Как найти число кратное трем числам

Что такое нок в математике? Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы узнаем, как найти наименьшее общее кратное, какие есть для этого способы для трех чисел и более, разберем вопрос о том, как находить НОК отрицательного числа. Также разберемся, что такое нок и нод, как найти нок и нод. 

Вычисление наименьшего общего кратного (НОК) через НОД

Мы уже узнали, что такое нок, а также установили связь наименьшего общего кратного с наибольшим общим делителем (кратность показывает в расчетах во сколько раз один показатель больше другого). Теперь как настоящие математики научимся определять НОК через НОД (нок и нод чисел натуральных). Сначала разберемся, как найти нок для положительных чисел. Сделать это можно и онлайн или на калькуляторе, но лучше научиться самостоятельно.

Определение 1

Поиск наименьшего общего кратного через наибольший общий делитель можно по формуле НОК(a, b)=a·b:НОД(a, b).

Пример 1

Необходимо найти НОК чисел 126 и 70.

Решение

Начнем решать. Примем a=126, b=70. Подставим значения в формулу вычисления наименьшего общего кратного через наибольший общий делитель НОК(a, b)=a·b:НОД(a, b).

Найдем НОД чисел 70 и 126. Для этого нам понадобится алгоритм Евклида: 126=70·1+56, 70=56·1+14, 56=14·4, следовательно, NOD(126, 70)=14.

Вычислим НОК: НОК(126, 70)=126·70:НОД(126, 70)=126·70:14=630.

Ответ: NOC(126, 70)=630.

Пример 2

Найдите нок чисел 68 и 34.

Решение

Как находить нод? НОД в данном случае нейти несложно, так как 68 делится на 34. Вычислим самое маленькое общее кратное по формуле: НОК(68, 34)=68·34:НОД(68, 34)=68·34:34=68.

Ответ: НОК(68, 34)=68.

В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b: если первое число делится на второе, что НОК этих чисел будет равно первому числу.

Нахождение НОК с помощью разложения чисел на простые множители

Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители. Перед тем, как это узнавать, дадим небольшое определение. 

Определение 2

Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:

  • составляем произведение всех простых множителей чисел, для которых нам нужно найти НОК;
  • исключаем их полученных произведений все простые множители;
  • полученное после исключения общих простых множителей произведение будет равно НОК данных чисел.

Этот способ нахождения наименьшего общего кратного основан на равенстве НОК(a, b)=a·b:НОД(a, b). Если посмотреть на формулу, то станет понятно: произведение чисел a и b равно произведению всех множителей, которые участвуют в разложении этих двух чисел. При этом НОД двух чисел равен произведению всех простых множителей, которые одновременно присутствуют в разложениях на множители данных двух чисел.

Пример 3

У нас есть два числа 75 и 210. Мы можем разложить их на множители следующим образом: 75=3·5·5 и 210=2·3·5·7. Если составить произведение всех множителей двух исходных чисел, то получится: 2·3·3·5·5·5·7.

Если исключить общие для обоих чисел множители 3 и 5, мы получим произведение следующего вида: 2·3·5·5·7=1050. Это произведение и будет нашим НОК для чисел 75 и 210.

Пример 4

Найдите НОК чисел 441 и 700, разложив оба числа на простые множители.

Решение

Найдем все простые множители чисел, данных в условии:

44114749713377

700350175357122557

Получаем две цепочки чисел: 441=3·3·7·7 и 700=2·2·5·5·7.

Произведение всех множителей, которые участвовали в разложении данных чисел, будет иметь вид: 2·2·3·3·5·5·7·7·7. Найдем общие множители. Это число 7. Исключим его из общего произведения: 2·2·3·3·5·5·7·7. Получается, что НОК(441, 700)=2·2·3·3·5·5·7·7=44 100.

Ответ: НОК(441, 700)= 44 100.

Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.

Определение 3

Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:

  • разложим оба числа на простые множители:
  • добавим к произведению простых множителей первого числа недостающие множители второго числа;
  • получим произведение, которое и будет искомым НОК двух чисел.
Пример 5

Вернемся к числам 75 и 210, для которых мы уже пробовали искать НОК в одном из прошлых примеров. Разложим их на простые множители: 75=3·5·5 и 210=2·3·5·7. К произведению множителей 3, 5 и 5 числа 75 добавим недостающие множители 2 и 7 числа 210. Получаем: 2·3·5·5·7. Это и есть НОК чисел 75 и 210.

Пример 6

Необходимо вычислить НОК чисел 84 и 648.

Решение

Разложим числа из условия на простые множители: 84=2·2·3·7 и 648=2·2·2·3·3·3·3. Добавим к произведению множителей 2, 2, 3 и 7 числа 84 недостающие множители 2, 3, 3 и
3 числа 648. Получаем произведение 2·2·2·3·3·3·3·7=4536. Это и есть наименьшее общее кратное чисел 84 и 648​​​​​​ ​.

Ответ: НОК(84, 648)=4 536.

Нахождение НОК трех и большего количества чисел

Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.

Теорема 1

Предположим, что у нас есть целые числа a1, a2, …, ak. НОК mk этих чисел находится при последовательном вычислении m2=НОК(a1, a2), m3=НОК(m2, a3), …, mk=НОК(mk−1, ak).

Теперь рассмотрим, как можно применять теорему для решения конкретных задач.

Пример 7

Необходимо вычислить наименьшее общее кратное четырех чисел 140, 9, 54 и 250.

Решение задания

Введем обозначения: a1=140, a2=9, a3=54, a4=250.

Начнем с того, что вычислим m2=НОК(a1, a2)=НОК(140, 9). Применим алгоритм Евклида для вычисления НОД чисел 140 и 9: 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4. Получаем: НОД(140, 9)=1, НОК(140, 9)=140·9:НОД(140, 9)=140·9:1=1 260. Следовательно, m2=1 260.

Теперь вычислим по тому е алгоритму m3=НОК(m2, a3)=НОК(1 260, 54). В ходе вычислений получаем m3=3 780.

Нам осталось вычислить m4=НОК(m3, a4)=НОК(3 780, 250). Действуем по тому же алгоритму. Получаем m4=94 500.

НОК четырех чисел из условия примера равно 94500.

Ответ: НОК(140, 9, 54, 250)=94 500.

Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.

Определение 4

Предлагаем вам следующий алгоритм действий: 

  • раскладываем все числа на простые множители;
  • к произведению множителей первого числа добавляем недостающие множители из произведения второго числа;
  • к полученному на предыдущем этапе произведению добавляем недостающие множители третьего числа и т.д.;
  • полученное произведение будет наименьшим общим кратным всех чисел из условия.
Пример 8

Необходимо найти НОК пяти чисел 84, 6, 48, 7, 143.

Решение

Разложим все пять чисел на простые множители: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7, 143=11·13. Простые числа, которым является число 7, на простые множители не раскладываются. Такие числа совпадают со своим разложением на простые множители.

Теперь возьмем произведение простых множителей 2, 2, 3 и 7 числа 84 и добавим к ним недостающие множители второго числа. Мы разложили число 6 на 2 и 3. Эти множители уже есть в произведении первого числа. Следовательно, их опускаем.

Продолжаем добавлять недостающие множители. Переходим к числу 48, из произведения простых множителей которого берем 2 и 2. Затем добавляем простой множитель 7 от четвертого числа и множители 11 и 13 пятого. Получаем: 2·2·2·2·3·7·11·13=48 048. Это и есть наименьшее общее кратное пяти исходных чисел.

Ответ: НОК(84, 6, 48, 7, 143)=48 048.

Нахождение наименьшего общего кратного отрицательных чисел

Для того чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.

Пример 9

НОК(54, −34)=НОК(54, 34), а НОК(−622, −46, −54, −888)=НОК(622, 46, 54, 888).

Такие действия допустимы в связи с тем, что если принять, что a и −a – противоположные числа,
то  множество кратных числа a совпадает со множеством кратных числа −a.

Пример 10

Необходимо вычислить НОК отрицательных чисел −145 и −45.

Решение

Произведем замену чисел −145 и −45 на противоположные им числа 145 и 45. Теперь по алгоритму вычислим НОК(145, 45)=145·45:НОД(145, 45)=145·45:5=1 305, предварительно определив НОД по алгоритму Евклида.

Получим, что НОК чисел −145 и −45 равно 1 305.

Ответ: НОК(−145, −45)=1 305.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

текст при наведении

Наименьшее общее кратное (сокр. НОК) в математике определяется для нескольких чисел. Это наименьшее натуральное число, делящееся на каждое их данных чисел без остатка.

Для того, чтобы найти наименьшее общее кратное нужно:

1) Разложить каждое число на простые множители.

2) Домножить одно из чисел на те множители, которые не входят в его разложение, но входят в разложение других чисел.


Пример

Требуется найти наименьшее общее кратное для трёх чисел: 6, 10 и 15.

1) Разложим числа на простые множители.

6 = 2 * 3.

10 = 2 * 5.

15 = 3 * 5.

2) Возьмём число 6. Множитель, который не входит в разложение данного числа, но входит в разложение чисел 10 и 15 – это число 5.

Домножаем число 6 на число 5 – получаем 30.

Следовательно, НОК (6, 10, 15) = 30.


Другой способ

Если требуется найти наименьшее общее кратное двух чисел, то можно поступить таким образом:

1) Умножить одно число на другое.

2) Разделить полученное произведение на НОД (наибольший общий делитель).

Найдём наименьшее общее кратное чисел 8 и 6.

1) 8 * 6 = 48.

2) 8 = 2 * 2 * 2 и 6 = 2 * 3 -> НОД (8, 6) = 2.

НОК (8, 6) = 48 / 2 = 24.

автор вопроса выбрал этот ответ лучшим

дольф­аника
[379K]

8 лет назад 

Складывать, умножать, делить, приводить к общему знаменателю и другие арифметические действия очень увлекательное занятие, особенно восхищают примеры, занимающие целый лист.

Итак найти общее кратное для двух чисел, которое будет являться самым маленьким числом на которое делятся два числа. Хочу заметить, что не обязательно в дальнейшем прибегать к формулам, чтобы найти искомое, если можешь считать в уме (а это можно натренировать), то цифры сами всплывают в голове и потом дроби щелкаются как орешки.

Для начала усвоим, что можно умножить два числа друг на друга, а потом эту цифру уменьшать и делить поочередно на данные два числа, так мы найдем наименьшее кратное.

Например, два числа 15 и 6. Умножаем и получаем 90. Это явно больше число. Причем 15 делится на 3 и 6 делится на 3, значит 90 тоже делим на 3. Получаем 30. Пробуем 30 разделить 15 равно 2. И 30 делим 6 равно 5. Так как 2 это предел, то получается, что наименьшее кратное для чисел 15 и 6 будет 30.

С цифрами побольше будет немного трудней. но если знать, какие цифры дают нулевой остаток при делении или умножении, то трудностей, в принципе, больших нет.

НОК, или наименьшее общее кратное, – это наименьшее натуральное число двух и более чисел, которое делится на каждое из данных чисел без остатка.

Вот пример того, как найти наименьшее общее кратное 30 и 42.

  • Первым делом нужно разложить данные числа на простые множители.

Для 30 – это 2 х 3 х 5.

Для 42 – это 2 х 3 х 7. Так как 2 и 3 имеются в разложении числа 30, то вычеркиваем их.

  • Выписываем множители, которые входят в разложение числа 30. Это 2 х 3 х 5 .
  • Теперь нужно домножить их на недостающий множитель, который имеем при разложении 42,а это 7. Получаем 2 х 3 х 5 х 7.
  • Находим, чему равно 2 х 3 х 5 х 7 и получаем 210.

В итоге получаем, что НОК чисел 30 и 42 равен 210.

CooLW­arK
[27.3K]

9 лет назад 

Представляю ещё один способ нахождения наименьшего общего кратного. Рассмотрим его на наглядном примере.

Необходимо найти НОК сразу трёх чисел: 16, 20 и 28.

  • Представляем каждое число как произведение его простых множителей:

16 = 2·2·4

20 = 2·2·5

28 = 2·2·7

  • Записываем степени всех простых множителей:

16 = 2·2·4 = 2^2·4^1

20 = 2·2·5 = 2^2·5^1

28 = 2·2·7 = 2^2·7^1

  • Выбираем все простые делители (множители) с наибольшими степенями, перемножаем их и находим НОК:

НОК = 2^2·4^1·5^1·7^1 = 4·4·5·7 = 560.

НОК(16, 20, 28) = 560.

Таким образом, в итоге расчета получилось число 560. Оно является наименьшим общим кратным, то есть делится на каждое из трёх чисел без остатка.

Матве­й628
[90.1K]

9 лет назад 

Чтобы найти наименьшее общее кратное, нужно выполнить последовательно несколько простых действий. Рассмотрим это на примере двух чисел: 8 и 12

  1. Разлагаем оба числа на простые множители: 8=2*2*2 и 12=3*2*2
  2. Сокращаем одинаковые множители у одного из чисел. В нашем случае совпадают 2*2, сократим их для числа 12, тогда у 12 останется один множитель: 3.
  3. Находим произведение всех оставшихся множителей: 2*2*2*3=24

Проверяя, убеждаемся, что 24 делится и на 8 и на 12, причем это наименьшее натуральное число, которое делится на каждое из этих чисел. Вот мы и нашли наименьшее общее кратное.

ирише­нька
[41.2K]

8 лет назад 

Попробую объяснить на примере цифр 6 и 8. Наименьшее общее кратное – это число, которое можно разделить на эти числа(в нашем случае 6 и 8) и остатка не будет.

Итак, начинаем умножать сначала 6 на 1, 2, 3 и т. д и 8 на 1, 2, 3 и т. д.

Получается:

Умножаем на 6 – 6-12-18-24-30-36-42-48-54-60

Умножаем не 8 – 8-16-24-32-40-48….

Как видим, и там и там есть 48, следовательно у чисел 6 и 8 наименьшее общее кратное – 48.

ЯнаМа­рина
[75.6K]

8 лет назад 

Наименьшее общее кратное число – это такая цифра, которая разделится на несколько предложенных чисел без остатка. Для того, чтобы такую цифру высчитать, надо взять каждое число и разложить его на простые множители. Те цифры, которые совпадают, убираем. Оставляет всех по одной, перемножаем их между собой по очереди и получаем искомое – наименьшее общее кратное.

Например у нас есть числа 3 и 5 и нам надо найти НОК(наименьшее общее кратное). Нам надо умножать и тройку и пятёрку на все числа начиная с 1 2 3 … и т д пока мы не увидим одинаковое число и там и там.

Множим тройку и получаем: 3, 6, 9, 12, 15

Множим пятёрку и получаем: 5, 10, 15

НОК = 15

Infil­trato­r
[100K]

11 лет назад 

Нужно найти каждый множитель каждого из двух чисел, у которых находим наименьшее общее кратное, а потом перемножить друг на друга множители, которые совпали у первого и второго числа. Результатом произведения будет искомое кратное.

Azama­tik
[55.3K]

5 лет назад 

Первым делом нужно разложить числа (для которых ищем наименьшее общее кратное) на множители.

После чего остается домножить одно из чисел на тот множитель или на те множители, которые не входят в его разложение, но при этом входят в разложение других чисел (другого числа).


Итак, пример: нужно найти наименьшее общее кратное чисел 24 и 36.

Разложим на множители оба числа:

24 это 3 х 4 х 2;

36 это 3 х 4 х 3.

Сокращаем одинаковые множители и остается одна 3.

Умножаем 3 х 4 х 2 х 3 и получаем 72.

Ответ: 72 это НОК для чисел 24 и 36.

Знаете ответ?

Для того, чтобы находить общий знаменатель
при
сложении
и
вычитании дробей с разными
знаменателями необходимо знать и уметь рассчитывать наименьшее общее кратное (НОК).

Кратное числу «a» — это число, которое
само делится на число «a» без остатка.

Числа кратные 8
(то есть, эти числа разделятся на 8 без остатка):
это числа 16, 24, 32

Кратные 9: 18, 27, 36, 45

Чисел, кратных данному числу a бесконечно много, в отличии от делителей
этого же числа. Делителей —
конечное количество.

кратные и делители числа

Общим кратным двух натуральных чисел называется число, которое делится на оба эти числа нацело.

Запомните!
!

Наименьшим общим кратным (НОК) двух и более натуральных
чисел называется наименьшее натуральное число, которое само
делится нацело на каждое из этих чисел.

Как найти НОК

НОК можно найти и записать двумя способами.

Первый способ нахождения НОК

Данный способ обычно применяется для небольших чисел.

  1. Выписываем в строчку кратные для каждого из чисел, пока не найдётся кратное, одинаковое
    для обоих чисел.
  2. Кратное числа «a»
    обозначаем большой буквой «К».

    К (a) = {…, …}

Пример. Найти НОК 6 и 8.

К (6) = {12, 18, 24, 30, …}

К (8) = {8, 16, 24, 32, …}

НОК (6, 8) = 24

Второй способ нахождения НОК

Этот способ удобно использовать, чтобы найти НОК для трёх и более чисел.

  1. Разложить данные числа на простые множители.
    Подробнее правила разложения на
    простые множители вы можете прочитать в теме
    как найти наибольший общий делитель (НОД).
    разложение чисел на простые множители
  2. Выписать в строчку множители, входящие в разложение
    самого большого из чисел, а под ним —
    разложение остальных чисел.

    Запомните!
    !

    Количество одинаковых множителей в разложениях чисел может быть разное.

    60 = 2 · 2 · 3 · 5

    24 = 2 · 2 · 2 · 3

  3. Подчеркнуть в разложении
    меньшего числа (меньших чисел) множители,
    которые не вошли в разложение бóльшего числа
    (в нашем примере это 2) и добавить эти множители в разложение бóльшего числа.

    НОК (24, 60) = 2 · 2 · 3 · 5 · 2
  4. Полученное произведение записать в ответ.

    Ответ: НОК (24, 60) = 120

Оформить нахождение наименьшего общего кратного (НОК) можно также следующим образом. Найдём НОК (12, 16, 24).

пример нахождения наименьшего общего кратного (НОК)
24 = 2 · 2 · 2 · 3

16 = 2 · 2 · 2 · 2

12 = 2 · 2 · 3

Как видим из разложения чисел, все множители 12 вошли в
разложение 24
(самого бóльшего из чисел), поэтому в НОК добавляем только одну 2 из
разложения числа 16.

НОК (12, 16, 24) = 2 · 2 · 2 · 3 · 2 = 48

Ответ: НОК (12, 16, 24) = 48

Особые случаи нахождения НОК

  1. Если одно из чисел делится нацело на другие, то наименьшее общее кратное этих чисел равно этому числу.

    Например, НОК (60, 15) = 60

  2. Так как взаимно простые числа не имеют общих простых делителей, то их наименьшее общее
    кратное равно произведению этих чисел.

    Пример.

    НОК (8, 9) = 72


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

5 сентября 2020 в 15:37

Елена Елена
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Елена Елена
Профиль
Благодарили: 0

Сообщений: 1

НОК(360,102)

0
Спасибоthanks
Ответить

6 сентября 2020 в 13:42
Ответ для Елена Елена

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


360 = 2· 3· 5;    102 = 2 · 3 · 17.
НОК(360; 102) = 2· 3· 5 · 17  = …

0
Спасибоthanks
Ответить

30 мая 2018 в 17:34

Тамара Татарникова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Тамара Татарникова
Профиль
Благодарили: 0

Сообщений: 1

Найдите четырёхзначное число, которое кратно 24, а произведение цифр этого числа равно 16, в ответ дайте какое-нибудь одно число.
Я написала 1242, но 1242 при делении на 24 дает в ответе 51,75 будет ли это верным ответом?

0
Спасибоthanks
Ответить

3 июня 2018 в 1:58
Ответ для Тамара Татарникова

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


1128  1224  8112

0
Спасибоthanks
Ответить

29 ноября 2016 в 14:47

Анвар Тынайбеков
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Анвар Тынайбеков
Профиль
Благодарили: 0

Сообщений: 1

НОК(344и170)=

0
Спасибоthanks
Ответить

2 декабря 2016 в 8:23
Ответ для Анвар Тынайбеков

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197

1
Спасибоthanks
Ответить

15 февраля 2016 в 19:02

Кирилл Журавлёв
(^-^)
Профиль
Благодарили: 1

Сообщений: 3

(^-^)
Кирилл Журавлёв
Профиль
Благодарили: 1

Сообщений: 3

число 123 454 321 делится на 11 111. найдите нок этих чисел 

1
Спасибоthanks
Ответить

15 февраля 2016 в 19:08
Ответ для Кирилл Журавлёв

Кирилл Журавлёв
(^-^)
Профиль
Благодарили: 1

Сообщений: 3

(^-^)
Кирилл Журавлёв
Профиль
Благодарили: 1

Сообщений: 3


12132211

0
Спасибоthanks
Ответить

19 сентября 2016 в 12:55
Ответ для Кирилл Журавлёв

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Здесь подробно описано нахождение НОК.

А в супер-решателе можно себя проверить.

0
Спасибоthanks
Ответить

15 февраля 2016 в 18:51

Кирилл Журавлёв
(^-^)
Профиль
Благодарили: 1

Сообщений: 3

(^-^)
Кирилл Журавлёв
Профиль
Благодарили: 1

Сообщений: 3

ЧИСЛО 123 454 321 ДЕЛИТСЯ 11 111. НАЙДИТЕ НОК ЭТИХ ЧИСЕЛ НЕ ВЫПОЛНЯЯ РАЗЛОЖЕНИЯ ЧИСЕЛ НА ПРОСТЫЕ МНОЖИТЕЛИ

0
Спасибоthanks
Ответить

19 сентября 2016 в 12:56
Ответ для Кирилл Журавлёв

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197

0
Спасибоthanks
Ответить

27 января 2016 в 18:15

Lera Kuchinskaya
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Lera Kuchinskaya
Профиль
Благодарили: 0

Сообщений: 1

НОК 100 150 250cry

0
Спасибоthanks
Ответить

27 января 2016 в 22:36
Ответ для Lera Kuchinskaya

Виктория Казимирова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Виктория Казимирова
Профиль
Благодарили: 0

Сообщений: 1


А что за цифры!!!? 

0
Спасибоthanks
Ответить

28 января 2016 в 16:00
Ответ для Lera Kuchinskaya

Anton Wuckert
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Anton Wuckert
Профиль
Благодарили: 0

Сообщений: 1


НОК = 1500

0
Спасибоthanks
Ответить

19 сентября 2016 в 11:42
Ответ для Lera Kuchinskaya

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Для решения можно воспользоваться решателем на сайте.

0
Спасибоthanks
Ответить

22 января 2016 в 13:46

Андрей Алексеев
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Андрей Алексеев
Профиль
Благодарили: 0

Сообщений: 1

числа 4,5,6,7,10,12,15,16,20,50, которые являются делителями 24 и кратными 2

0
Спасибоthanks
Ответить

23 января 2016 в 13:33
Ответ для Андрей Алексеев

Александра Сирота
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Александра Сирота
Профиль
Благодарили: 0

Сообщений: 2


ОТВЕТ: 4 и 12

0
Спасибоthanks
Ответить

24 января 2016 в 13:41
Ответ для Андрей Алексеев

Инна Шабрашина
(^-^)
Профиль
Благодарили: 0

Сообщений: 5

(^-^)
Инна Шабрашина
Профиль
Благодарили: 0

Сообщений: 5


6 ,2,  12

0
Спасибоthanks
Ответить

25 января 2016 в 19:52
Ответ для Андрей Алексеев

Нелия Ахмедова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Нелия Ахмедова
Профиль
Благодарили: 0

Сообщений: 1


6,12.

0
Спасибоthanks
Ответить

19 сентября 2016 в 10:59
Ответ для Андрей Алексеев

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Чтобы не запутаться, необходимо каждое из чисел проверить на оба условия: 
1) 4 — 24/4=6 — делитель 24. 4/2=2 — кратно 2.
2) 5 — 24/5=не делится без остатка — не делитель. 5/2 — не делится без остатка — не кратно 2.
И так далее.
Ответ: 4,6,12.

0
Спасибоthanks
Ответить

23 декабря 2015 в 17:00

Евгений Мухамедшин
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Евгений Мухамедшин
Профиль
Благодарили: 0

Сообщений: 1

1) (4/15+5/8)-3/5

2)  (1/5+13/16)-9/20

0
Спасибоthanks
Ответить

19 сентября 2016 в 10:01
Ответ для Евгений Мухамедшин

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Для нахождения НОК можно воспользоваться супер-решателем. Раскрываем скобки и приводим к общему знаменателю.
1) ===0
2) ===   

0
Спасибоthanks
Ответить

17 ноября 2015 в 6:29

Светлана Каблучко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Светлана Каблучко
Профиль
Благодарили: 0

Сообщений: 1

запишите числа удовлетворяющие двойное неравенство 354<х<361 если известно что они кратны 2,5,10

0
Спасибоthanks
Ответить

24 ноября 2015 в 17:56
Ответ для Светлана Каблучко

Тима Клюев
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Тима Клюев
Профиль
Благодарили: 0

Сообщений: 8


360

0
Спасибоthanks
Ответить


Наименьшее общее кратное

  • Общее кратное
  • Наименьшее общее кратное
  • Как найти НОК
    • С помощью разложения на простые множители
    • Нахождение НОК через НОД
  • Калькулятор НОК

Общее кратное

Число может быть кратно не одному, а сразу нескольким числам, такое число называется общим кратным данных чисел.

Пример.

Числу  3  кратны числа:  6,  9,  12,  15  и т. д.

Числу  4  кратны числа:  8,  12,  16,  20  и т. д.

Можно заметить, что одно и тоже число  (12)  делится нацело сразу на оба числа  3  и  4.  Следовательно, число  12  есть общее кратное чисел  3  и  4.

Общее кратное чисел — это любое число, которое делится без остатка на каждое из данных чисел.

Найти общее кратное нескольких натуральных чисел достаточно легко, можно просто перемножить данные числа, полученное произведение и будет их общим кратным.

Пример. Найти общее кратное для чисел  2,  3,  4,  6.

Решение:

2 · 3 · 4 · 6 = 144.

Число  144  — общее кратное чисел  2,  3,  4  и  6.

Для любого количества натуральных чисел существует бесконечно много кратных.

Пример. Для чисел  12  и  20  кратными будут числа:  60,  120,  180,  240  и т. д. Все они являются общими кратными для чисел  12  и  20.

Наименьшее общее кратное

Наименьшее общее кратное (НОК) нескольких чисел — это самое маленькое натуральное число, которое делится без остатка на каждое из этих чисел.

Пример. Наименьшим общим кратным чисел  3,  4  и  9  является число  36,  никакое другое число меньше  36  не делится одновременно на  3,  4  и  9  без остатка.

Наименьшее общее кратное записывается так:

НОК (a, b, …) = x.

Числа в круглых скобках могут быть указаны в любом порядке.

Пример. Запишем наименьшее общее кратное чисел  3,  4  и  9:

НОК (3, 4, 9) = 36.

Как найти НОК

Рассмотрим два способа нахождения наименьшего общего кратного: с помощью разложения чисел на простые множители и нахождение НОК через НОД.

С помощью разложения на простые множители

Чтобы найти НОК нескольких натуральных чисел, надо разложить эти числа на простые множители, затем взять из этих разложений каждый простой множитель с наибольшим показателем степени и перемножить эти множители между собой.

Пример. Найдите наименьшее общее кратное двух чисел  99  и  54.

Решение: разложим каждое из этих чисел на простые множители:

99 = 3 · 3 · 11 = 32 · 11,

54 = 2 · 3 · 3 · 3 = 2 · 33.

Наименьшее общее кратное должно делиться на  99,  значит, в его состав должны входить все множители числа  99.  Далее НОК должно делиться и на  54,  т. е. в его состав должны входить множители и этого числа.

Выпишем из этих разложений каждый простой множитель с наибольшим показателем степени и перемножим эти множители между собой. Получим следующее произведение:

2 · 33 · 11 = 594.

Это и есть наименьшее общее кратное данных чисел. Никакое другое число меньше  594  не делится нацело на  99  и  54.

Ответ:  НОК (99, 54) = 594.

Так как взаимно простые числа не имеют одинаковых простых множителей, то их наименьшее общее кратное равно произведению этих чисел.

Пример. Найдите наименьшее общее кратное двух чисел  12  и  49.

Решение: разложим каждое из этих чисел на простые множители:

12 = 2 · 2 · 3 = 22 · 3,

49 = 7 · 7 = 72.

Применяя к этому случаю правило, мы придём к заключению, что взаимно простые числа надо просто перемножить:

22 · 3 · 72 = 12 · 49 = 588.

Ответ:  НОК (12, 49) = 588.

Таким же образом надо поступать, когда нужно найти наименьшее общее кратное простых чисел.

Пример. Найдите наименьшее общее кратное чисел  5,  7  и  13.

Решение: так как данные числа являются простыми, то просто перемножим их:

5 · 7 · 13 = 45.

Ответ:  НОК (5, 7, 13) = 455.

Если большее из данных чисел делится на все остальные числа, то это число и будет наименьшим общим кратным данных чисел.

Пример. Найдите наименьшее общее кратное чисел  24,  12  и  4.

Решение: разложим каждое из этих чисел на простые множители:

24 = 2 · 2 · 2 · 3 = 23 · 3,

12 = 2 · 2 · 3 = 22 · 3,

4 = 2 · 2 = 22.

Можно заметить, что разложение большего числа содержит все множители остальных чисел, значит большее из этих чисел делится на все остальные числа (в том числе и само на себя) и является наименьшим общим кратным:

23 · 3 = 24.

Ответ:  НОК (24, 12, 4) = 24.

Нахождение НОК через НОД

НОК двух натуральных чисел равно произведению этих чисел, поделённого на их НОД.

Правило в общем виде:

НОК (m, n) = m · n : НОД (m, n)

Пример. Найдите наименьшее общее кратное двух чисел  99  и  54.

Решение: сначала находим наибольший общий делитель:

НОД (99, 54) = 9.

Теперь мы можем вычислить НОК этих чисел по формуле:

НОК (99, 54) = 99 · 54 : НОД (99, 54) = 5346 : 9 = 594.

Ответ:  НОК (99, 54) = 594.

Чтобы найти НОК трёх или более чисел используется следующий порядок действий:

  1. Находят НОК любых двух из данных чисел.
  2. Затем находят наименьшее общее кратное найденного НОК и третьего числа и т. д.
  3. Таким образом поиск НОК продолжается до тех пор, пока есть числа.

Пример. Найдите наименьшее общее кратное чисел  8,  12  и  9.

Решение: сначала находим наибольший общий делитель любых двух из этих чисел, например,  12  и  8:

НОД (12, 8) = 4.

Вычисляем их НОК по формуле:

НОК (12, 8) = 12 · 8 : НОД (12, 8) = 96 : 4 = 24.

Теперь найдём НОК числа  24  и оставшегося числа  9.  Их НОД:

НОД (24, 9) = 3.

Вычисляем НОК по формуле:

НОК (24, 9) = 24 · 9 : НОД (24, 9) = 216 : 3 = 72.

Ответ:  НОК (8, 12, 9) = 72.

Калькулятор НОК

Данный калькулятор поможет вам найти наименьшее общее кратное чисел. Просто введите числа через пробел или запятую и нажмите кнопку Вычислить НОК.

Наименьшим общим кратным данных натуральных чисел называют наименьшее натуральное число, кратное каждому из данных чисел. Пример. НОК (24, 42)=168. Это самое маленькое число, которое делится и на 24 и на 42.
Для нахождения НОК нескольких данных натуральных чисел надо: 1) разложить каждое из данных чисел на простые множители; 2) выписать разложение большего из чисел и умножить его на недостающие множители из разложений других чисел.
Наименьшее кратное двух взаимно простых чисел равно произведению этих чисел.
Пример 1. Найти НОК (35; 40).

Разложим числа 35 и 40 на простые множители.

35=5∙7, 40=2∙2∙2∙5 или 40=23∙5

Берем разложение большего числа 40 и дополняем его недостающими множителями. НОК (35; 40)=23∙5∙7=40∙7=280.

Ответ: НОК (35; 40)=280.
Пример 3. Найти НОК (75; 120; 150).

Разложим числа 75, 120 и 150 на простые множители.

75=3∙52, 120=23∙3∙5, 150=2∙3∙52

Возьмем разложение большего числа 150 и дополним его двумя «двойками», так как в разложении числа 120 имеется три «двойки», а в разложении числа 150 – только одна.

НОК (75; 120; 150)=2∙3∙52∙2∙2=150∙4=600.

Ответ: НОК (75; 120; 150)=600.

Вывод: при нахождении НОК выписывают произведение всех простых (различных) множителей, имеющихся в разложении этих чисел, причем, каждый из множителей берется с наибольшим из имеющихся показателей степеней.

Добавить комментарий