Ответ bezdelnick опоздал лет на 40. Еще когда я в школе учился, уже отказались от внешних квадратных скобок. Только круглые!
А когда-то да, применялось. Мне отец рассказывал. А еще более внешние, третьего уровня – были фигурные {}.
Хотя так писать действительно удобнее, и меньше шансов запутаться в скобках, если пример достаточно сложный.
Сейчас квадратные скобки используются для обозначения целой части числа: [1,3] = 1, [5,9] = 5, [-3,8] = -4, [-7,2] = -8.
Подумай, почему отрицательные числа превращаются в -4 и -8, а не в -3 и -7.
Еще квадратные скобки используются для обозначения определителя матрицы. Но ты, скорее всего, еще не знаешь этой темы.
Я просто напишу, что это такое, а более подробно ты изучишь в институте.
[4 _ 5] = 4*7 – 3*5 = 28 – 15 = 13
[3 _ 7]
На подчеркивания не обращай внимания, они здесь вместо пробелов. Сайт пробелы съедает.
Также квадратными скобками обозначаются закрытые множества, в которые входят концы отрезков.
[-1, 3) – это множество действительных от -1 до 3, причем -1 входит в множество, а 3 – не входит.
И наконец, квадратной скобкой слева от нескольких уравнений обозначается их совокупность.
Это когда должно выполняться хотя бы одно из уравнений, любое.
[ 3x + 5 = x^2
[ 12x – 1 = 0
У этой совокупности 3 решения: 2 у первого уравнения и 1 у второго.
В отличие от системы, которая обозначается фигурной скобкой. В системе должны выполняться все уравнения сразу.
{ 3x + 5 = x^2
{ 12x – 1 = 0
У этой системы решений нет, потому что решения первого уравнения не подходят ко второму.
Всё!
Когда ставятся круглые скобки а когда квадратные тема(числовые промежутки)
Круглые скобки ставятся тогда, когда крайние числа промежутка не входят в решение. Например, (0; 5) промежуток от нуля до пяти, но числа 0 и 5 не входят в промежуток. Но числа, чуть большие 0 (например, 0,00001) и числа чуть меньшие 5 (например, 4,9999) входят в промежуток. Круглые скобки используются при решении строгих неравенств (когда знак < или >).
Квадратные скобки ставят, когда крайние числа входят в решение. Промежуток [-1; 8] это числа от -1 до 8 включительно. Квадратные скобки используются при решении нестрогих неравенств (≥ или ≤).
В одном промежутке могут быть и круглая и квадратная скобка. Например, х > -3, но х ≤ 5. Тогда промежуток будет (-3; 5].
Какая разница между круглыми и квадратными скобками в математике?
А можно целую статью в Википедии по этому поводу написать. Долго перечислять примеры: системы и совокупности, определители и матрицы в разных формах записи, интервалы и отрезки, скалярные произведения и векторные.. очень длинный список, который вряд ли будет исчерпывающим, если кто-то возьмёт на себя труд найти все различия.
Но различия обычно принципиальные. Иногда и не существенные, когда расставляют в выражениях разные скобки — круглые, квадратные, фигурные, чтобы избежать монотонного использования только круглых скобок. Бывает, что вовсе нет различий, когда одну и ту же матрицу записывают с круглыми скобками или с квадратными.
Метод интервалов: случай нестрогих неравенств
Сегодня мы узнаем, как использовать метод интервалов для решения нестрогих неравенств. Во многих учебниках нестрогие неравенства определяются следующим образом:
— это неравенство вида которое равносильно совокупности строгого неравенства и уравнения:
В переводе на русский язык это значит, что нестрогое неравенство это объединение классического уравнения и строгого неравенства Другими словами, теперь нас интересуют не только положительные и отрицательные области на прямой, но и точки, где функция равна нулю.
Отрезки и интервалы: в чем разница?
Прежде чем решать нестрогие неравенства, давайте вспомним, чем интервал отличается от отрезка:
- — это часть прямой, ограниченная двумя точками. Но эти точки не принадлежат интервалу. Интервал обозначается круглыми скобками: и т.д.;
- — это тоже часть прямой, ограниченная двумя точками. Однако эти точки тоже являются частью отрезка. Отрезки обозначаются квадратными скобками: и т.д.
Чтобы не путать интервалы с отрезками, для них разработаны специальные обозначения: интервал всегда обозначается выколотыми точками, а отрезок — закрашенными. Например:
На этом рисунке отмечен отрезок и интервал Обратите внимание: концы отрезка отмечены закрашенными точками, а сам отрезок обозначается квадратными скобками. С интервалом все иначе: его концы выколоты, а скобки — круглые.
Метод интервалов для нестрогих неравенств
К чему была вся эта лирика про отрезки и интервалы? Очень просто: для решения нестрогих неравенств все интервалы заменяются отрезками — и получится ответ. По существу, мы просто добавляем к ответу, полученному методом интервалов, границы этих самых интервалов. Сравните два неравенства:
Задача. Решите строгое неравенство:
( x − 5)( x + 3) > 0
Решаем методом интервалов. Приравниваем левую часть неравенства к нулю:
( x − 5)( x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;
Отмечаем полученные корни на координатной оси:
Справа стоит знак плюс. В этом легко в этом убедиться, подставив миллиард в функцию:
f ( x ) = ( x − 5)( x + 3)
Осталось выписать ответ. Поскольку нас интересуют положительные интервалы, имеем:
Задача. Решите нестрогое неравенство:
( x − 5)( x + 3) ≥ 0
Начало такое же, как и для строгих неравенств: работает метод интервалов. Приравниваем левую часть неравенства к нулю:
( x − 5)( x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;
Отмечаем полученные корни на координатной оси:
В предыдущей задаче мы уже выяснили, что справа стоит знак плюс. Напомню, в этом легко убедиться, подставив миллиард в функцию:
f ( x ) = ( x − 5)( x + 3)
Осталось записать ответ. Поскольку неравенство нестрогое, а нас интересуют положительные значения, имеем:
Итак, основное отличие строгих и нестрогих неравенств:
- В строгих неравенствах нас не интересуют концы отрезка, поэтому они отмечаются выколотыми точками. Такие точки никогда не входят в ответ, о чем говорят круглые скобки на первом ответе: x ∈ (−∞; −3) ∪ (5; +∞);
- И наоборот, в нестрогих неравенствах концы отрезка входят в ответ. На графике они отмечаются закрашенными точками, а в ответе указываются квадратными скобками: x ∈ (−∞; −3] ∪ [5; +∞).
Вот и вся разница! Просто запомните: в строгих неравенствах точки выколоты, а в нестрогих — закрашены.
Почему бесконечности всегда стоят в круглых скобках
У внимательного читателя наверняка возник вопрос: почему бесконечности отмечаются круглыми скобками даже в нестрогих неравенствах? Например, почему в последней задаче мы пишем
Что ж, это не опечатка. Бесконечность действительно обозначается круглой скобкой, даже если неравенство — нестрогое. Чтобы понять, почему так происходит, достаточно вспомнить определение бесконечности.
— это гипотетическое число, которое больше любого другого числа, участвующего в решении.
Трудность заключается в том, что нельзя работать с бесконечностью напрямую. Мы можем лишь приблизиться к ней, подставляя такие зверские числа, как 1 000 000 и даже 1 000 000 000. Но добраться до самой бесконечности все равно нельзя.
Именно поэтому бесконечность обозначают круглыми скобками. Ведь хотя бесконечность и ограничивает всю числовую прямую, сама она не принадлежит этой прямой.
Ситуация такая же, как с границами интервалов. Рассмотрим все числа из интервала:
Эта запись означает, что число не принадлежит интервалу, однако любое число, которое больше нуля и меньше единицы — принадлежит. В частности, этому интервалу принадлежат следующие числа:
Попробуем отметить эти числа на координатной прямой. Поскольку каждое следующее число вдвое меньше предыдущего, нам придется несколько раз менять масштаб. Получим вроде этого:
Что дает нам этот график? Оказывается, при достаточно крупном масштабе можно отметить любое число, сколь угодно близкое к нулю. При этом сам ноль никуда не денется — он остается недостижимой границей. Именно это и подразумевается, когда речь заходит о концах интервала.
То же самое происходит и с бесконечностью. Разница лишь в том, что масштаб надо не увеличивать, а уменьшать:
Мы можем сколь угодно долго идти к бесконечности, но так и не достигнем ее. Вот почему бесконечности обозначают круглыми скобками, подобно границам интервала.
Примеры решения неравенств
В заключение кратко разберем два нестрогих неравенства. И если в первой задаче еще есть пояснения, то вторая задача будет оформлена именно так, как и надо оформлять настоящее решение.
Задача. Решите неравенство:
( x + 8)( x − 3) ≤ 0
Как обычно, приравниваем все к нулю:
( x + 8)( x − 3) = 0;
x + 8 = 0 ⇒ x = −8;
x − 3 = 0 ⇒ x = 3.
Теперь рассматриваем функцию, которая находится в левой части неравенства:
f ( x ) = ( x + 8)( x − 3)
Подставим в эту функцию бесконечность — получим выражение вида:
Чертим координатную ось, отмечаем корни и расставляем знаки:
Поскольку мы решаем неравенство или, что то же самое, осталось записать ответ:
Задача. Решите неравенство:
x (12 − 2 x )(3 x + 9) ≥ 0
x (12 − 2 x )(3 x + 9) = 0;
x = 0;
12 − 2 x = 0 ⇒ 2 x = 12 ⇒ x = 6;
3 x + 9 = 0 ⇒ 3 x = −9 ⇒ x = −3.
x ≥ 6 ⇒ f ( x ) = x (12 − 2 x )(3 x + 9) → (+) · (−) · (+) = (−) < 0;
x ∈ (−∞ −3] ∪ [0; 6].
В данной статье рассказывается о скобках в математике, делается своеобразный их анализ, объясняется, зачем они нужны, рассматриваются виды и применения, термины и методы использования при решении или для описания материала. В заключение будем решать подобные математические примеры с подробными комментариями.
Основные виды скобок, обозначения, терминология
Для решения задач или заданий в математике (алгебре и геометрии) и дискретной математике используются три вида скобок: ( ), [ ], { }. И это, на самом деле, немало. Реже встречаются скобки такого вида ] и [, называемые обратными, или < и >, то бывают в виде уголка или треугольные, угловые скобки (первая пара обозначает, в какую сторону пишется знак меньше). Что означает такой знак в математике и в чем их разница? Их применение всегда парное (двойное), то есть имеется открывающаяся и закрывающаяся скобка в любом выражении, тогда оно имеет смысл. Скобки позволяют разграничить и определить последовательность действий.
Фигурная непарная скобка типа { встречается при решении систем уравнений, что обозначает пересечение заданных множеств, а [ скобка используется при их объединении. Далее рассмотрим их применение.
Скобки для указания порядка выполнения действий
Что означает скобка в принципе? Основное предназначение скобок – указание порядка, в котором нужно сделать действия. Тогда выражение может иметь одну или несколько пар круглых скобок. По правилу всегда выполняется первым действие в скобках, после чего умножение и деление, а позже сложение и вычитание.
Рассмотрим на примере заданное выражение. Если дан пример вида 5+3-2, тогда очевидно, что действия выполняются последовательно. Когда это же выражение необходимо записать со скобками, тогда их последовательность меняется. То есть при (5+3)-2 первое действие выполняется в скобках. В данном случае изменений не будет. Если выражение будет записано в виде 5+(3-2), тогда в начале производятся вычисления в скобках (их нужно раскрывать), после такого раскрытия пример должен решаться математиком путем сложения с числом 5. На исходное значение в этом случае оно не повлияет.
Рассмотрим пример, который покажет, как при изменении положения скобок может перевертываться результат. Если дано выражение 5+2·4, видно, что вначале выполняется умножение, после чего сложение. Когда выражение будет иметь вид (5+2)·4, то вначале выполнится действие в скобках, после чего произведется умножение. Результаты выражений будут отличаться.
Выражения могут содержать несколько пар скобок, тогда выполнения мат-х действий начинаются с первой. В выражении вида (4+5·2)−0,5:(7−2):(2+1+12) видно, что первым делом выполняются действия в скобках, после чего деления, а в конце вычитание.
Существуют примеры, где имеются вложенные сложные скобки вида 4·6-3+8:2 и 5·(1+(8-2·3+5)-2))-4. Тогда начинается выполнение действий с внутренних скобок. Далее производится продвижение к внешним.
Если имеется выражение 4·6-3+8:2, тогда очевидно, что в первую очередь выполняются действия в скобках. Значит, следует отнять 3 от 6, умножить на 4 и прибавить 8. В конце следует разделить на 2. Только так можно получить верный ответ.
На письме могут быть использованы скобки разных размеров, а не только разновидностей. Это делается для удобства и возможности различия или отличия одной пары от другой. Внешние скобки всегда большего размера, чем внутренние. То есть получаем выражение вида 5-1:2+12+3-13·2·3-4. Редко встречается применение выделенных скобок (2+2·(2+(5·4−4)))·(6:2−3·7)·(5−3) или применяют квадратные скобки, например, [3+5·(3−1)]·7 или фигурные скобки {5+[7−12:(8−5):3]+7−2}:[3+5+6:(5−2−1)].
Перед тем, как приступить к решению, важно правильно определить порядок действий и разобрать все необходимые пары скобок. Для этого следует добавлять разные виды скобок или менять их цвет. Пометка скобки другим цветом удобна для решения, но занимает много времени, поэтому на практике чаще всего применяют круглые скобки, фигурные и квадратные скобки.
Отрицательные числа в скобках
Если необходимо изобразить отрицательные числа, тогда применяют круглые скобки в выражении. Такая запись, как 5+(−3)+(−2)·(−1), 5+-23, 257-5+-673·(-2)·-3,5 предназначена для того, чтобы упорядочить отрицательные числа в выражении.
Скобки или кавычки не ставятся для отрицательного числа того, когда оно располагается в начале любого выражения или дроби. Если имеем пример вида −5·4+(−4):2, то очевидно, что символ минуса перед 5 можно не заключать в скобки, а при 3-0,4-2,2·3+7+3-1:2 число 2,2 записано вначале, значит скобки являются нужными. Со скобками может писаться выражение (−5)·4+(−4):2 или 3-0,4-2,2·3+7+3-1:2. Запись, где имеются скобки, считается более строгой.
Знак минуса может находиться не только перед числом, но и перед переменными, степенями, корнями, дробями, функциями, тогда их следует заключить в скобки. Это такие записи, как 5·(−x), 12:(−22), 5·-3+7-1+7:-x2+13, 434–x+2x-1,2·(-(3+2·4), 5·(-log32)-(-2×2+4), sin x·(-cos2x)+1
Скобки для выражений, с которыми выполняются действия
Использование круглых скобок с высокой вероятностью связано с указанием в выражении действий, где имеется возведение в степень, взятие производной, функции. Они позволяют упорядочивать выражения для удобства дальнейшего решения.
Скобки в выражениях со степенями
Выражение со степенью не всегда следует заключать в скобки, так как степень располагается надстрочно. Если имеется запись вида 2x+3, то очевидно, что х+3 – это показатель степени. Когда степень записывается в виде знака ^, тогда остальное выражение следует записывать с добавлением скобок, то есть 2^(x+3). Если записать это же выражение без скобок, то получится совсем другое выражение. При 2^x+3 на выходе получим 2x+3.
Основание степени не нуждается в скобках. Поэтому запись принимает вид 03, 5×2+5, y0,5. Если в основании имеется дробное число, тогда будут использоваться круглые скобки. Получаем выражения вида (0,75)2, 22332+1, (3·x+2·y)-3, log2x-2-12x-1.
Если выражение основания степени не взять в скобки, тогда показатель может относиться ко всему выражению, что повлечет за собой неправильное решение. Когда имеется выражение вида x2+y, а -2 – это его степень, то запись примет вид (x2+y)-2. При отсутствии скобок выражение приняло бы вид x2+y-2, что является совершенно другим выражением.
Если основанием степени является логарифм или тригонометрическая функция с целым показателем, тогда запись приобретает вид sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg, log, ln или lg. При записи выражения вида sin2x, arccos3y, ln5e и log52x видим, что скобки перед функциями не меняют значения всего выражения, то есть они равноценны. Получаем записи вида (sin x)2, (arccos y)3, (lne)5 и log5 x2. Допустимо опущение скобок.
Скобки в выражениях с корнями
Использование скобок в подкоренном выражении бессмысленно, так как выражение вида x+1 и x+1 являются равнозначными. Скобки не дадут изменений при решении.
Скобки в выражениях с тригонометрическими функциями
Если имеются отрицательные выражения у функций типа синус, косинус, тангенс, котангенс, арксинус, арккосинус, арктангенс, арккотангенс, тогда необходимо использовать круглые скобки. Это позволит правильно определить принадлежность выражения к имеющейся функции. То есть получим записи вида sin(−5), cos(x+2), arctg1x-223.
При записи sin, cos, tg, ctg, arcsin, arccos, arctg и arcctg при имеющемся числе скобки не используют. Когда в записи присутствует выражение, тогда имеет смысл их поставлять. То есть sinπ3, tgx+π2, arcsinx2, arctg33 с корнями и степенями, cosx2-1, arctg 32, ctgx+1-3 и подобные выражения.
Если в выражении содержатся кратные углы типа х, 2х, 3х и так далее, скобки опускаются. Разрешено записывать в виде sin 2x, ctg 7x, cos 3α. Во избежание двусмысленности скобки можно добавить в выражение. Тогда получаем запись вида sin(2·x):2 вместо sin2·x:2.
Скобки в выражениях с логарифмами
Чаще всего все выражения логарифмической функции заключаются в скобки для дальнейшего правильного решения. То есть получаем ln(e−1+e1), log3(x2+3·x+7), lg((x+1)·(x−2)). Опущение скобок разрешено в том случае, когда однозначно понятно, к какому выражению относится сам логарифм. Если есть дробь, корень или функция можно записывать выражения в виде log2x5, lgx-5, ln5·x-53-5.
Скобки в пределах
При имеющихся пределах стоит использовать скобки для представления выражения самого предела. То есть при суммах, произведениях, частных или разностях принято записывать выражения в скобках. Получаем, что limn→51n+n-2 и limx→0x+5·x-3x-1x+x+1:x+2×2+3. Опущение скобок предполагается, когда имеется простая дробь или очевидно, к какому выражению относится знак. Например, limx→∞1x или limx→0(1+x)1x.
Скобки и производная
При нахождении производной часто можно встретить применение круглых скобок. Если имеется сложное выражение, тогда вся запись берется в скобки. Например, (x+1)’ или sin xx-x+1.
Подынтегральные выражения в скобках
Если необходимо проинтегрировать выражение, то следует записать его в круглых скобках. Тогда пример примет вид ∫(x2+3x)dx, ∫-11(sin 2x-3)dx, ∭V(3xy+z)dxdydz.
Скобки, отделяющие аргумент функции
При наличии функции чаще всего применяются круглые скобки для их обозначения. Когда дана функция f с переменной х, тогда запись принимает вид f(x). Если имеются несколько аргументов функций, то такая функция получит вид F (x, y , z, t).
Скобки в периодических десятичных дробях
Использование периода обусловлено применением скобок при записи. Сам период десятичной дроби заключается в скобки. Если дана десятинная дробь вида 0,232323… тогда очевидно, что 2 и 3 мы заключаем в круглые скобки. Запись приобретает вид 0,(23). Это характерно для любой записи периодической дроби.
Скобки для обозначения числовых промежутков
Для того чтобы изобразить числовые промежутки применяют скобки четырех видов: ( ), ( ], [ ) и [ ]. В скобках прописываются промежутки, в каких функция существует, то есть имеет решение. Круглая скобка означает, что число не входит в область определения. Что означает квадратная скобка в математике в таком случае? Что число входит в область определения. При наличии бесконечности принято изображать круглую скобку.
То есть при изображении промежутков получим, что (0, 5), [−0,5, 12), -1012, -523, [5, 700], (−∞, −4], (−3, +∞), (−∞, +∞). Не вся литература одинаково использует скобки. Есть случаи, когда можно увидеть запись такого вида ]0, 1[, что означает (0,1) или [0, 1[, что значит [0, 1), причем смысл выражения не меняется.
Обозначения систем и совокупностей уравнений и неравенств
Системы уравнений, неравенств принято записывать при помощи фигурной скобки вида { . Это означает, что все неравенства или уравнения объединены этой скобкой. Рассмотрим на примере использования скобки. Система уравнений вида x2-1=0x2+x-2=0 или неравенства с двумя переменными x2-y>03x+2y≤3, cos x12x+π3=02×2-4≥5 -система, состоящая из двух уравнений и одного неравенства.
Использование фигурных скобок относится к изображению пересечения множеств. При решении системы с фигурной скобкой фактически приходим к пересечению заданных уравнений. Квадратная скобка служит для объединения.
Уравнения и неравенства обозначаются [ скобкой в том случае, если необходимо изобразить совокупность. Тогда получаем примеры вида (x-1)(x+7)=0x-2=12+x2-x+3 и x>2x-5y=72x+3y≥1
Можно встретить выражения, где имеются и система, и совокупность:
x≥5x<3x>4,5
Фигурная скобка для обозначения кусочной функции
Кусочная функция изображается при помощи одиночной фигурной скобки, где имеются формулы, определяющие функцию, содержащие необходимые промежутки. Посмотрим на примере формулы с содержанием промежутков типа x=x, x≥0-x, x<0, где имеется кусочная функция.
Скобки для указания координат точки
Для того, чтобы изобразить координатные точки в виде промежутков, используют круглые скобки. Они могут быть расположены как на координатной прямой, так и в прямоугольной системе координат или n-мерном пространстве.
Когда координата записывается как А(1), то означает, что точка А имеет координату со значением 1, тогда Q(x, y, z) говорит о том, что точка Q содержит координаты x, y, z.
Скобки для перечисления элементов множества
Множества задаются при помощи перечисления элементов, входящих в его область. Это выполняется при помощи фигурных скобок, где сами элементы прописываются через запятую. Запись выглядит таким образом А={1, 2,3, 4}. Видно, что множество состоит из значений, перечисленных в скобках.
Скобки и координаты векторов
При рассмотрении векторов в системе координат используется понятие координат вектора. То есть при обозначении используют координаты, которые записаны в виде перечисления в скобках.
Учебники предлагают два вида обозначения: a→0; -3 или a→0; -3. Обе записи равнозначны и имеют значение координат 0, -3. При изображении в трехмерном пространстве добавляется еще одна координата. Тогда запись выглядит так: AB→0, -3, 23 или AB→0, -3, 23.
Обозначение координат может быть как со значком вектора на самом векторе, так и без. Но запись координат производится через запятую в виде перечисления. Запись принимает вид a=(2, 4, −2, 6, 12), где вектор обозначается в пятимерном пространстве. Реже можно увидеть обозначение двумерного пространства в виде a=3-7
Скобки для указания элементов матриц
Частое применение скобок предусмотрено в матрицах. Все элементы фиксируются при помощи круглых скобок вида A=423-30012.
Реже можно увидеть использование квадратных скобок в математике в таких примерах.
Тогда матрица приобретает вид A=423-30012.