Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.
Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть).
Например, полиэтилен, получаемый при полимеризации этилена CH2=CH2:
…-CH2-CH2-CH2-CH2-CH2-CH2-CH2-… или (-CH2—CH2-)n
Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный). Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц.
Соединения, из которых образуются полимеры, называются мономерами.
Например, пропилен (пропен) СН2=СH–CH3 является мономером полипропилена
Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.
Мономеры – низкомолекулярные вещества, из которых образуются полимеры.
Степень полимеризации – число, показывающее количество элементарных звеньев в молекуле полимера.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n.
Классификация полимеров
Полимеры, макромолекулы которых построены строго определенным способом, называют регулярными.
Полимер называется стереорегулярным, если заместители R в основной цепи макромолекул (–CH2–CHR–)n расположены упорядоченно.
Стереорегулярные полимеры обладают гораздо лучшими свойствами – пластичностью, прочностью и теплостойкостью; они способны кристаллизоваться, в отличие от нерегулярных.
Классификация по структуре
По структуре полимеры делятся на: линейные, разветвленные и пространственные.
Линейные | Разветвленные | Пространственные |
Состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру.
Целлюлоза, полиэтилен низкого давления, капрон |
Макромолекулы разветвленных имеют боковые ответвления от цепи, называемой главной или основной
Крахмал |
Химические связи имеются и между цепями, образуя пространственную структуру Резина, фенолформальдегидные смолы |
Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).
Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).
Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).
Классификация по происхождению
По способу получения полимеры делятся на: природные, синтетические и искусственные.
Природные волокна | Синтетические волокна | Искусственные |
Непосредственно существуют в природе
|
Получают полностью химическим путем в реакциях полимеризации и поликонденсации
|
Получают модификацией натуральных полимеров
|
Природные полимеры непосредственно существуют в природе (крахмал, целлюлоза и др.).
Синтетические полимеры получают полностью химическим путем в реакциях полимеризации и поликонденсации (полиэтилен, полихлорвинил, фенол-формальдегидные смолы, метилметакрилат и т.д.). Не имеют аналогов в природе.
Искусственные – получают модификацией натуральных полимеров (вискоза –модифицированная целлюлоза, резина –модификация натурального каучука).
Классификация по химическому характеру
По химическому характеру и составу полимеры и химические волокна бывают: полиэфирные, полиамидные, элементоорганические (например, кремнийорганические полимеры).
Полиэфирные полимеры | Полиамидные полимеры | Элементоорганические |
Содержат группу -СОО-
Лавсан (полиэтилентерефталат) |
Содержат группу -СО-NH2—
Найлон, капрон |
Содержат атомы других хим. элементов (кремний и др.).
Кремнийорганические полимеры |
Полиэфирные полимеры — содержат группу сложных эфиров -СОО-.
Полиамидные полимеры — содержат пептидную связь -СО-NH2-.
Элементоорганические полимеры — содержат атомы других химических элементов (помимо С, Н, О, N).
Классификация по способу получения
Полимеры получают либо реакциями полимеризации, либо поликонденсацией.
Полимеризация | Поликонденсация |
Это присоединение одних молекул к другим за счет разрыва кратных связей. Побочные продукты, как правило, не образуются.
Полиэтилен, полипропилен и др. |
Образование полимера происходит за счет реакции замещения. При этом образуется низкомолекулярный побочный продукт.
Фенолформальдегидная смола, капрон |
Полимеризация — процесс образования высокомолекулярного вещества(полимера) путём многократного присоединения молекул мономера к активным центрам в растущей молекуле полимера.
Например, образование полиэтилена происходит по механизму полимеризации:
Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов (обычно это вода).
Например, образование капрона протекает по механизму поликонденсации:
Свойства полимеров
По свойствам полимеры можно разделить на: термореактивные, термопластичные и эластомеры.
Термореактивные | Термопластичные | Эластомеры |
Неплавкие и неэластичные материалы.
Фенолформальдегидные смолы, полиуретан |
Меняют форму при нагревании и сохраняют её.
Полиэтилен, полистирол, поливинилхлорид |
Эластичные вещества при разных температурах.
Натуральный каучук, полихлоропрен |
Термореактивные полимеры — пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.
Например, фенолформальдегидные смолы, полиуретан.
Термопластичные полимеры — меняют форму в нагретом состоянии и сохраняют её после охлаждения.
Например, полиэтилен, полистирол, полихлорвинил и т.д.
Эластомеры – обладают высокоэластичными свойствами в широком интервале температур.
Например, натуральный каучук.
Полимеризация и поликонденсация
Полимеризация
Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n
- В основе полимеризации лежит реакция присоединения.
- Полимеризация – цепная реакция, включает стадии инициирования, роста и обрыва цепи.
- Элементный состав (молекулярные формулы) мономера и полимера одинаков.
Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения.
Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией.
Например, схема сополимеризации этилена с пропиленом:
Важнейшие синтетические полимеры
Изображение с портала orgchem.ru
Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:
Полимер | Мономер | Характеристики полимера | Применение полимера |
Полиэтилен
(–СН2–СН2–)n |
Этилен
СН2=СН2 |
Синтетический, линейный, термопластичный, химически стойкий | Упаковка, тара |
Полипропилен
|
Пропилен
СН2=СН–СН3 |
Синтетический, линейный, термопластичный, химически стойкий | Трубы, упаковка, ткань (нетканый материал) |
Поливинилхлорид
|
Винилхлорид
СН2=СН–Сl |
Синтетический линейный полимер, термопластичный | Натяжные потолки, окна, пленка, трубы, полы, изолента и т.д |
Полистирол
|
Стирол
|
Синтетический линейный полимер, термопластичный | Упаковка, посуда, потолочные панели |
Полиметилметакрилат
Метиловый эфир метакриловой кислоты |
Синтетический линейный полимер, термопластичный | Очки, корпуса фар и светильников, душевые кабины, мебель и т.д | |
Тефлон (политетрафторэтилен)
|
Тетрафторэтилен
|
Синтетический линейный полимер.
Термопластичный (t = 260-3200C) Обладает очень высокой химической стойкостью |
Посуда, пластины утюгов, ленты и скотч, упаковка, изоляция |
Искусственный каучук
Мономер: бутадиен-1,3 (дивинил)
|
Синтетический, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Натуральный каучук
Мономер: 2-метилбутадиен-1,3
|
Природный, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Хлоропреновый каучук
Мономер: 2-хлорбутадиен-1,3
|
Синтетический, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Бутадиен-стирольный каучук
Мономеры: бутадиен-1,3 и стирол |
Синтетический, эластомер | Резина, изоляция, различные материалы, ракетное топливо | |
Полиакрилонитрил
|
Акрилонитрил
|
Синтетический, линейный | Волокна, пластмассы |
Поликонденсация
Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов, обычно это вода.
- В основе поликонденсации лежит реакция замещения.
- Поликонденсация – процесс ступенчатый, т.к. образование макромолекул происходит в результате последовательного взаимодействия мономеров, димеров или n-меров как между собой, так и друг с другом.
- Помимо высокомолекулярного соединения, в реакции поликонденсации образуется второе, низкомолекулярное вещество (обычно это вода).
Важнейшие синтетические полимеры, получаемые реакцией поликонденсации, и области их применения:
Полимер и мономер | Характеристики полимера | Применение полимера |
Капрон
Мономер: 6-аминокапроновая кислота (лактам) |
Синтетический, линейный, термопластичный, очень эластичный | Полиамидные волокна (нитки, ткани, парашюты, втулки и т.д.) |
Найлон
Мономер: 1,6-диаминогексан и адипиновая кислота (1,6-гександиовая) |
Синтетический, полиамидный, линейный, термопластичный | Изготовление втулок, вкладышей, ниток, одежды, гитарных струн (полиамидное волокно) |
Лавсан (полиэтилентерефталат)
Мономер: Этиленгликоль, терефталевая кислота |
Синтетический линейный полимер, термопластичный, полиэфирный | Натяжные потолки, окна, пленка, трубы, полы, изолента и т.д |
Фенолформальдегидная смола
Мономеры: фенол и формальдегид |
Синтетический, пространственный (сетчатый) полимер | Производство ДСП, лаков, клея (БФ-6 применяется в медицине), часто используется с наполнителями |
Крахмал
Мономер: α-глюкоза |
Природный, полиэфирный, разветвленный | Пищевая, текстильная, бумажная промышленность, фармацевтика и др. |
Целлюлоза
Мономер: β-глюкоза |
Природный, полиэфирный, линейный | Производство бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха, взрывчатки, твердого ракетного топлива, получение гидролизного спирта и др. |
ДНК
Мономер: Дезоксирибоза, ортофосфорная кислота, азотистые основания |
Природный, полиэфирный, линейный | Функционирование живых организмов |
РНК
Мономер: Рибоза, ортофосфорная кислота, азотистые основания |
Природный, полиэфирный, линейный | Функционирование живых организмов |
Полимерами
являются
высокомолекулярные соединения, состоящие
из одинаковых или различных звеньев,
соединенных химическими связями в
длинные цепи.
Звеньями
цепи могут быть как отдельные атомы,
так и группы атомов
-
полимерная
сера
-S-S-S-S- -
полиэтилен
(-СН2-СН2-СН2-).
Степень
полимеризации (Р)–
число
повторяющихся звеньев в цепи. Она
определяет молекулярную массу полимера
(М)
М=
т
•
Р,
где т
–
молекулярная масса звена.
Структурное звено
макромолекулы.
Группа атомов,
многократно повторяющаяся в цепной
макромолекуле, называется ее структурным
звеном.
Поливинилхлорид
В формуле макромолекулы
это звeно обычно выделяют скобками:
(-CH2-CHCl-)n
Строение структурного
звена соответствует строению исходного
мономера, поэтому его называют также
мономерным
звеном.
Названия
полимеров и олигомеров складываются
из названия мономера и приставки «поли»
или «олиго» (например,
полиэтилен, полистирол, олигостирол,
олигобутадиен, сополимер этилена с
пропиленом).
Химические
формулы
пишут без концевых групп
-СН2-СН2-СН2–
или (-СН2-СН2-)n.
Для
некоторых полимеров используются
торговые названия (например,
найлон или поли-8-капролактам, фенопласт
или фенолформальдегидная смола, тефлон
или политетрафторэтилен.
-
Классификация полимеров
В настоящее время
известно огромное количество полимеров.
Их можно классифицировать: в
зависимости от молекулярной массы
полимера; по числу мономерных звеньев
в цепи полимера; по структурной форме
полимера; по происхождению полимеров:
по строению основной цепи полимера.
В
зависимости от молекулярной массы
полимера
различают
высокомолекулярные
соединения,
олигомеры
и
низкомолекулярные
соединения.
-
При
М>5000–10000 – высокомолекулярное
соединение, -
М=500–5000
– олигомер, -
М<500
– низкомолекулярное соединение.
По
числу мономерных звеньев в цепи
полимеры классифицируют на гомополимеры
и
сополимеры.
-
Гомополимеры
состоят
из одинаковых звеньев (например,
полиэтилен – (-СН2-СН2-)n
) -
Сополимеры
состоят
из двух или более звеньев (например,
бутадиен-стирольный сополимер
n
В свою очередь,
сополимеры в зависимости от характера
расположения звеньев подразделяют на:
а) статистические
– мономерные звенья в которых расположены
неупорядоченно по цепи;
б) чередующиеся
(альтернирующие) со строгим чередованием
звеньев в цепи;
в) блочные
(блок-сополимеры) – линейные макромолекулы
которых состоят из чередующихся
протяженных последовательностей звеньев
(блоков), различающихся по составу или
строению;
г) привитые
сополимеры,
разветвленные макромолекулы которых
состоят из нескольких химически связанных
последовательностей мономерных звеньев
– основной цепи и боковых ответвлений,
различающихся по составу или строению.
Тип полимера |
Схема строения макромолекулы |
Сополимер (бинарный) |
|
а) статистический |
-А-В-В-А-В-А-А-В-А-В-В- |
б) чередующийся |
-А-В-А-В-А-В-А-В-А-В-А-В- |
в) блочный |
-А-А-А-А-А-В-В-В-В-В- -(А)-n |
г) привитой |
|
По
структурной форме
полимеры делят
на
линейные,
разветвленные и
сшитые.
Линейные
– основная цепь макромолекул которых,
состоит из повторяющихся звеньев,
соединённых друг с другом в линейную
конструкцию.
Разветвленные
полимеры состоят из макромолекул,
основная цепь которых, в отличие от
линейных, содержит произвольно
расположенные боковые ответвления
длиной от нескольких атомов до размеров
основной цепи. Предельный случай
разветвлённых полимеров – звездообразные,
макромолекулы которых представляют
собой совокупность цепей, выходящих из
одного центра. К разветвлённым относятся
также гребнеобразные
полимеры,
содержащие короткие ответвления в
каждом звене, например полигексадецилакрилат:
Сшитые или сетчатые
полимеры состоят из макромолекул,
образующих пространственную сетку,
охватывающую весь образец; в сшитых
полимерах макромолекулы во многом
утрачивают свою индивидуальность. К
сшитым иногда относят, так называемые,
лестничные
полимеры, две параллельные цепи которых
соединены поперечными связями в каждом
звене.
Схематическое
изображение макромолекул различной
топологии:
А – линейный полимер;
Б, В, Г – разветвленные; В – звездообразный;
Г – гребнеобразный; Д, Е – сшитые; Е –
лестничный.
По
происхождению полимеры
делят
на природные,
искусственные
и синтетические.
-
Примерами
природных полимеров являются белки,
целлюлоза, нуклеиновые кислоты,
натуральный каучук, алмаз, графит. -
Искусственными
являются модифицированные природные
полимеры, например,
нитрат целлюлозы и ацетат целлюлозы. -
Синтетическими
полимерами, называются полимеры,
полученными в результате синтеза в
реакторе,
например,
полиэтилен, полистирол, полипропилен.
Природные полимеры
Белки (природные |
|
|
Полиуглеводы поли-1,4-β, |
|
|
|
Нуклеиновой РНК тимин, ДНК |
|
Искусственными
полимерами
являются модифицированные природные
полимеры, например,
нитрат целлюлозы и ацетат целлюлозы.
Тринитроцеллюлоза |
|
Среди искусственных
полимеров наибольшее значение имеют
искусственные волокна: вискозные,
медноаммиачные
и ацетатные.
Их получают из природных полимеров
(древесная или хлопковая целлюлоза)
путем химической переработки.
Синтетические
полимеры
получают из органических низкомолекулярных
соединений (мономеров) по реакции
полимеризации или поликонденсации.
Источником мономеров являются главным
образом углеводороды, производимые из
нефти, природного газа и каменного угля.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Для характеристики высокомолекулярных соединений необходимо рассмотреть следующие основные структурные понятия.
Мономер
Мономеры — низкомолекулярные вещества, из которых образуются молекулы полимеров.
Молекулы полимеров являются макромолекулами.
Например, пропилен СН2=СH–CH3 является мономером полипропилена:
а такие соединения, как α-аминокислоты, служат мономерами при синтезе природных полимеров – белков (полипептидов):
Полимер, макромолекула
Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть).
Например, полиэтилен, получаемый при полимеризации этилена CH2=CH2:
… -CH2-CH2-CH2-CH2-CH2-CH2-CH2— … или (-CH2-CH2-)n
Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный).
Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц массы.
Структурное звено полимера (мономерное звено)
Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.
… -CH2-CHCl- CH2-CHCl-CH2-CHCl-CH2-CHCl-CH2-CHCl- …
поливинилхлорид
В формуле макромолекулы это звeно обычно выделяют скобками:
(-CH2-CHCl-)n
По строению структурного звeна макромолекулы можно сказать о том, какой мономер использован в синтезе данного полимера и, наоборот, зная формулу мономера, нетрудно представить строение структурного звeна.
Строение структурного звена соответствует строению исходного мономера, поэтому его называют также мономерным звеном.
Степень полимеризации
Степень полимеризации (n)— число, которое показывает, сколько молекул мономеров соединяются в макромолекулу полимера.
В формуле макромолекулы степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено:
n >> 1
Для синтетических полимеров, как правило, n ≈ 102-104; а самые длинные из известных природных макромолекул – ДНК (полинуклеотидов) – имеют степень полимеризации n ≈ 109-1010.
Молекулярная масса макромолекулы и полимера
Молекулярная масса макромолекулы связана со степенью полимеризации соотношением:
М(макромолекулы) = M (звена) × n,
где n – степень полимеризации,
M – относительная молекулярная масса
(подстрочный индекс r в обозначении относительной молекулярной массы Мr в химии полимеров обычно не используется).
Для полимера, состоящего из множества макромолекул, понятие молекулярная масса и степень полимеризации имеют несколько иной смысл. Дело в том, что когда в ходе реакции образуется полимер, то в каждую макромолекулу входит не строго постоянное число молекул мономера. Это зависит от того, в какой момент прекратится рост полимерной цепи.
Поэтому в одних макромолекулах мономерных звеньев больше, а в других — меньше. То есть, образуются макромолекулы с разной степенью полимеризации и, соответственно, с разной молекулярной массой (так называемые полимергомологи).
Следовательно, молекулярная масса и степень полимеризации полимера являются средними величинами:
Mср(полимера) = M (звена) × nср
Геометрическая форма макромолекул
Геометрическая форма макромолекулы — пространственная структура макромолекулы в целом.
В зависимости от строения углеродной цепи, различают линейные (неразветвленные), разветвленные и пространственные (сетчатые, сшитые) полимеры.
Линейная форма (структурные звенья соединены в длинные цепи последовательно одно за другим) — натуральный каучук, целлюлоза, амилоза (составная часть крахмала), поливиниловый спирт, полистирол, полиэтилен низкого давления, капрон, найлон и др. полимеры:
Разветвленная форма (макромолекулы разветвленных полимеров – это длинные цепи с короткими боковыми ответвлениями) — полиэтилен высокого давления, амилопектин (компонент крахмала):
Пространственная форма (сетчатая, сшитая), при которой длинные линейные молекулы соединены между собой поперечными химическими связями – шерсть, вулканизованный каучук (резина), фенолформальдегидные смолы:
В сетчатых полимерах различные углеродные цепи «сшиты» между собой, и вещество представляет собой одну гигантскую молекулу.
Геометрическая форма макромолекул в значительной степени влияет на свойства полимеров.
Высокомолекулярные соединения (ВМС)
Уравнения полимеризации
06-Июл-2014 | Нет комментариев | Лолита Окольнова
Что же такое полимеризация?
Рассмотрим основные
уравнения полимеризации
и связанные с ними процессы, ведь, оказывается, почти весь наш мир — полимерный.
Автор статьи — Саид Лутфуллин
Полимеризация – это реакция образования высокомолекулярного соединения из низкомолекулярного. Высокомолекулярное соединение (полимер) – это вещество с большой молекулярной массой, состоящее из многократно повторяющихся сегментов (структурных звеньев), связанных между собой.
Где мы в повседневной жизни можем встретить полимеры?
Везде. Куда бы вы ни поглядели. Полимеры глубоко связались с нашей жизнью, собственно и образовали ее.
Ткани (как синтетические, так и натуральные), пластмассы, резина образованны полимерами. Кроме того, мы сами – тоже состоим из полимеров.
Вспомним определение жизни по Энгельсу:
«Жизнь есть способ существования белковых тел…».
Белки – это природные биополимеры, так же к биополимерам относятся нуклеиновые кислоты и полисахариды.
Какие вещества могут вступать в реакцию полимеризации?
Ответ простой: вещества, содержащие кратные (двойные, тройные) связи.
Давайте рассмотрим первое уравнение полимеризации — схему реакции образования полиэтилена (из него делают пакеты, бутылки, упаковочную пленку и многое другое):
Как мы видим, π-связь рвется, и атомы углерода одной молекулы связываются с атомами углерода соседних молекул. Так образуется длинная цепь полимера. Так как длина полимера может достигать нескольких сотен структурных звеньев, точное число которых, предсказать невозможно, так как в разных молекулах она различная и чтобы не записывать целиком эту цепь, реакцию полимеризации записывают следующим образом:
Где, n – число структурных звеньев в молекуле.
Исходное низкомолекулярное вещество, вступающее в реакцию полимеризации, называется мономер.
Не следует путать структурное звено с мономером.
Мономер и структурное звено имеют одинаковый качественный и количественный состав, но разное химическое строение (отличаются друг от друга количеством кратных связей).
Уравнения полимеризации:
Реакции получения наиболее часто встречающихся полимеров:
- Образование изопренового каучука (природный каучук тоже изопреновый, но строго цис- строения) из 2-метилбутадиена-1,3 (изопрена):
- Образование хлорпренового каучука (синтетический каучук) из 2-хлорбутадиена-1,3 (хлорпрена):
- Образование полистирола (пластмасса) из винилбензола (стирола):
- Образование полипропилена из пропена (пропилена):
Каучуки – это группа полимеров, объединенные общими качествами (эластичность, электроизоляция и т.д.), сырье для производства резины. Раньше для этого использовали натуральный каучук из сока так называемых каучуконосных растений. Позже стали изготавливать искусственные каучуки.
В СССР в 1926 году был объявлен конкурс на лучший способ получения синтетического каучука. Конкурс выиграл Лебедев С.В.
Его метод заключался в следующем:
из этилового спирта производили бутадиен-1,3. Этиловый спирт получали брожением из растительного сырья, которого в СССР было предостаточно, это делало производство дешевле. Бутадиен-1,3 после полимеризации образовывал синтетический каучук:
Чтобы превратить каучук в резину, его подвергают вулканизации.
Вулканизация – это процесс сшивания нитей полимера-каучука в единую сеть, вследствие чего улучшается эластичность, прочность, устойчивость к органическим растворителям.
На схеме ниже показан процесс вулканизации бутадиеновго каучука, путем образования между молекулами полимера дисульфидных мостиков:
Следует отличать реакции полимеризации от реакций поликонденсации.
Реакция поликонденсации – это реакця образования высокомолекулярного соединения из низкомолекулярного, при которой выделяется побочный продукт (вода, аммиак, слороводород и др.)
Способность вещества вступать в реакцию поликонденсации обучлавливается у него наличием покрайней мере двух разных функциональных групп.
Рассмотрим на примере аминокислот:
Две аминокислоты соединились друг с другом, образовав пептидную связь, с выделением побочного продукта – воды. Если процесс продолжить – присоединять к этой цепи остатки аминокислот – по получим белок. Способность аминокислот вступать в реакцию поликонденсации обуславливает наличие в их строение двух функциональных групп: карбоксильной и аминогруппы. В результате реакции поликонденсации помимо полипептидов (белков), образуются нуклеиновые кислоты и полисахариды.
В погоне за качеством продукции, человек научился создавать такие стойкие полимеры, что они не разлагаются несколько тысяч лет. А иногда при разложении выделяют в окружающую среду опасные вещества. Это большая экологическая проблема. Сейчас открываются пункты переработки пластмасс.
Если мы все вместе будет сдавать туда пластмассовые отходы, то внесем огромный вклад в сохранение нашего общего дома – планеты Земля и ее природы.
Обсуждение: “Уравнения полимеризации”
(Правила комментирования)
Молекулярная масса макромолекулы и полимера
Полимер (высокомолекулярное вещество) состоит из множества длиноцепных молекул (макромолекул), образование которых формально можно представить в виде схемы:
nA (-A-)n,
где А – мономер; n – число молекул исходного мономера и число мономерных звеньев в образовавшейся макромолекуле (степень полимеризации).
Молекулярная масса макромолекулы связана со степенью полимеризации соотношением:
М(макромолекулы) = M(звена) • n,
- где n – степень полимеризации,
M – относительная молекулярная масса
(подстрочный индекс r в обозначении относительной молекулярной массы Мr в химии полимеров обычно не используется).
Для полимера, состоящего из множества макромолекул, понятие молекулярная масса и степень полимеризации имеют несколько иной смысл. Дело в том, что когда в ходе реакции образуется полимер, то в каждую макромолекулу входит не строго постоянное число молекул мономера. Это зависит от того, в какой момент прекратится рост полимерной цепи.
Поэтому в одних макромолекулах мономерных звеньев больше, а в других – меньше. То есть, образуются макромолекулы с разной степенью полимеризации и, соответственно, с разной молекулярной массой (так называемые полимергомологи).
Следовательно, молекулярная масса и степень полимеризации полимера являются средними величинами:
Mср(полимера) = M(звена) • nср
Большинство экспериментальных методов определения молекулярной массы полимеров дает среднечисловое значение М. Смысл этого понятия можно пояснить на следующем примере.
- Допустим, N молекул полиэтилена (-CH2-CH2-)n имеют молекулярную массу 28000, а 3N молекул – 140000. Какова молекулярная масса этого полимера?
Находим среднее (числовое) значение:
Среднечисловая степень полимеризации nср в этом случае равна:
Кроме среднечисловой молекулярной массы полимера в ряде случаев используется среднемассовое ее значение, когда усреднение ведется не по числу макромолекул, а по их массе.