Как найти число противоположное данному

Противоположные числа


Противоположные числа

4.7

Средняя оценка: 4.7

Всего получено оценок: 559.

4.7

Средняя оценка: 4.7

Всего получено оценок: 559.

Тема «Противоположные числа» изучается в курсе 6 класса математики. У противоположных чисел есть ряд интересных свойств, которые выделяют их из множества действительных чисел. Рассмотрим основные понятия этой темы.

Определение противоположных чисел

Противоположными называются два числа, которые отличаются друг от друга только знаком.

Обозначим некоторое число буквой a. Тогда противоположным ему будет число -a.

Примеры

Приведем несколько примеров пар противоположных чисел:

7 и -7,

2 и -2,

1,5 и -1,5,

5/7 и -5/7.

Противоположные числа на координатной оси

Проведем координатную ось – прямую линию, на которой отмечено начало координат, задан масштаб и стрелкой указано положительное направление.

Изобразим на координатной оси два противоположных числа a и -a.

Изображение противоположных чисел на координатной оси

Рис. 1. Изображение противоположных чисел на координатной оси.

Из рис. 1 видно, что противоположные числа расположены на одинаковом расстоянии, но в противоположных направлениях от начала координатной оси. Поэтому такие числа и называются противоположными.

Как найти число, противоположное данному

Сформулируем правило, по которому мы можем написать два противоположных числа.

Пусть дано число a. Чтобы найти противоположное ему число, нужно к числу a приписать знак « – ».

Есть только одно число, которое является противоположным самому себе. Это число 0 (нуль).

В городе Будапеште, который является столицей Венгрии, установлен памятник нулю. Высота памятника составляет 3 м.

Памятник нулю в Будапеште

Рис. 2. Памятник нулю в Будапеште.

В России тоже есть несколько мест, которые называют памятниками нулю. Например, памятный знак нулевого километра у Воскресенских ворот в Москве.

Памятный знак нулевого километра в Москве

Рис. 3. Памятный знак нулевого километра в Москве.

Многие считают, что если кинуть монетку так, чтобы попасть на бронзовый памятный знак, и загадать желание, оно обязательно сбудется. А если это высокие памятники, как памятник в Будапеште, то существует следующая легенда: нужно пролезть внутрь нуля – тогда к зарплате прибавится несколько нулей.

Основные свойства противоположных чисел

Перечислим основные свойства противоположных чисел. Справедливость этих свойств подтверждает рис. 1.

  • Для каждого числа существует только одно число, которое ему противоположно.

Это объясняется тем, что для каждой точки координатной оси существует только одна точка, симметричная ей относительно нуля.

  • Два противоположных числа имеют разные знаки: одно из них является положительным, а второе отрицательным.

Это свойство следует из того, что противоположные числа находятся на координатной оси по разные стороны от нуля, они имеют разные знаки.

Исключение: число 0.

Таким образом, если исходное число является положительным, то противоположное ему будет отрицательным. А если исходное число является отрицательным, то противоположное ему будет положительным.

  • Сумма противоположных чисел всегда равна 0.

Это объясняется тем, что они одинаковы по модулю, но имеют разные знаки.

Пример

Рассмотрим число 4.

Припишем ему знак « – ». Получим противоположное число -4.

Найдем сумму этих чисел:

-4 + 4 = 0.

Заключение

Что мы узнали?

Из темы по алгебре, которая изучается в 6 классе, мы узнали, что противоположные числа образуют пару чисел, из которых одно является положительным, а второе – отрицательным. Единственным исключением является число 0, которое противоположно самому себе. На числовой (координатной) оси противоположные числа находятся на одинаковых расстояниях, но в противоположных направлениях от начала координат.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Катя Федосюк

    5/5

  • Никита Поцелуев

    5/5

  • Валентина Табачкова

    5/5

  • Кирилл Бернацкий

    5/5

  • Денис Гроздов

    5/5

  • Евгений Романюк

    5/5

  • Аделя Аксакова

    5/5

  • Александр Тен

    5/5

  • Tanya Reid

    5/5

  • Анастасия Демидова

    5/5

Оценка статьи

4.7

Средняя оценка: 4.7

Всего получено оценок: 559.


А какая ваша оценка?

В рамках этой статьи мы попробуем разобраться, что же такое противоположные числа. Мы поясним, что вообще они из себя представляют, покажем, какие именно обозначения используют для них, и разберем несколько примеров. В последней части материала мы перечислим основные свойства противоположных чисел.

Что такое противоположные числа

Чтобы объяснить само понятие противоположности, нам потребуется для начала изобразить координатную прямую. Возьмем на ней точку M (только не в самом начале отсчета). Ее расстояние до нуля будет равно некоторому количеству единичных отрезков, которые можно, в свою очередь, разбить на десятые и сотые доли. Если же мы отмерим такое же расстояние от начала отсчета в направлении, противоположном тому, на котором расположена M, то мы сможем попасть в другую схожую точку. Назовем ее N. Например, от M до нуля ­– расстояние в 2,4 единичных отрезка, и от N до нуля – тоже. Взгляните на рисунок:

Что такое противоположные числа

Вспомним, что каждой точке на координатной прямой можно поставить в соответствие только одно действительное число. В таком случае нашим точкам M и N соответствуют определенные числа, которые и называются противоположными. Каждое число имеет противоположное число, за исключением нуля. Поскольку это начало отсчета, то его считают противоположным самому себе.

Запишем определение, что же такое противоположные числа:

Определение 1

Противоположными называются числа, которым соответствуют такие точки на координатной прямой, в которые мы попадем, если отметим одно и то же расстояние от начала отсчета в разных направлениях (положительном и отрицательном). Нуль находится в начале отсчета и противоположен сам себе.

Как обозначаются противоположные числа

В этом пункте мы введем основные обозначения для таких чисел. Если у нас есть некое число и нам нужно записать противоположное ему, то для этого используем минус.

Пример 1

Допустим, наше число равно a, следовательно, ему противоположно –a (минус a). Точно таким же образом для 0,26 противоположно -0,26, а для 145 это будет -145. Если исходное число само является отрицательным, например, -9, то противоположное мы записываем как –(-9).

Какие еще примеры противоположных чисел можно привести? Возьмем целые числа: 12 и -12. Противоположные рациональные числа – это 3211 и -3211, а также 8,128 и −8,128, 0,(18901) и −0,(18901) и др. Противоположными могут быть и иррациональные числа, например, значения числовых выражений 2+1 и -2+1.

Противоположными иррациональными числами также будут e и -e .

Основные свойства противоположных чисел

Таким числам присущи определенные свойства. Ниже мы дадим их список с пояснениями.

Определение 2

1. Если исходное число положительно, то противоположное ему будет отрицательно.

Это утверждение очевидно и следует из графика выше: такие числа находятся по разные стороны отсчета на координатной прямой. Если вы позабыли понятия положительных и отрицательных чисел, посмотрите материал, что мы публиковали раньше.

Из этого правила можно вывести другое очень важное утверждение. В буквенном виде его запись выглядит следующим образом: для любого положительного a будет верно −(−a)=a. Покажем на примере, почему это важно.

Возьмем число 5. С помощью координатной прямой можно увидеть, что ему противоположно число -5, и наоборот. Используя обозначения, которые мы указали выше, запишем число, противоположное -5 как –(-5). Получается, что –(-5)=5. Отсюда вывод: противоположные числа отличаются друг от друга лишь наличием знака минус.

2. Следующее свойство принято называть свойством симметричности. Его также можно вывести из самого определения противоположных чисел. Оно звучит так:

Определение 3

Если некоторое число a является противоположным числу b, тогда и b является противоположным числу a.

Очевидно, что в дополнительных доказательствах это утверждение не нуждается.

3. Третье свойство противоположных чисел гласит:

Определение 4

Каждое действительное число имеет только одно противоположное число.

Это утверждение вытекает из того, что точкам координатной прямой не может соответствовать много чисел сразу.

Определение 5

4. Модули противоположных чисел равны.

Это следует из определения модуля. Логично, что точки на прямой, соответствующие любым противоположным числам, находятся на одном и то же расстоянии от точки отсчета.

Определение 6

5. Если мы сложим противоположные числа, то получим 0.

В буквенном виде это утверждение выглядит как a+(−a)=0.

Пример 2

Приведем примеры таких вычислений:

890+(-890)=0 -45+45=0 7+(-7)=0

Как видно, это правило работает для всех чисел – целых, рациональных, иррациональных и др.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Противоположные числа появились с введением в математику целых чисел. Так как целые числа делятся на положительные и отрицательные числа.

Подробно рассмотрим тему на примере.
У нас есть число 7. Если мы поставим знак “+” перед числом 7 получим +7, смысл и значения числа не поменялись. То есть знак “+” не меняет значение числа. А если мы перед числом 7 поставим знак “–” получим число -7, смысл и значение числа поменяется. Например, число 7 (получить 7 конфет) или число -7 (отдать 7 конфет). Говорят, число 7 или +7 противоположно числу -7.

Определение:
Противоположные числа – это числа, отличающиеся только знаком.

Нуль считается противоположен самому себе: 0=+0=-0.

Число, противоположное числу b, обозначается –b.

Вопросы по теме:
Назовите число противоположное числу: а) 2 б) 0 в) 3 г) -6 д) 5 е) -7 з) 4 и) 8 к)9 ?
Ответ:
а) противоположное числу 2 это число -2;
б) нуль противоположен сам себе, то есть противоположное числу 0 число 0;
в) 3 противоположно числу -3;
г) 6 это противоположное число числу -6;
д) противоположное числу 5 это число -5;
е) противоположное числу -7 это число 7;
з) 4 противоположно числу -4;
и) противоположное число 8 числу -8;
к) число противоположное 9 это число -9.

Числа противоположные натуральным?
Ответ:
Вспомним, что натуральные числа – это все положительные целые числа, следовательно, противоположные числа натуральным будут все целые отрицательные числа.
Натуральные числа или целые положительные числа:
1, 2, 3, 4, 5, 6, …
Целые отрицательные числа:
-1, -2, -3, -4, -5, -6, …

Как найти противоположные числа?
Ответ: у числа поменять знак на противоположный. Например, +2 противоположное ему число -2.

Чему равна сумма противоположных чисел?
Ответ: нулю.

Пример:
Найдите числа противоположные данным: а) 10002 б) -34522

Решение:
а) 10002 противоположное число -10002;
б) -34522 противоположное число 34522.

Тема «Противоположные числа» изучается в курсе 6 класса математики. У противоположных чисел есть ряд интересных свойств, которые выделяют их из множества действительных чисел. Рассмотрим основные понятия этой темы.

Противоположные числа – правило, свойства (6 класс, математика)

Содержание

  • Определение противоположных чисел
  • Примеры
  • Противоположные числа на координатной оси
  • Как найти число, противоположное данному
  • Основные свойства противоположных чисел
  • Пример
  • Что мы узнали?

Определение противоположных чисел

Противоположными называются два числа, которые отличаются друг от друга только знаком.

Обозначим некоторое число буквой a. Тогда противоположным ему будет число -a.

Примеры

Приведем несколько примеров пар противоположных чисел:

7 и -7,

2 и -2,

1,5 и -1,5,

5/7 и -5/7.

Противоположные числа на координатной оси

Проведем координатную ось – прямую линию, на которой отмечено начало координат, задан масштаб и стрелкой указано положительное направление.

Изобразим на координатной оси два противоположных числа a и -a.

Противоположные числа – правило, свойства (6 класс, математика)

Рис. 1. Изображение противоположных чисел на координатной оси.

Из рис. 1 видно, что противоположные числа расположены на одинаковом расстоянии, но в противоположных направлениях от начала координатной оси. Поэтому такие числа и называются противоположными.

Как найти число, противоположное данному

Сформулируем правило, по которому мы можем написать два противоположных числа.

Пусть дано число a. Чтобы найти противоположное ему число, нужно к числу a приписать знак « – ».

Есть только одно число, которое является противоположным самому себе. Это число 0 (нуль).

В городе Будапеште, который является столицей Венгрии, установлен памятник нулю. Высота памятника составляет 3 м.

Противоположные числа – правило, свойства (6 класс, математика)

Рис. 2. Памятник нулю в Будапеште.

В России тоже есть несколько мест, которые называют памятниками нулю. Например, памятный знак нулевого километра у Воскресенских ворот в Москве.

Противоположные числа – правило, свойства (6 класс, математика)

Рис. 3. Памятный знак нулевого километра в Москве.

Многие считают, что если кинуть монетку так, чтобы попасть на бронзовый памятный знак, и загадать желание, оно обязательно сбудется. А если это высокие памятники, как памятник в Будапеште, то существует следующая легенда: нужно пролезть внутрь нуля – тогда к зарплате прибавится несколько нулей.

Основные свойства противоположных чисел

Перечислим основные свойства противоположных чисел. Справедливость этих свойств подтверждает рис. 1.

  • Для каждого числа существует только одно число, которое ему противоположно.

Это объясняется тем, что для каждой точки координатной оси существует только одна точка, симметричная ей относительно нуля.

  • Два противоположных числа имеют разные знаки: одно из них является положительным, а второе отрицательным.

Это свойство следует из того, что противоположные числа находятся на координатной оси по разные стороны от нуля, они имеют разные знаки.

Исключение: число 0.

Таким образом, если исходное число является положительным, то противоположное ему будет отрицательным. А если исходное число является отрицательным, то противоположное ему будет положительным.

  • Сумма противоположных чисел всегда равна 0.

Это объясняется тем, что они одинаковы по модулю, но имеют разные знаки.

Пример

Рассмотрим число 4.

Припишем ему знак « – ». Получим противоположное число -4.

Найдем сумму этих чисел:

-4 + 4 = 0.

Что мы узнали?

Из темы по алгебре, которая изучается в 6 классе, мы узнали, что противоположные числа образуют пару чисел, из которых одно является положительным, а второе – отрицательным. Единственным исключением является число 0, которое противоположно самому себе. На числовой (координатной) оси противоположные числа находятся на одинаковых расстояниях, но в противоположных направлениях от начала координат.

Предыдущая

МатематикаСтолбчатая диаграмма – примеры (6 класс, математика)

Следующая

МатематикаСложение чисел с разными знаками – правило (6 класс, математика)

Содержание:

  • § 1  Понятие положительного числа
  • § 2  Свойства противоположных чисел

§ 1  Понятие положительного числа

В этом уроке Вы узнаете, какие числа называются противоположными, как найти противоположное число, а еще, что такое целые и рациональные числа.

Начнем с практической работы. На координатной прямой отметим точки А(2) и В(-2). Они симметричны и центром симметрии данных точек является начало координат О(0), так как расстояние ОА=ОВ.

Мы видим, что координаты точек, симметричных относительно начала координат – это числа, которые отличаются только знаком. Такие числа называют противоположными.

Есть еще одно определение противоположных чисел. Чему равны модули чисел 2 и -2? Равны 2. Следовательно, противоположные числа – это числа, имеющие одинаковые модули, но отличающиеся знаком.

Для обозначения числа, противоположного данному числу, используют знак минус, который записывают перед данным числом. То есть число, противоположное числу a, записывается как −a. Например, числу 0,24 противоположно число −0,24, числу -25 противоположно число −(−25), но числу -25 на координатной прямой противоположно 25, значит -(-25) = 25. Из этого следует, что –(-а) = а и а =–(-а).

§ 2  Свойства противоположных чисел

Выделим некоторые свойства противоположных чисел. 

Число, противоположное положительному числу, отрицательно, а число, противоположное отрицательному числу, положительно. Это и понятно, так как точки координатной прямой, соответствующие противоположным числам, находятся по разные стороны от начала отсчета.

Если число a противоположно числу b, то b противоположно a – это следует из свойства симметричности точек на координатной прямой.

Обратимся к координатной прямой. Сколько точек можно отметить на координатной прямой, симметричных данной относительно начала координат? Только одну. Значит, для каждого числа есть только одно противоположное число.

Лишь одно число противоположно самому себе – это число 0, поскольку 0=-0 (поэтому -0 писать не принято).

Числа с общим признаком образуют множество (или группу), каждое множество имеет свое название.

Вспомним, числа, которые мы используем при счете, называются натуральными, они образуют множество натуральных чисел.

Каждому натуральному числу можно найти противоположное число. Натуральные числа, числа им противоположные, и число 0 называют целыми числами.

Положительными или отрицательными могут быть и дробные числа. Все целые числа и все дроби называют рациональными числами. Говорят также, что все вместе они образуют множество рациональных чисел.

Выделим еще две группы чисел. Возьмем координатную прямую. Если убрать часть прямой, на которой находятся отрицательные числа, останется луч с положительными числами и началом отсчета числом 0. Оставшиеся числа называют неотрицательными, то есть числа, которые больше или равны 0. Следовательно, неположительные числа – это все отрицательные числа и число 0, то есть числа, которые меньше или равны 0.

Сегодня мы узнали, что такое противоположные, целые, рациональные, неотрицательные, неположительные числа, научились находить число, противоположное данному.

Список использованной литературы:

  1. Математика.6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича //автор-составитель Л.А. Топилина. Мнемозина 2009 г.
  2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И. Зубарева, А.Г. Мордкович.- М.: Мнемозина, 2013 г.
  3. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.: Мнемозина, 2013 г.
  4. Справочник по математике – http://lyudmilanik.com.ua
  5. Справочник для учащихся в средней школе http://shkolo.ru

Добавить комментарий