} – координаты направляющего вектора прямой,

t – произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Пример нахождения уравнения прямой, проходящей через две точки

Найдем уравнения прямой, проходящей через точки A(1,2) и B(3,8).

Каноническое уравнение прямой

Каноническое уравнение прямой, проходящей через две точки имеет вид {dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

Подставим в формулу координаты точек A и B: {dfrac{x-1}{3-1} = dfrac{y-2}{8-2}}

Получаем каноническое уравнение прямой: {dfrac{x-1}{2} = dfrac{y-2}{4}}

Уравнение прямой с угловым коэффициентом

Из канонического уравнения получаем уравнение прямой с угловым коэффициентом: {y=3x-1}

Параметрическое уравнение прямой

Параметрическое уравнение прямой имеет вид:

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases} }

где {x_a, y_b} – координаты точки, лежащей на прямой, {{l;m}} – координаты направляющего вектора прямой, t – произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении. В качестве координат используем координаты точки {A(x_a, y_b)}.

Найдем координаты направляющего вектора:

overline{AB} = {x_b – x_a; y_b – y_a} = {3-1; 8-2} = {2; 6}

Получаем параметрическое уравнение:

begin{cases} x=2 t + 1 \ y=6 t + 2 end{cases}

Используем калькулятор для проверки полученного ответа.

Прямая имеет несколько видов задающих ее уравнений. Рассмотрим некоторые из них и разберем примеры.

Здесь будет калькулятор

Уравнение прямой с угловым коэффициентом

Уравнение прямой с угловым коэффициентом

y=kx+by=kx+b,

где kk — угловой коэффициент, а bb — свободный коэффициент.

Уравнения данного вида составляются следующим образом по формуле:

y−y0=k(x−x0)y-y_0=k(x-x_0),

где (x0;y0)(x_0; y_0) — координаты любой точки, лежащей на данной прямой.

Задача 1

Составить уравнение прямой, если координаты точки, принадлежащей данной прямой, таковы: x0=1,y0=2x_0=1, y_0=2. Угловой коэффициент принять равным 11.

Решение

Подставляем значения в формулу:

y−y0=k(x−x0)y-y_0=k(x-x_0)

y−2=1⋅(x−1)y-2=1cdot(x-1)

Приводим подобные слагаемые:

y=x+1y=x+1

Ответ

y=x+1y=x+1

Общее уравнение прямой

Для приведения прямой к такому виду из предыдущего вида достаточно просто перенести все слагаемые в одну часть. Возьмем уравнение прямой из предыдущей задачи y=x+1y=x+1. Тогда общее уравнение этой прямой запишется в виде:

y−x−1=0y-x-1=0

Уравнение прямой по двум точкам

Если в задаче даны координаты двух точек и необходимо составить уравнение прямой, то это делается при помощи такой формулы:

Уравнение прямой по двум точкам

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2},

где (x1;y1),(x2;y2)(x_1; y_1), (x_2; y_2) — координаты двух точек, через которые проходит данная прямая.

Задача 2

Найти уравнение прямой, если координаты точек имеют значения: (2;3)(2;3) и (4;−1)(4;-1).

Решение

x1=2x_1=2
y1=3y_1=3
x2=4x_2=4
y2=−1y_2=-1

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2}

x−42−4=y−(−1)3−(−1)frac{x-4}{2-4}=frac{y-(-1)}{3-(-1)}

x−4−2=y+14frac{x-4}{-2}=frac{y+1}{4}

x−4=−y−12x-4=frac{-y-1}{2}

y+1=2⋅(4−x)y+1=2cdot(4-x)

y=8−2x−1y=8-2x-1

y=−2x+7y=-2x+7

Ответ

y=−2x+7y=-2x+7

Уравнение прямой при помощи точки и вектора нормали

Уравнение прямой по точке и нормали

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

где (x0;y0)(x_0; y_0) — координаты точки, лежащей на данной прямой, а (n1;n2)(n_1; n_2) — координаты вектора нормали к этой прямой.

Задача 3

Составить уравнение прямой, если координаты нормального вектора — (1;−5)(1;-5), а точка, через которую проходит данная прямая имеет координаты (7;8)(7;8).

Решение

x0=7x_0=7
y0=8y_0=8
n1=1n_1=1
n2=−5n_2=-5

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

(x−7)⋅1+(y−8)⋅(−5)=0(x-7)cdot 1+(y-8)cdot (-5)=0,

x−7+40−5y=0x-7+40-5y=0

x−5y=−40+7x-5y=-40+7

x−5y=−33x-5y=-33

5y=x+335y=x+33

y=x5+335y=frac{x}{5}+frac{33}{5}

Проверка

Чтобы проверить правильность решения, достаточно подставить координаты точки в данное уравнение и, если оно будет верным, то задача решена верно.

8=75+3358=frac{7}{5}+frac{33}{5}

8=88=8 — верно, ответ правильный.

Ответ

y=x5+335y=frac{x}{5}+frac{33}{5}

Прямая в пространстве

Уравнение прямой, заданной в пространстве имеет такой вид:

Уравнение прямой в пространстве

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3},

где (x0;y0;z0)(x_0;y_0;z_0) — координаты точки, через которую проходит прямая, а (ν1,ν2,ν3)(nu_1,nu_2,nu_3) — координаты напрявляющего вектора данной прямой.

Задача 4

Написать уравнение прямой по заданной точке (1;5;−23)(1;5;-23) и вектору направления (3;11;7)(3;11;7).

Решение

x0=1x_0=1
y0=5y_0=5
z0=−23z_0=-23
ν1=3nu_1=3
ν2=11nu_2=11
ν3=7nu_3=7

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3}

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Проверка

Проверим, удовлетворяет ли это уравнение прямой точке (x0;y0;z0)(x_0;y_0;z_0). Для этого подставим в него координаты этой точки:

1−13=5−511=−23−(−23)7frac{1-1}{3}=frac{5-5}{11}=frac{-23-(-23)}{7} — верно, значит ответ правильный.

Такой вид уравнения прямой называется каноническим.

Ответ

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Тест по теме “Составление уравнения прямой”

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия задается на плоскости уравнением первой степени (линейное уравнение).

Уравнения прямых, параллельных осям координат

Возьмем прямую линию, параллельную оси Оу и проходящую на расстоянии а от нее (рис. 10).

Прямая линия

Все точки этой прямой одинаково удалены от оси ординат на расстояние, равное а. Следовательно, для каждой точки прямой АМ абсцисса одна и та же, а именно:

х = а, (1)

ордината же различна. Таким образом, уравнение (1) вполне определяет прямую, параллельную оси Оу, а потому оно является ее уравнением. Возьмем прямую, параллельную оси Ох, на расстоянии.

Прямая линия

равном b от нее (рис. 11). Все точки этой прямой одинаково удалены от оси Ох на расстояние, равное b , т. е. любая точка прямой ВМ имеет постоянную ординату, а именно:

Прямая линия

абсциссу же различную. Как видно, уравнение (2) вполне определяет прямую, параллельную оси Ох, а потому оно является ее уравнением.

По уравнениям (1) и (2) можно построить соответствующие им прямые. Пусть, например, дана прямая х = — 4. Отложив на оси Ох отрезок ОА = — 4 (рис. 12) и проведя через точку А прямую, параллельную оси Оу, получим искомую прямую.

Прямая линия

Уравнения осей координат

Возьмем уравнение прямой, параллельной оси Оу:

х = а

и станем в нем уменьшать абсолютную величину а, тогда прямая, определяемая этим уравнением, будет приближаться к оси Оу, оставаясь все время ей параллельной, и при а = 0 сольется с ней. Уравнение х = 0 является уравнением оси Оу.

Если же в уравнении у = b прямой, параллельной оси Ох, будем уменьшать абсолютную величину b то эта прямая станет приближаться к оси Ох, оставаясь ей параллельной, и при b = 0 с ней совпадет. Таким образом, уравнение у = 0 будет уравнением оси Ох.

Уравнение прямой, проходящей через начало координат

Проведем прямую через начало координат под угломПрямая линия

к оси Ох (рис. 13). Принято положительный угол а отсчитывать от положительного направления оси абсцисс в сторону, противоположную движению часовой стрелки (рис. 13), а отрицательный — по часовой стрелке.

Прямая линия

Возьмем на проведенной прямой произвольную точку М (х; у). Опустив перпендикуляр МР на ось Ох, получим прямоугольный треугольник ОМР, из которого найдем:

Прямая линия

Но

Прямая линия

Прямая линия

Координаты любой точки прямой ОМ удовлетворяют полученному уравнению; можно показать, что координаты любой точки, не лежащей на прямой ОМ, не удовлетворяют ему; поэтому оно является уравнением прямой ОМ. Итак,

Прямая линия

есть уравнение прямой, проходящей через начало координат. В нем х и утекущие координаты, а Прямая линияугловой коэффициент.

Определение:

Угловым коэффициентом прямой называется тангенс угла наклона этой прямой к положительному направлению оси Ох.

Величина Прямая линия может быть как положительной, так и отрицательной. Если угол а острый, то тангенс его имеет положительное значение; если же угол а тупой, —то отрицательное. Поэтому величина Прямая линия в уравнении прямой будет положительной, если а — острый угол, и отрицательной, если тупой.

Заметим, что при а = 90° углового коэффициента не существует, так как 90° не имеет числового значения.

Зная угловой коэффициент прямой у = Прямая линиях, можно определить ее положение.

Пусть требуется построить прямую у= 2х.

Для этого найдем угол а из условия

откуда:

Прямая линия

Построив при точке О найденный угол, мы и получим искомую прямую (рис. 14).

Прямая линия

Построение этой прямой можно провести и проще.

Известно, что положение прямой определяется двумя точками, поэтому для решения задачи нужно знать их координаты. В нашем же случае достаточно определить координаты одной точки, так как вторая (начало координат) нам известна. Для этого дадим х произвольное значение, например х = 2, тогда из уравнения прямой найдем:

Прямая линия

Значения х = 2 и у = 4 и будут координатами точки, лежащей на данной прямой. Построив эту точку, проведем через нее и начало координат прямую линию (рис. 14).

Уравнение прямой с угловым коэффициентом и начальной ординатой

Пусть дана прямая ОС, проходящая через начало координат под углом а к положительному направлению оси Ох (рис. 15)

Прямая линия

Ее уравнение имеет вид

Прямая линия

где Прямая линия .

Проведем прямую Прямая линия отсекающую на оси Оу отрезок ОВ = b. Прямая АВ составляет с положительным направлением оси Ох тот же угол а. Пусть М(х; у)— произвольная точка прямой АВ. Из рис. 15 найдем:

Но

Прямая линия

Подставив значение РМ1 в равенство (1), получим уравнение прямой АВ в виде:

Прямая линия

где Прямая линияугловой коэффициент, а b называется начальной ординатой.

Заметим что прямая Прямая линия получается смещением всех точек прямой Прямая линия (рис. 15) на отрезок b вверх (при положительном b) и вниз при отрицательном b .

Прямая линия

Уравнение Прямая линия определяющее прямую проходящую через начало координат, является частным случаем уравнения (2) при b = 0.

Зная угловой коэффициент Прямая линия и начальную ординату b можно определить положение прямой. Пусть, например, требуется построить прямую Прямая линия

Из данного уравнения имеем:

откуда

Прямая линия

Проведем через начало координат прямую МN под углом в 45 градусов к положительному направлению оси Ох (рис. 16). На прямуюПрямая линия

Как видно из уравнения ее пересекает ось Оу на расстоянии ОС, равном 4 единицам масштаба от начала координат.

Поэтому прямая АВ, проведенная через точку С параллельно прямой МN, и будет искомой.

Однако проще построить указанную прямую по двум ее точкам. Удобнее для этого брать точки пересечения прямой с осями координат. Одна из них — точка С пересечения прямой с осью Оу— дается самим уравнением, а именно С(0; 4). Для нахождения точки D пересечения этой прямой с осью Ох положим в данном уравнении y = 0, получим х = — 4; значит, прямая пересекает ось Ох в точке D (-4; 0). Строим точки С и D и проводим через них искомую прямую.

Прямая линия

Пример:

Найти уравнения прямых АВ, СD и ЕF, изображенных на рис. 17.

Решение:

Чтобы написать уравнения данных прямых, нужно определить величины Прямая линия и b, а затем подставить их значения в уравнение Прямая линия

Для прямой АВ

Прямая линия

Прямая линия

Следовательно, уравнения данных прямых будут:

Прямая линия

Общее уравнение прямой

В предыдущей лекции были выведены следующие виды уравнения прямой: уравнение прямой, параллельной оси Оу:

Прямая линия

уравнение прямой, параллельной оси Ох:

Прямая линия

уравнение оси Оу:

Прямая линия

уравнение оси Ох:

Прямая линия

уравнение прямой, проходящей через начало координат:

Прямая линия

уравнение прямой с угловым коэффициентом и начальной ординатой:

Прямая линия

Уравнения (1) — (6) исчерпывают все возможные положения прямой, поэтому можно сказать, что

всякая прямая линия определяется уравнением первой степени относительно текущих координат.

Покажем теперь, что указанные виды уравнения прямой можно получить из уравнения

Прямая линия

при некоторых частных значениях коэффициентов А, В и С.

I. Если В = 0, то уравнение (7) обратится в следующее:

Прямая линия

откуда

Прямая линия

Положив

Прямая линия

получим

Прямая линия

Уравнение Прямая линия есть уравнение прямой, параллельной оси Оу.

II. Если А = 0, то

Прямая линия

отсюда

Прямая линия

Положив

Прямая линия

получим

Прямая линия

Уравнение Прямая линия определяет прямую, параллельную оси Ох.

III. Если В = 0 и С = 0, то

Прямая линия

отсюда

Прямая линия

IV. Если А = 0 и С = 0, то

Прямая линия

отсюда

Прямая линия

V. Если С = 0, то

Прямая линия

отсюда

Прямая линия

Положим

Прямая линия

тогда

Прямая линия

Уравнение Прямая линия определяет прямую, проходящую через начало координат.

VI. Если ни один из коэффициентов уравнения (7) не равен нулю, то и в этом случае его можно преобразовать в знакомую нам форму уравнения прямой. Найдем из уравнения (7) значение у:

Прямая линия

Положив

Прямая линия

и

Прямая линия

можем написать

Прямая линия

Следовательно, уравнение

Прямая линия

включает в себя все рассмотренные нами ранее уравнения прямой; поэтому оно называется общим уравнением прямой. Итак, всякое уравнение первой степени

Прямая линия

при любых значениях коэффициентов А, В и С, исключая одновременное равенство А и В нулю, определяет прямую линию.

Пример:

Построить прямую Прямая линия

Решение:

Проще всего построить прямую по двум ее точкам пересечения с осями координат. Положив в данном уравнении у = 0, получим х =- 5; координаты (-5; 0) и будут определять положение точки пересечения прямой с осью Ох. Для нахождения точки пересечения прямой с осью Оу положим в том же уравнении х = 0 тогда найдем у = 2; координаты искомой точки будут (0; 2).

Построив эти точки, проводим через них прямую 2х— 5у —10 = 0 (рис. 18).

Пример:

Найти угловой коэффициент и начальную ординату прямой 4х+ 6у — 3 = 0.

Решение:

Преобразуем это уравнение к виду Прямая линия

для этого находим:

6у = — 4х + 3,

отсюда

Прямая линия

Сравнив полученное уравнение с уравнением Прямая линия найдем:

Прямая линия

Угловой коэффициент можно найти и из равенства (8). Для этого, как видно, нужно коэффициент при х общего уравнения прямой разделить на коэффициент при у и частное

Прямая линия

взять с противоположным знаком. Таким образом, в данном примере

Прямая линия

Уравнение прямой в отрезках

Как мы уже знаем, положение прямой определяется или двумя точками или одной точкой и углом наклона прямой к оси Ох. Если прямая не параллельна ни одной из координатных осей и не проходит

Прямая линия

через начало координат, то ее положение может быть определено и другими данными, например отрезками, которые она отсекает на осях. Выведем уравнение прямой для этого случая.

Пусть дана прямая, отсекающая на координатных осях отрезки ОА = а и ОВ = b (рис. 19).

Возьмем на этой прямой произвольную точку M (х; у) и проведем

МР Прямая линия Ох. Из подобия треугольников РМА и ОВА имеем:

Прямая линия

или

Прямая линия

Разделив а — х почленно на а, будем иметь:

Прямая линия

откуда

Прямая линия

Можно показать, что координаты любой точки нашей прямой будут удовлетворять этому равенству, а потому его нужно рассматривать как уравнение прямой АВ.

В уравнение (1) входят отрезки а и b , отсекаемые прямой на осях; поэтому оно называется уравнением прямой в отрезках.

Величины а и b могут быть как положительными, так и отрицательными в зависимости от того, в какую сторону от начала координат откладываются отрезки а и b .

Пусть, например, дана прямая АВ (рис. 20). Здесь а = — 2, b = — 3; следовательно, уравнение прямой АВ запишется в таком виде:

Прямая линия

По уравнению вида (1) Очень просто строится прямая. Для этого нужно только отложить на осях отрезки а и b взятые из уравнения, и через их концы провести прямую.

Заметим, что уравнение в отрезках легко получается из общего уравнения прямой: Ах + Ву + С= 0, если все коэффициенты общего уравнения отличны от нуля (иначе уравнение в отрезках не имеет смысла).

Уравнение пучка прямых

Пусть прямая АВ проходит через точку М(х1; у1) и образует угол а с положительным направлением оси Ох (рис. 21). Составим для прямой АВ уравнение вида

Прямая линия

Для этого нужно найти величины Прямая линия и b определяющие прямую АВ, а затем подставить в уравнение (1) их значения. Так как угол а дан, то величина Прямая линияопределится из равенства

Прямая линия

Для нахождения b воспользуемся тем, что точка М лежит на прямой (1) и, следовательно, ее координаты удовлетворяют уравнению этой прямой.

Подставив в уравнение (1) вместо х и у их значения х1 и у1, а величину Прямая линия полагая известной, получим

Прямая линия

откуда

Прямая линия

Уравнение (1) можем теперь записать в виде

Прямая линия

или

Прямая линия

Таково искомое уравнение прямой АВ; в нем Прямая линия имеет одно, вполне определенное значение.

Допустим, что через ту же точку M(х1; у1) проходит несколько прямых; тогда угол а наклона этих прямых к оси Ох, и также множитель Прямая линия в уравнении (2) будут иметь различные значения.

В таком случае уравнение (2) будет определять уже не одну прямую, проходящую через данную точку M, а множество прямых, пересекающихся в эточке.

Совокупность всех прямых, проходящих через одну точку М, называется пучком прямых с центром в точке М. Таким образом, уравнение (2) с переменным Прямая линияможно рассматривать как уравнение пучка прямых, проходящих через данную точку, исключая прямую, параллельную оси ординат (так как tg 90° не имеет числового значения) (рис. 21).

Чтобы выделить из этого пучка прямую, образующую заданный угол с осью Ох, нужно в уравнении (2) вместо Прямая линия подставить его числовое значение. Пусть, например, пучок прямых проходит через точку М(2;—5), тогда его уравнение будет:

Прямая линия

Выделим из этого пучка одну прямую, которая наклонена к положительному направлению оси Ох под углом а = 45°;

тогда

Прямая линия

и уравнение (3) обратится в следующее:

Прямая линия

или

Прямая линия

Уравнение прямой, проходящей через две данные точки

Пусть даны две точки A(х1; у1) и В(х2; у2); требуется найти уравнение прямой, проходящей через эти точки.

Если взять одну точку, например А, то через нее можно провести пучок прямых, уравнение которого будет:

Прямая линия

где каждому значению Прямая линия отвечает одна прямая.

Выделим из этого пучка прямую, которая проходит и через вторую точку В (рис. 22). Чтобы найти ее уравнение, необходимо определить угловой коэффициент. Для этого примем во внимание, что точка В лежит на искомой прямой, и потому ее координаты должны обращать уравнение (1)

Прямая линия

в тождество при Прямая линия равном угловому коэффициенту этой прямой. Подставив в уравнение (1) вместо текущих координат х и у координаты точки В, получим:

Прямая линия

отсюда находим угловой коэффициент искомой прямой:

Прямая линия

Уравнение (1) можно переписать так:

Прямая линия

Преобразуем это уравнение, разделив обе части его на у2 — у1 получим:

Прямая линия

гле х и у — текущие координаты. Равенство (2) является уравнением прямой, проходящей через две данные точки. Это, как и уравнение в отрезках, частный случай общего уравнения прямой.

Если х1 = х2 или у1 = у2, то формула (2) теряет смысл, так как делить на нуль нельзя. В этих случаях точки А и В лежат либо на прямой, параллельной оси Оу, либо на прямой, параллельной оси Ох. В первом случае уравнение прямой запишется в виде

х = х1

а во втором — в виде

у = у1

Пример:

Написать уравнение прямой, проходящей через две точки: А(—4; 6) и В(2; —3).

Решение:

Имеем:

х1 = —- 4, х2 = 2

и

у1 = 6, у2 = — 3.

Подставим эти значения в уравнение (2); получим:

Прямая линия

или

Прямая линия

Умножив обе части последнего уравнения на —18, будем иметь:

2у— 12 = — 3х— 12,

откуда

Зх + 2у = 0.

Пример:

Через две точки А( 3; 2) и В (5; 2) проходит прямая. Написать ее уравнение.

Решение:

Так как ординаты данных точек равны, то заключаем, что искомая прямая параллельна оси Ох, а потому ее уравнение будет

у = 2.

Угол между двумя прямыми

Пусть даны уравнения двух прямых:

y=klx+blt

Прямая линия

где Прямая линия имеют вполне определенные значения. Выведем формулу для определения угла между этими прямыми.

Обозначим углы, образуемые данными прямыми с положительным направлением оси Ох, через а1 и а2, а угол между этими прямыми через Прямая линия (рис. 23).

Угол а2, как внешний угол треугольника ABC, будет равен сумме внутренних, с ним не смежных, т. е.

Прямая линия

откуда

Прямая линия

Если углы равны между собой, то и тангенсы их равны друг другу, поэтому

Прямая линия

Применяя формулу для тангенса разности двух углов, получим:

Прямая линия

Но

Прямая линия

Поэтому

Прямая линия

Определив tg Прямая линия по формуле (1), можно найти и самый угол Прямая линия.

Прямая линия

Пример:

Определить угол между прямыми:

2х — 3у + 6 =0

и

х + 5у — 2=0.

Решение:

Из данных уравнений найдем угловые коэффициенты этих прямых :

Прямая линия

Согласно формуле (1) имеем:

Прямая линия

откуда

Прямая линия

Полученный угол между прямыми тупой. Но если принять

Прямая линия

то вычисляя Прямая линия по той же формуле (1), получим:

Прямая линия

откуда Прямая линия = 45°. Получился угол острый, смежный с ранее

Прямая линия

найденным тупым углом (рис. 24). Первое и второе значение угла будет ответом на вопрос задачи.

Условие параллельности прямых

Если прямые параллельны между собой, то они образуют одинаковые углы а1 и а2 с положительным направлением оси Ох (рис. 25).

Прямая линия

Из равенства углов а1 и а2 следует

Прямая линия

или

Прямая линия

Обратно, если Прямая линия т.е. Прямая линиято а1 = а2, а это значит, что данные прямые параллельны.

Итак, если прямые параллельны между собой, то их угловые коэффициенты равны (и наоборот).

Пример:

Написать уравнение прямой, проходящей через точку А (—2; 6) и параллельной прямой 5х—3у — 7 = 0.

Решение:

Через точку А проходит пучок прямых, среди которых находится искомая прямая. Следовательно, прежде всего пишем уравнение пучка прямых , проходящих через точку А:

Прямая линия

Затем находим из данного в задаче уравнения прямой ее угловой коэффициент; применяя равенство (8) , получим:

Прямая линия

Согласно условию параллельности угловой коэффициент искомой прямой тоже равен Прямая линия

Подставим найденное значение Прямая линия в уравнение

пучка:

Прямая линия

Выполнив необходимые преобразования, получим искомое уравнение прямой:

Прямая линия

Условие перпендикулярности прямых

Пусть две прямые взаимно перпендикулярны и образуют с положительным направлением оси Ох углы а1 и а2 (рис. 26). В этом случае

Прямая линия

отсюда

Прямая линия

Но

Прямая линия

Следовательно,

Прямая линия

или

Прямая линия

Обратно, если

Прямая линия

то

Прямая линия

Отсюда

Прямая линия

т. е. данные прямые взаимно перпендикулярны.

Таким образом, если прямые взаимно перпендикулярны, то их угловые коэффициенты обратны по абсолютной величине и противоположны по знаку (и наоборот).

Прямая линия

Так, например, если у одной прямой угловой коэффициент

равен Прямая линия то у перпендикулярной ей прямой он равен Прямая линия .

Пример:

Написать уравнение прямой, проходящей через точку А(—3; 5) и перпендикулярной прямой 4х — Зу—10 = 0.

Решение:

Через точку А проходит пучок прямых, среди которых находится и искомая прямая. Поэтому напишем сначала уравнение этого пучка

Прямая линия

Чтобы выделить из него нашу прямую, нужно найти ее угловой коэффициент Прямая линия связанный с угловым коэффициентом

данной прямой равенством (1). Но Прямая линия следовательно,

Прямая линия

Подставив в уравнение (2) вместо Прямая линия найденное его значение Прямая линия

получим:

Прямая линия

Это и есть искомое уравнение прямой. Преобразовав его, найдем:

Прямая линия

или

Прямая линия

Пересечение прямых

Пусть даны две прямые, определяемые уравнениями:

Прямая линия

Требуется найти точку их пересечения.

Так как точка пересечения данных прямых есть их общая точка, то ее координаты должны удовлетворять как первому, так и второму уравнению, т. е. эти координаты должны быть общими корнями данных уравнений.

Чтобы найти эти корни, нужно, как известно из алгебры, решить совместно данные уравнения, рассматривая их как систему уравнений.

Пример:

Найти точку пересечения прямых

Прямая линия

Решение:

Решим данные уравнения как систему. Умножив второе уравнение на 3 и сложив результат с первым уравнением, получим:

Прямая линия

откуда

Прямая линия

Зная х, находим у, например, из второго уравнения:

Прямая линия

Пример:

Найти точку пересечения прямых

Прямая линия

Решение:

Умножив все члены первого уравнения на —2 и сложив полученное уравнение со вторым, найдем:

Прямая линия

что невозможно. Значит, данная система уравнений решений не имеет, а потому прямые, определяемые этими уравнениями, не имеют общих точек, т. е. данные прямые параллельны.

К этому же заключению можно прийти, сравнивая угловые коэффициенты данных прямых.

Дополнение к прямой линии

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Смотрите также:

Предмет высшая математика

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Пряма́я — одно из фундаментальных понятий евклидовой геометрии. При систематическом изложении геометрии прямые линии обычно принимаются за одно из исходных (неопределяемых) понятий[1], их свойства и связь с другими понятиями (например, точки и плоскости) определяются аксиомами геометрии[2].

Прямая, наряду с окружностью, относится к числу древнейших геометрических фигур. Античные геометры считали эти две кривые «совершенными» и поэтому признавали только построения с помощью циркуля и линейки. Евклид описал линию как «длину без ширины», которая «равно лежит на всех своих точках»[3].

Аналоги прямых могут быть определены также в некоторых типах неевклидовых пространств. Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то отрезок прямой можно определить как самую короткую кривую, соединяющую эти точки. Например, в римановой геометрии роль прямых играют геодезические линии, которые являются кратчайшими; на сфере кратчайшими являются дуги больших кругов[4].

Свойства прямой в евклидовой геометрии[править | править код]

Участки прямой, ограниченные двумя её точками, называются отрезками.

  • Через любую точку можно провести бесконечно много прямых.
  • Через любые две несовпадающие точки можно провести единственную прямую.
  • Две несовпадающие прямые на плоскости или пересекаются в единственной точке[5], или являются параллельными (следует из предыдущего).
  • В трёхмерном пространстве существуют три варианта взаимного расположения двух несовпадающих прямых:
    • прямые пересекаются;
    • прямые параллельны;
    • прямые скрещиваются.
  • Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия задается на плоскости уравнением первой степени (линейное уравнение).

Уравнения прямой на плоскости[править | править код]

Способы задания прямой:
scriptstyle {y=kx+b,;{frac  {x}{a}}+{frac  {y}{b}}=1} или scriptstyle {xcos theta +ysin theta -p=0}

Общее уравнение прямой[править | править код]

Общее уравнение прямой линии на плоскости в декартовых координатах:

Ax+By+C=0,

где A,B и C — произвольные постоянные, причём постоянные A и B не равны нулю одновременно.

При A=0 прямая параллельна оси Ox, при B=0 — параллельна оси Oy.

Вектор с координатами (A,B) называется нормальным вектором, он перпендикулярен прямой.

При C=0 прямая проходит через начало координат.

Также уравнение можно переписать в виде

A(x-x_{0})+B(y-y_{0})=0.

Уравнение прямой с угловым коэффициентом[править | править код]

Уравнение прямой линии, пересекающей ось Oy в точке (0,;b) и образующей угол varphi с положительным направлением оси Ox:

y=kx+b,quad k={mathrm  {tg}},varphi .

Коэффициент k называется угловым коэффициентом прямой.

В этом виде невозможно представить прямую, параллельную оси Oy. (Иногда в этом случае формально говорят, что угловой коэффициент «обращается в бесконечность».)

Получение уравнения прямой в отрезках

Уравнение прямой в отрезках[править | править код]

Уравнение прямой линии, пересекающей ось Ox в точке (a,;0) и ось Oy в точке (0,;b):

{frac  {x}{a}}+{frac  {y}{b}}=1quad (aneq 0,;bneq 0).

В этом виде невозможно представить прямую, проходящую через начало координат.

Нормальное уравнение прямой[править | править код]

{displaystyle xcos theta +ysin theta -p=0,}

где p — длина перпендикуляра, опущенного на прямую из начала координат, а theta  — угол (измеренный в положительном направлении) между положительным направлением оси Ox и направлением этого перпендикуляра. Если p=0, то прямая проходит через начало координат, а угол theta =varphi +{frac  {pi }{2}} задаёт угол наклона прямой.

Если прямая задана общим уравнением Ax+By+C=0, то отрезки a и b, отсекаемые ею на осях, угловой коэффициент k, расстояние прямой от начала координат p, cos theta и sin theta выражаются через коэффициенты A, B и C следующим образом:

a=-{frac  {C}{A}},quad b=-{frac  {C}{B}},quad k={mathrm  {tg}},varphi =-{frac  {A}{B}},quad varphi =theta -{frac  {pi }{2}},
p={frac  {C}{pm {sqrt  {A^{2}+B^{2}}}}},quad cos theta ={frac  {A}{pm {sqrt  {A^{2}+B^{2}}}}},quad sin theta ={frac  {B}{pm {sqrt  {A^{2}+B^{2}}}}}.

Во избежание неопределённости знак перед радикалом выбирается так, чтобы соблюдалось условие p>0. В этом случае cos theta и sin theta являются направляющими косинусами положительной нормали прямой — перпендикуляра, опущенного из начала координат на прямую. Если C=0, то прямая проходит через начало координат и выбор положительного направления произволен.

Уравнение прямой, проходящей через две заданные несовпадающие точки[править | править код]

Если заданы две несовпадающие точки с координатами (x_1,;y_1) и (x_2,;y_2), то прямая, проходящая через них, задаётся уравнением

{begin{vmatrix}x&y&1\x_{1}&y_{1}&1\x_{2}&y_{2}&1end{vmatrix}}=0

или

{frac  {y-y_{1}}{y_{2}-y_{1}}}={frac  {x-x_{1}}{x_{2}-x_{1}}}

или в общем виде

left(y_{1}-y_{2}right)x+left(x_{2}-x_{1}right)y+left(x_{1}y_{2}-x_{2}y_{1}right)=0.

Получение векторного параметрического уравнения прямой

Векторное параметрическое уравнение прямой[править | править код]

Векторное параметрическое уравнение прямой задается вектором {vec  {r}}_{0}, конец которого лежит на прямой, и направляющим вектором прямой {vec  {u}}. Параметр t пробегает все действительные значения.

{vec  {r}}={vec  {r_{0}}}+t{vec  {u}}.

Параметрические уравнения прямой[править | править код]

Параметрические уравнения прямой могут быть записаны в виде:

{begin{cases}x=x_{0}+a_{x}t,\y=y_{0}+a_{y}t,end{cases}}

где t — произвольный параметр, a_{x},;a_{y} — координаты x и y направляющего вектора прямой. При этом

k={frac  {a_{y}}{a_{x}}},quad a={frac  {a_{y}x_{0}-a_{x}y_{0}}{a_{y}}},quad b={frac  {a_{x}y_{0}-a_{y}x_{0}}{a_{x}}},
p={frac  {a_{x}y_{0}-a_{y}x_{0}}{pm {sqrt  {a_{x}^{2}+a_{y}^{2}}}}},quad cos theta ={frac  {a_{x}}{pm {sqrt  {a_{x}^{2}+a_{y}^{2}}}}},quad sin theta ={frac  {a_{y}}{pm {sqrt  {a_{x}^{2}+a_{y}^{2}}}}}.

Смысл параметра t аналогичен параметру в векторно-параметрическом уравнении.

Каноническое уравнение прямой[править | править код]

Каноническое уравнение получается из параметрическиx уравнений делением одного уравнения на другое:

{frac  {x-x_{0}}{y-y_{0}}}={frac  {a_{x}}{a_{y}}}Longleftrightarrow {frac  {x-x_{0}}{a_{x}}}={frac  {y-y_{0}}{a_{y}}}

где {displaystyle a_{x},a_{y}} — координаты x и y направляющего вектора прямой, x_{0} и y_0 координаты точки, принадлежащей прямой.

Уравнение прямой в полярных координатах[править | править код]

Уравнение прямой в полярных координатах rho и varphi :

rho (Acos varphi +Bsin varphi )+C=0

или

{displaystyle rho cos(varphi -theta )=p.}

Тангенциальное уравнение прямой[править | править код]

Тангенциальное уравнение прямой на плоскости:

xi x+eta y=1.

Числа xi и eta называются её тангенциальными, линейными или плюккеровыми координатами.

Уравнения прямой в пространстве[править | править код]

Векторное параметрическое уравнение прямой в пространстве:

{vec  r}={vec  {r}}_{0}+t{vec  a},quad tin (-infty ,;+infty ),

где {vec  {r}}_{0} — радиус-вектор некоторой фиксированной точки M_{0}, лежащей на прямой, vec a — ненулевой вектор, коллинеарный этой прямой (называемый её направляющим вектором), {vec {r}} — радиус-вектор произвольной точки прямой.

Параметрические уравнения прямой в пространстве:

x=x_{0}+talpha ,;y=y_{0}+tbeta ,;z=z_{0}+tgamma ,quad tin (-infty ,;+infty ),

где (x_{0},;y_{0},;z_{0}) — координаты
некоторой фиксированной точки M_{0}, лежащей на прямой; (alpha ,;beta ,;gamma ) — координаты вектора, коллинеарного этой прямой.

Каноническое уравнение прямой в пространстве:

{frac  {x-x_{0}}{alpha }}={frac  {y-y_{0}}{beta }}={frac  {z-z_{0}}{gamma }},

где (x_{0},;y_{0},;z_{0}) — координаты
некоторой фиксированной точки M_{0}, лежащей на прямой; (alpha ,;beta ,;gamma ) — координаты вектора, коллинеарного этой прямой.

Общее векторное уравнение прямой[уточнить] в пространстве:

Поскольку прямая является пересечением двух различных плоскостей, заданных соответственно общими уравнениями:
({vec  r},;{vec  N}_{1})+D_{1}=0 и ({vec  r},;{vec  N}_{2})+D_{2}=0,

то уравнение прямой можно задать системой этих уравнений:

{begin{cases}({vec  r},;{vec  N}_{1})+D_{1}=0,\({vec  r},;{vec  N}_{2})+D_{2}=0.end{cases}}

Векторное уравнение прямой в пространстве[6]:196-199:

Уравнение прямой в пространстве можно записать в виде векторного произведения радиуса-вектора произвольной точки этой прямой {vec {r}} на фиксированный направляющий вектор прямой vec a:
[{vec  r},{vec  a}]={vec  M},

где фиксированный вектор vec M, ортогональный вектору vec a, можно найти, подставляя в это уравнение радиус-вектор какой-нибудь одной известной точки прямой.

Взаимное расположение точек и прямых на плоскости[править | править код]

Три точки (x_1,;y_1), (x_2,;y_2) и (x_{3},;y_{3}) лежат на одной прямой тогда и только тогда, когда выполняется условие

{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}=0.

Отклонение точки (x_1,;y_1) от прямой Ax+By+C=0 может быть найдено по формуле

delta ={frac  {Ax_{1}+By_{1}+C}{pm {sqrt  {A^{2}+B^{2}}}}},

где знак перед радикалом противоположен знаку C. Отклонение по модулю равно расстоянию между точкой и прямой; оно положительно, если точка и начало координат лежат по разные стороны от прямой, и отрицательно, если по одну сторону.

В пространстве расстояние от точки (x_{1},;y_{1},;z_{1}) до прямой, заданной параметрическим уравнением

{begin{cases}x=x_{0}+talpha ,\y=y_{0}+tbeta ,quad tin mathbb{R} \z=z_{0}+tgamma ,end{cases}}

можно найти как минимальное расстояние от заданной точки до произвольной точки прямой. Коэффициент t этой точки может быть найден по формуле

t_{min }={frac  {alpha (x_{1}-x_{0})+beta (y_{1}-y_{0})+gamma (z_{1}-z_{0})}{alpha ^{2}+beta ^{2}+gamma ^{2}}}.

Взаимное расположение нескольких прямых на плоскости[править | править код]

Две прямые, заданные уравнениями

A_{1}x+B_{1}y+C_{1}=0,quad A_{2}x+B_{2}y+C_{2}=0

или

y=k_{1}x+b_{1},quad y=k_{2}x+b_{2}

пересекаются в точке

x={frac  {B_{1}C_{2}-B_{2}C_{1}}{A_{1}B_{2}-A_{2}B_{1}}}={frac  {b_{1}-b_{2}}{k_{2}-k_{1}}},quad y={frac  {C_{1}A_{2}-C_{2}A_{1}}{A_{1}B_{2}-A_{2}B_{1}}}={frac  {k_{2}b_{1}-k_{1}b_{2}}{k_{2}-k_{1}}}.

Угол gamma _{{12}} между пересекающимися прямыми определяется формулой

{mathrm  {tg}},gamma _{{12}}={frac  {A_{1}B_{2}-A_{2}B_{1}}{A_{1}A_{2}+B_{1}B_{2}}}={frac  {k_{2}-k_{1}}{1+k_{1}k_{2}}}.

При этом под gamma _{{12}} понимается угол, на который надо повернуть первую прямую (заданную параметрами A_{1}, B_1, C_{1}, k_{1} и b_{1}) вокруг точки пересечения против часовой стрелки до первого совмещения со второй прямой.

Эти прямые параллельны, если A_{1}B_{2}-A_{2}B_{1}=0 или k_{1}=k_{2}, и перпендикулярны, если A_{1}A_{2}+B_{1}B_{2}=0 или k_{1}=-{frac  {1}{k_{2}}}.

Любую прямую, параллельную прямой с уравнением A_{1}x+B_{1}y+C_{1}=0, можно выразить уравнением A_{1}x+B_{1}y+C=0. При этом расстояние между этими прямыми будет равно

delta=frac{C_1-C}{pmsqrt{A_1^2+B_1^2}};

Если же уравнение прямой задано как y_1=kx_1+b_1, а уравнение прямой параллельной ей y=kx+b, то расстояние можно вычислить, как

delta=frac{|b_1-b|}{sqrt{1+k^2}}.

Если знак перед радикалом противоположен C_{1}, то delta будет положительным, когда вторая прямая и начало координат лежат по разные стороны от первой прямой.

Для того, чтобы три прямые

A_{1}x+B_{1}y+C_{1}=0,quad A_{2}x+B_{2}y+C_{2}=0,quad A_{3}x+B_{3}y+C_{3}=0

пересекались в одной точке или были параллельны друг другу, необходимо и достаточно, чтобы выполнялось условие

{begin{vmatrix}A_{1}&B_{1}&C_{1}\A_{2}&B_{2}&C_{2}\A_{3}&B_{3}&C_{3}end{vmatrix}}=0.

Если {displaystyle A_{2}=-B_{1}} и {displaystyle B_{2}=A_{1}}, то прямые {displaystyle A_{1}x+B_{1}y+C_{1}=0} и {displaystyle A_{2}x+B_{2}y+C_{2}=0} перпендикулярны.

Некоторые специальные типы прямых[править | править код]

  • Прямая Александрова
  • Прямая Симсона
  • Прямая Суслина[en]
  • Прямая Эйлера
  • Числовая прямая

Примечания[править | править код]

  1. Coxeter, 1969, p. 4
  2. Математическая энциклопедия, 1984, с. 721—722.
  3. Прокл Диадох. Комментарий к первой книге «Начал» Евклида / Университет Дмитрия Пожарского. — М., 2013. — С. 116. — 368 с.
  4. Норден А. П. Краткий курс дифференциальной геометрии. — М.: Физматгиз, 1958. — С. 214—215. — 244 с.
  5. Faber, Appendix B, p. 300.
  6. Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с.

Литература[править | править код]

  • Маркушевич А. И. Замечательные кривые, Популярные лекции по математике. — Выпуск 4. — Гостехиздат, 1952 г. — 32 стр.
  • Прямая // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1984. — Т. 4.
  • Coxeter, H.S.M (1969), Introduction to Geometry (2nd ed.), New York: John Wiley & Sons, ISBN 0-471-18283-4
  • Faber, Richard L. (1983), Foundations of Euclidean and Non-Euclidean Geometry, New York: Marcel Dekker, ISBN 0-8247-1748-1
  • Pedoe, Dan (1988), Geometry: A Comprehensive Course, Mineola, NY: Dover, ISBN 0-486-65812-0
  • Wylie, Jr., C.R. (1964), Foundations of Geometry, New York: McGraw-Hill, ISBN 0-07-072191-2

Ссылки[править | править код]

  • Прямая на плоскости, справочник математических формул «Прикладная математика»
  • Прямая в пространстве, справочник математических формул «Прикладная математика»

Добавить комментарий