Как найти четвертую сторону четырехугольника вписанная окружность

Как найти четвертую сторону четырехугольника по вписанной окружности

В четырехугольник ABCD вписана окружность, и Найдите четвертую сторону четырехугольника.

Это задание ещё не решено, приводим решение прототипа.

В четырехугольник ABCD вписана окружность, AB = 10, BC = 11 и CD = 15. Найдите четвертую сторону четырехугольника.

В четырехугольник можно вписать окружность тогда и только тогда, когда AB + CD = BC + AD, значит,

Как найти четвертую сторону четырехугольника по вписанной окружности

Задание 6. В четырёхугольник ABCD вписана окружность, АВ = 8 , ВС = 4 и CD = 25. Найдите четвёртую сторону четырёхугольника.

Так как в четырехугольник вписана окружность, то он обладает свойством, что сумма его противоположных сторон равна, т.е.

Найдем сторону AD из этого равенства, получим

Четырехугольники, вписанные в окружность. Теорема Птолемея

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:


где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Фигура Рисунок Свойство
Окружность, описанная около параллелограмма Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:


где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Окружность, описанная около параллелограмма
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Окружность, описанная около параллелограмма

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромба

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапеции

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоида

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольник

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Докажем, что справедливо равенство:

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

откуда вытекает равенство:

(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

[spoiler title=”источники:”]

http://self-edu.ru/ege2016_36.php?id=21_6

http://www.resolventa.ru/spr/planimetry/ofcircle.htm

[/spoiler]

Вопросы



Знаток

(373),
закрыт



12 лет назад

Наталья Королева

Гуру

(3350)


12 лет назад

Если в условии упоминается, что этот четырехугольник можно вписать в окружность, то AB*CD=AD*BC ( то есть произведение двух противоположных сторон равно произведению двух других противоположных сторон).

vitalikfilippo

vitalikfilippo

+10

Решено

9 лет назад

Геометрия

5 – 9 классы

В четырёхугольнике abcd вписана окружность ab=8, bc=7, cd=31. Найти четвёртую сторону четырёхугольника

Смотреть ответ

1

Ответ

5
(1 оценка)

1

Bulik228
9 лет назад

Светило науки – 28 ответов – 0 раз оказано помощи

По свойству вписанности окружности, чтобы в четырехугольник вписать окружность, у этого четырехугольника суммы противоположных сторон должны быть равны, т.е.
AB+DC = BC + AD
8+31 = 7+AD ;
(8+31) – 7 = 32 ;

Ответ : AD, или четвертая сторона четырехугольника = 32

(1 оценка)

https://vashotvet.com/task/4510352


Геометрия,


вопрос задал appolinariy0609,


8 месяцев назад

Ответы на вопрос

Ответил momogahari





1

Ответ: 4 см
Объяснение:
По условию,окружность вписанная,значит по свойству:
ВС+АD=AB+CD
12+AD=7+9
AD=4

Приложения:

Предыдущий вопрос

Следующий вопрос

Новые вопросы

Геометрия,
29 дней назад

Найдите площадь ромба изображенного на рисунке если а=11, а r=4…

Русский язык,
29 дней назад

Составте предложение, где темнее наречие(форму темнее не изменять)…

Алгебра,
8 месяцев назад

Математика 8 класс пожалуйста с объяснением…

Математика,
8 месяцев назад

Знайдіть невідомий член пропорції х:52=4:13…

Математика,
6 лет назад

Решить уравнение 500-400:(х+43)=495…

Обществознание,
6 лет назад

как вы думаете зачем каждому человеку надо быть добрым…

В четырёхугольник ABCD вписана окружность, AB = 8, BC = 5 и CD = 27. Найдите четвёртую сторону четырёхугольника.

В четырёхугольник ABCD вписана окружность, AB=8, BC=5 и CD=27.

Источники: fipi, os.fipi, Основная волна 2019, Досрочная волна 2013

Решение:

В четырёхугольник ABCD вписана окружность, AB=8, BC=5 и CD=27.

    У четырёхугольника описанного около окружности сумма длин противоположных сторон равна:

AD + BC = DC + AB
AD + 5 = 27 + 8
AD = 27 + 8 – 5
AD = 30

Ответ: 30.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 16

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Добавить комментарий