Как найти что стороны пропорциональны

как понять что стороны пропорциональны? нужно делать отношение меньшая к большей, или наоборот? Помогите пожалуйста разо



Ученик

(120),
на голосовании



11 лет назад

Дополнен 11 лет назад

Пожалуйста!

Дополнен 11 лет назад

Вопрос не удалю, ответ выберу

Голосование за лучший ответ

Н@т@шик

Профи

(966)


11 лет назад

Отношением отрезков AB и CD называется отношение их длин, т. е. AB /CD.
Говорят, что отрезки AB и CD пропорциональны отрезкам A1B1 и C1D1, если AB/A1B1 = CD/C1D1. Например, отрезки AB и CD, длины которых равны 2см и 1см, пропорциональны отрезкам A1B1 и C1D1, длины которых равны 3см и 1,5 см. В самом деле, AB/A1B1 = CD/C1D1 = 2/3.
Понятие пропорциональности вводится и для большего числа отрезков. Так, например, три отрезка AB, CD и EF пропорциональны трём отрезкам A1B1, C1D1 и E1F1, если справедливо равенство AB/A1B1 = CD/C1D1 = EF/E1F1

Что значит что стороны пропорциональны?

Пропорциональные отрезки — отрезки, для длин которых выполняется пропорция. Понятие пропорциональных отрезков используется в теореме Фалеса, а также в аффинной геометрии.

Что называют пропорциональными отрезками?

Пропорциональные отрезкиотрезки, для длин которых выполняется пропорция.

Что такое сходственные стороны?

Сходственные стороны подобных треугольников — стороны, лежащие напротив равных углов.

Что такое коэффициент подобия?

Определение Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника. Коэффициентом подобия называют число k, равное отношению сходственных сторон подобных треугольников.

Чему равно отношение сходственных сторон?

Число К= АВ: А1В1 или К=ВС:В1С1 или К= СА :С1А1. Сходственные стороны подобных треугольников — стороны, лежащие напротив равных углов.

Что такое Подобные фигуры?

ПОДОБНЫЕ ФИГУРЫ — две фигуры, соответственные в преобразовании подобия. Если фигуру можно отобразить на фигуру так, что для любых двух точек и первой фигуры отношение расстояния между их образами к расстоянию между самими точками и равно одному и тому же числу , то фигура подобна фигуре с коэффициентом подобия .

Какие бывают подобные фигуры?

Подобные фигуры – это фигуры, которые переводятся друг в друга преобразованием подобия (гомотетии). Другими словами, подобные фигуры, это фигуры для которых существует взаимно-однозначное соответствие, при котором расстояние между любыми парами их соответствующих точек изменяется в одно и то же число раз.

Какая фигура подобная треугольнику?

Фигура, подобная треугольнику, также является треугольником. к главе «§11. Подобие фигур».

Какие фигуры называются подобными?

Ответ, проверенный экспертом 1. Подобные фигуры – это фигуры имеющие одинаковую геометрическую форму. Примером подобных фигур могут быть мячи: футбольный, гандбольный, баскотбольный, теннисный, волейбольный, ватерпольный, гимнастический и т.

Какие фигуры называются центрально подобными?

Число к называется коэффициентом подобия фигур F и F1. … В результате такого сопоставления получается фигура F1, подобная фигуре F. В этом случае фигуры F и F1 называются центральноподобными, а само описанное сопоставление называется центральным подобием или гомотетией.

Какие два треугольника называются подобными?

Определение Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого. Теорема. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Чему равно отношение периметров двух подобных треугольников?

Отношение периметров двух подобных треугольников равно коэффициенту подобия треугольников P ABC P DEF = k .

Что значит треугольники равны?

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. … Треугольники полностью совместятся, следовательно, по определению они равны.

Что если треугольники подобны?

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. … Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.

Почему могут быть подобны треугольники?

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Сколько признаков подобия треугольников?

Два прямоугольных треугольника подобны: 1) если они содержат по равному острому углу; 2) если катеты одного пропорциональны катетам другого; 3) если гипотенуза и катет одного пропорциональны гипотенузе и катету другого.

Как доказать второй признак подобия треугольников?

Второй признак подобия треугольников, доказательство Если две стороны одного треугольника пропорциональны двум другим сторонам другого треугольника, а углы, заключённые между этими сторонами, равны, то такие треугольники подобны.

Как доказать что стороны пропорциональны?

Если эти треугольники подобны, то их стороны будут пропорциональны друг другу, т. е. будут соблюдаться равенства AB = kDE, BC = kEF, AB = kDF. Если в одном треугольнике два угла соответственно равны двум углам в другом треугольнике, то равными будут и третьи углы этих треугольников, т.

Что такое второй признак равенства треугольников?

Второй признак равенства треугольников. … Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Третий признак равенства треугольников.

Как обозначается Подобие треугольников?

Коэффициент подобия треугольников и знак подобия » представляет собой типографский знак «тильда», который изображается в виде волнистой черты. Этот знак может быть как надстрочным, так и междустрочным.

Что такое подобие в математике?

Подобие является аффинным преобразованием плоскости. Точки, не лежащие на прямой, при любом подобии переходят в точки, не лежащие на одной прямой. Подобие преобразует прямую в прямую, отрезок в отрезок, луч в луч, угол в угол, окружность в окружность. Подобие сохраняет величины углов между кривыми.

Что знаки в математике?

Таблица математических символов

  • Плюс: +
  • Минус: −
  • Знаки умножения: ×, · (в программировании также *)
  • Знаки деления: :, ∶, /, ∕, ÷
  • Знак равенства, приближённого равенства, неравенства: =, ≈, ≠
  • Знак пропорциональности: ∝
  • Скобки (для определения порядка операций и др.): ( ), [ ], { }
  • Среднее арифметическое〈 〉, ̅

Что означает знак Тильда в геометрии?

Тильда используется и в сочетании с другими знаками: тильда над знаком равенства в геометрии обозначает конгруэнтность; две тильды (≈) — приближённое равенство; тильда под знаками «больше» и «меньше» означает, что одна функция растёт асимптотически не меньше (не больше) другой и т. п.

Что означает знак волны?

Волна – символ вечного движения Волна символизирует непрерывное изменение материального мира: волны смывают, очищают, наносят песок, меняют форму скал и ландшафта, шлифуют камни и все, что попадает к ним.

Что значит с в геометрии?

Ответ, проверенный экспертом Ответ: Буквой S в геометрии обозначается площадь геометрических фигур.

Пропорциональные отрезки


Пропорциональные отрезки

4.5

Средняя оценка: 4.5

Всего получено оценок: 499.

4.5

Средняя оценка: 4.5

Всего получено оценок: 499.

Пропорциональные отрезки очень важны для определения подобия фигур. К тому же, правильно нареченные пропорционально рисунки помогают в правильном решении математических задач. Именно поэтому так важно разбираться в данной тематике.

Опыт работы учителем математики – более 33 лет.

Определение

Пропорциональными отрезками называются отрезки, у которых имеется постоянный коэффициент пропорциональности. Под коэффициентом пропорциональности понимается отношение длин отрезков.

Пропорциональные отрезки

Рис. 1. Пропорциональные отрезки.

Согласно определению пропорциональных отрезков, два отрезка всегда пропорциональны между собой, поскольку их длины не меняются со временем. Значит, не меняется и коэффициент пропорциональности.

Несмотря на это, чаще всего под пропорциональными отрезками понимают отрезки с коэффициентом кратным 0,5. Например, отрезки с коэффициентом 2,5, 1,5, 2 и тому подобные.

Пропорциональными будут являться и отрезки, составляющие подобные фигуры. Это действует в обе стороны. Если фигуры подобны, то их стороны пропорциональны, если все стороны пропорциональны, то фигуры подобны.

Подобные фигуры

Нужно понимать, что подобными фигурами могут быть не только треугольники, но вообще любые фигуры в геометрии, если все углы этих фигур равны, а длины сторон пропорциональны.

Подобные фигуры

Рис. 2. Подобные фигуры.

Но при этом признаки подобия существуют только для треугольников. Их всего 3:

  • Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
  • Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то такие треугольники подобны.
  • Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Признаки подобия треугольников

Рис. 3. Признаки подобия треугольников.

Пропорциональными могут быть только отрезки, как объекты имеющие длину. Прямая или луч бесконечны, а потому не могут быть подобными.

Пример

Решим небольшую задачу на пропорциональность отрезков. Имеется 3 пропорциональных отрезка. Каждый из которых больше предыдущего. Первый отрезок равен 5, третий 20. Необходимо найти длину второго отрезка.

Отрезки пропорциональны, значит отношение больших к меньшим будет постоянным. Обозначим неизвестны отрезок за х и решим уравнение.

$${хover{5}}={20over{x}}$$

Перенесем выражение из правой части в левую. Приведем получившееся выражение под один знаменатель и решим дробно-рациональное уравнение.

$${хover{5}}-{20over{x}}=0$$

$${{х^2-100}over{5x}}=0$$

$$х^2-100=0$$

$х^2=100$ – х может являться положительным или отрицательным числом , но отрезок не может иметь отрицательную длину, значит х=10.

Задача решена

Заключение

Что мы узнали?

Мы узнали, что такое пропорциональные отрезки. Выделили области, где могут быть применены навыки обращения с пропорциональными длинами и привели пример на заданную тему.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Эдуард Ройтбурд

    5/5

Оценка статьи

4.5

Средняя оценка: 4.5

Всего получено оценок: 499.


А какая ваша оценка?

План урока:

Пропорциональные отрезки

Определение подобных треугольников

Первый признак подобия треугольников

Второй и третий признаки подобия треугольников

Отношение площадей подобных треугольников

Пропорциональные отрезки

Если известна длина двух отрезков, то можно узнать, во сколько раз один из них больше другого. Например, если некоторый отрезок NM = 24 см, а другой отрезок KP = 4 см, то можно утверждать, что NM в 6 раз длиннее, так как

1 podobnye treugolniki

Величину NM/KP именуют отношением отрезков NM и KP. Надо заметить, что в ряде случаев отношение отрезков можно найти, не зная их длины. Пусть в ∆МКР проведена медиана МН. Очевидно, что отрезок КР будет вдвое длиннее КН, ведь Н – середина КР:

2 podobnye treugolniki

Другой пример – это отношение между диагональю квадрата и его стороной.

3 podobnye treugolniki

Используя теорему Пифагора, несложно показать, что в любом квадрате АВСD

4 podobnye treugolniki

Наконец, в прямоугольном треуг-ке, один из углов которого равен 30°, гипотенуза всегда вдвое длиннее меньшего из катетов:

5 podobnye treugolniki

Если отношение отрезка AB к А1Вравно отношению отрезка СD к С1D1, то говорят, что отрезки AB и CD пропорциональны отрезкам А1В1 и С1D1. Например, пусть

6 podobnye treugolniki

Получается, AВ и CD пропорциональны А1В1 и С1D1. Важно отметить, что пропорциональны могут быть также сразу три и более отрезка.

Определение подобных треугольников

В жизни нередко можно наблюдать объекты, у которых совпадает форма, но отличаются размеры. В качестве примера можно привести мяч для настольного тенниса и баскетбольный мяч. Оба этих предмета имеют форму шара, на баскетбольный мяч значительно больше. Другой пример – настоящий танк и игрушка, изображающая его. Часто подобны друг другу матрешки, которые вкладываются друг в друга – все они выглядят одинаково, а отличаются только общим размером. Наконец, подобны и знаменитые египетские пирамиды:

7 podobnye treugolniki

Такие объекты в геометрии именуют подобными. Подобны друг другу любые две окружности и любые два квадрата. Но особо важную роль в геометрии играют подобные треугольники. Рассмотрим это понятие подробнее.

Пусть есть два треуг-ка, ∆AВС и ∆А1В1С1, у которых соответственно равны углы:

8 podobnye treugolniki

Стороны, которые лежат против одинаковых углов в таких треуг-ках, именуют сходственными. Ими являются стороны AВ и А1В1, ВС и В1С1, АС и А1С1.

9 podobnye treugolniki

Можно дать такое определение подобных треугольников:

10 podobnye treugolniki

Таким образом, подобие треугольников (оно обозначается символом ∾) обозначает выполнение сразу нескольких равенств:

11 podobnye treugolniki

Отношение между сходственными сторонами подобных треуг-ков именуется коэффициентом подобия и обозначается буквой k:

12 podobnye treugolniki

Грубо говоря, подобие треуг-ков означает, что их форма одинакова, но один из них в несколько раз больше или меньше другого. Чтобы получить, из одного треуг-ка другой, равный ему по размерам, его надо просто «масштабировать». Например, на этом рисунке все стороны исходного треуг-ка просто увеличили в три раза:

13 podobnye treugolniki

Это значит, что коэффициент подобия в данном случае равен 3. Однако важно понимать, что в различных геометрических задачах подобные треуг-ки также могут быть повернуты друг относительно друга:

14 podobnye treugolniki

Задание. ∆AВС подобен DEF. Известно, что

15 podobnye treugolniki

Найдите длину ЕF.

16 podobnye treugolniki

Решение. Как только в задаче появляются подобные треуг-ки, стоит сразу же определить их коэффициент подобия, а для этого надо разобраться, какие стороны будут сходственными. Так как∠А = ∠Е, то лежащие против них стороны DF и ВС– сходственные. Их отношение и будет равно коэффициенту подобия:

17 podobnye treugolniki

Получили, что стороны ∆DEF вдвое длиннее сходственных им сторон ∆AВС. У подобных треуг-ков углы одинаковы, поэтому∠С = ∠D. Отсюда следует, что стороны AВ и ЕF сходственны, а потому ЕF вдвое больше:

18 podobnye treugolniki

Задание. ∆AВС иDEF – подобные. Известно, что

19 podobnye treugolniki

Найдите длину ЕF.

20 podobnye treugolniki

Решение. По сравнению с предыдущей задачей изменилось только одно условие, теперь∠А = ∠D. Однако это меняет сходственные стороны. Из подобия треуг-ков следует, что∠С = ∠Е. Тогда сходственными оказываются уже стороны AВ и DF. Найдем коэффициент подобия треугольников:

21 podobnye treugolniki

Сходственными являются также стороны ВС и ЕF (ведь∠А = ∠D), поэтому ЕF в 1,25 раза длиннее:

22 podobnye treugolniki

Эти две задачи показывают, как важно правильно определять сходственные стороны подобных треугольников.

Естественно, что все равные друг другу треуг-ки являются одновременно и подобными, причем их коэффициент подобия равен единице.

Задание. Докажите, что у подобных треуг-ков отношение их периметров равно коэффициенту подобия.

Решение. Пусть подобны ∆ AВС и ∆А1В1С1, причем

23 podobnye treugolniki

Периметр ∆AВС можно вычислить так:

24 podobnye treugolniki

Мы доказали утверждение, сформулированное в условии.

Первый признак подобия треугольников

Оказывается, для того, чтобы доказать подобие треуг-ков, не требуется сравнивать все их углы и находить соотношение всех сторон. Существуют три простых признака подобия треугольников.

Однако прежде, чем сформулировать их, нам придется доказать отдельное утверждение, которое известно как обобщенная теорема Фалеса («обычную», не обобщенную теорему мы уже изучали ранее).

25 podobnye treugolniki

Если прямые ВВ1 и СС1 (показаны красным цветом)параллельны, то отрезки AВ и АС пропорциональны отрезкам AВ1 и АС1, то есть справедливо соотношение:

26 podobnye treugolniki

Доказывать будем от противного. Пусть отрезки AВ и АС непропорциональны AВ1 и АС1. Тогда отметим наАС такую точку Н, которая разобьет АС на пропорциональные отрезки, то есть

27 podobnye treugolniki

Естественно, эта точка не будет совпадать с С1. Рассмотрим случай, когда она окажется правее, чем С1:

28 podobnye treugolniki

Теперь поступим следующим образом. Проведем через стороны угла большое число прямых, параллельных ВС, которые будут разбивать АС на одинаковые отрезки. По теореме Фалеса эти же прямые отсекут одинаковые отрезки и на AВ. При этом мы проведем настолько много параллельных прямых, что хотя бы одна из них пересечет отрезок С1Н:

29 podobnye treugolniki

Пусть эта прямая пересечет отрезок С1Н в некоторой точке С2, а сторону AВ в точке В2. Ясно, что отрезки AВ и АВ2 пропорциональны отрезкам АС и АС2, так как они состоят из одинакового количества одинаковых отрезков. Например, на построенном рисунке отношение AB2 к AB равно 5/8, так как AB2 состоит из 5 отрезков, отсеченных зелеными параллельными прямыми, а AB состоит из 8 таких отрезков. Аналогично и отношение АС2 к АС также равно 5 к 8. Таким образом, можно записать:

30 podobnye treugolniki

Здесь мы рассмотрели случай, когда точка Н лежит правее С1, то есть АН >C1. Случай, когда АН <АС1, рассматривается аналогично, и также получается противоречие. Эти противоречия означают, что на самом деле точка Н должна совпадать с С1, то есть справедливо равенство

31 podobnye treugolniki

ч.т. д.

Теперь, доказав обобщенную теорему Фалеса, мы можем перейти к первому признаку подобия треугольников.

32 podobnye treugolniki

Действительно, пусть есть ∆AВС и ∆А1В1С1, у которых

33 podobnye treugolniki

Так как сумма углов у любого треуг-ка постоянна и составляет 180°, то должны быть одинаковы и третьи углы:

34 podobnye treugolniki

При таком наложении прямые ВС и В1С1 окажутся параллельными, так как соответственные углы ∠В1С1А и ∠ВСА одинаковы. Но параллельные прямые должны отсекать на сторонах угла пропорциональные отрезки, то есть

35 podobnye treugolniki

У ∆AВС и ∆А1В1С1 углы одинаковы, а лежащие напротив них стороны пропорциональны, следовательно, это подобные треуг-ки.

Задание. Прямая, параллельная стороне AВ ∆AВС, пересекает стороны ВС и АС в точках Е и Р. Известно, что ЕС = 2, ВЕ = 3, ЕР = 3,2. Какова длина AВ?

36 podobnye treugolniki

Решение. В данной задаче есть только два треуг-ка, ∆AВС и ∆РЕС. Докажем их подобие. У них есть общий∠С, а ∠СЕР = ∠СВА, ведь это односторонние углы при параллельных прямых ЕР и AВ. Отсюда следует, что ∆AВС∾∆РЕС. Значит, ∠А = ∠СРЕ.

Далее надо найти коэффициент подобия. Стороны СЕ и ВС лежат против равных углов∠А и ∠СРЕ, поэтому они сходственные.

37 podobnye treugolniki

Задание. По данным рисунка найдите длину КЕ:

38 podobnye treugolniki

Решение. На рисунке показано, что ∠ВСА = ∠СКЕ, а∠А = ∠Е = 90°. То есть у ∆AВС и ∆СКЕ есть два одинаковых угла, и, следовательно, они подобны. Сходственными будут являться стороны AВ и ЕС, с их помощью найдем коэффициент подобия:

39 podobnye treugolniki

Задание. Основания трапеции имеют длины 5 и 8 см. Длины ее боковых сторон составляют 3,6 и 3,9 см. Продолжения боковых сторон пересекаются в точке М. Определите расстояние от М до вершин меньшего основания.

Решение. Для начала выполним построение:

40 podobnye treugolniki

Отрезки ВС и АD параллельны, так как они являются основаниями трапеции. Отсюда получаем равенство соответственных углов:

41 podobnye treugolniki

Теперь посмотрим на ∆АМD и ∆ВМС. МЫ только что выяснили, что у них есть одинаковые углы (∠МВС и ∠МАD), а ∠М является общим для них. Тогда получаем, что эти треуг-ки подобны. Стороны ВС и AD будут сходственными, так как лежат против одного и того же ∠М, поэтому по их длине можно найти коэффициент подобия:

42 podobnye treugolniki

Для нахождения МВ обозначим его длину как х. Тогда отрезок АМ будет иметь длину х + 3,9. Но из подобия треуг-ков следует такое соотношение:

43 podobnye treugolniki

Подставив сюда значение k и выраженные через х длины АМ и МВ, получим уравнение:

44 podobnye treugolniki

МС можно найти таким же путем, обозначив его длину как у. Тогда отрезок МD будет равен у + 3,6, и можно составить уравнение:

45 podobnye treugolniki

Второй и третий признаки подобия треугольников

Существует ещё два признака подобия треуг-ков, которые в решении задач используются значительно реже. Они выводятся непосредственно из первого признака.

46 podobnye treugolniki

Докажем второй признак подобия. Пусть есть ∆AВС и ∆А1В1С1, для которых выполняются соотношения:

47 podobnye treugolniki

Необходимо доказать, что они подобны. Для этого построим ещё один ∆AВС2, который будет иметь общую сторону с ∆AВС, причем точку С2 мы выберем так, что будут выполняться условия:

48 podobnye treugolniki

∆А1В1С1 и ∆AВС2 будут подобными, ведь у них одинаковы два угла. Значит, будет выполняться соотношение

49 podobnye treugolniki

Но тогда ∆AВС и ∆AВС2 будут равными, ведь у них одинаковы две стороны и угол, образованный этими сторонами:

50 podobnye treugolniki

В итоге у ∆AВС и ∆А1В1С1 оказываются два одинаковых угла, то есть они подобны друг другу

ч. т. д.

Задание. На стороне угла отмечены точки A и В так, что AВ = 5 см и АС = 16 см. На другой стороне этого же угла отмечены точки С и D так, что AD = 8 cм и AF = 10 см. Подобны ли ∆АСD и AFB? 

Решение.

51 podobnye treugolniki

У рассматриваемых треуг-ков есть общий угол ∠А. Найдем отношение сторон, прилегающих к этому углу.

52 podobnye treugolniki

Отношения одинаковы, значит, треуг-ки подобны.

Примечание. В данном случае важно понимать, какие стороны надо делить друг на друга. У ∆АСD известны стороны АС и АD, равные 16 и 8 см. У ∆AFB известны AF и AB, которые составляют 10 и 5 см. Делить надо большую сторону одного треуг-ка на большую сторону другого треуг-ка, то есть 16 на 10. Потом же делим меньшие стороны, то есть 8 на 5.Если получили одно и тоже число, то это значит, что рассмотренные треуг-ки подобны, причем полученное число как раз и является коэффициентом подобия.

Рассмотрим третий признак подобия треуг-ков.

53 podobnye treugolniki

Докажем его. Пусть у ∆AВС и ∆А1В1С1 пропорциональны их стороны:

54 podobnye treugolniki

55 podobnye treugolniki

Можно заметить, что ∆AВС2 и ∆А1В1С1 подобны, ведь у них совпадают два угла. Тогда верны соотношения:

56 podobnye treugolniki

Самая левая дробь в обоих случаях одинакова, а в других отличны лишь числители. Значит, эти числители одинаковы:

57 podobnye treugolniki

Но тогда у ∆AВС и ∆AВСсовпадают все стороны, то есть эти треуг-ки равные. Следовательно. Так как ∆AВС2 подобен ∆А1В1С1, то и равный ему ∆AВС также подобен ∆А1В1С1

ч. т. д.

Задание. Подобны ли ∆AВС и DEF, если их стороны имеют длины:

58 podobnye treugolniki

Решение.

Для проверки достаточно просто поделить длины сторон друг на друга. При этом большую сторону одного треуг-ка будем делить на большую сторону другого, а меньшую – на меньшую. Если в результате отношение всех трех сторон будет одинаково, то можно утверждать, что треуг-ки подобны:

59 podobnye treugolniki

Все три раза мы получали число 2, именно оно и является коэффициентом подобия треуг-ков.

Отношение площадей подобных треугольников

Если треуг-ки подобны, то их стороны отличаются в k раз, где k– коэффициент подобия. А как соотносятся друг с другом длины их высот, медиан и других характерных отрезков. Несложно догадаться, что они также отличаются в k раз.

Докажем это на примере высот. Пусть есть подобные ∆AВС и ∆А1В1С1, причем их коэффициент подобия равен k:

60 podobnye treugolniki

Проведем в них высоты СН и С1Н1:

61 podobnye treugolniki

Теперь сравним ∆АСН и ∆А1С1Н1. Из подобия ∆AВС и ∆А1В1С1 следует, что

62 podobnye treugolniki

Аналогично можно доказать, что в k раз будут отличаться длины медиан и биссектрис.

63 podobnye treugolniki

А каким будет отношение площадей подобных треугольников?Оказывается, что они отличаются уже в kраз. Докажем это.

Пусть ∆AВС и ∆А1В1С1 подобны с коэффициентом подобия k. Снова проведем в них высоты СН и СН1:

64 podobnye treugolniki

Запишем очевидные равенства:

65 podobnye treugolniki

В итоге получили, что площади подобных треугольников отличаются в kраз.

66 podobnye treugolniki

Задание. Известно, у ∆AВС площадь составляет 10, а отрезок AВ имеет длину 5. DEF подобен ∆AВС, причем сторона DE, сходственная AВ, равна 15. Вычислите площадь DEF.

Решение. По условию задачи легко найти коэффициент подобия ∆AВС и ∆DEF, надо лишь поделить одну сходственную сторону на другую:

67 podobnye treugolniki

Задание. Площади двух подобных треуг-ков составляют 75 м2 и 300 м2. Одна из сторон второго треуг-ка равна 9 м. Вычислите сходственную ей сторону первого треуг-ка.

Решение. Зная площади треуг-ков, легко найдем коэффициент их подобия:

68 podobnye treugolniki

Если коэффициент равен 2, то стороны первого многоугольника вдвое меньше сторон второго, поэтому интересующая нас сторона равна

9:2 = 4,5 м

Ответ: 4,5 м.

Как узнать, какие именно стороны подобных треугольников пропорциональны?

Ведь иногда не все очевидно из рисунка.

Например, эти треугольники подобны. Как соотносятся стороны?

image.png

ГеометрияТреугольникиПланиметрия

Анонимный вопрос

12 марта 2021  · 173

Люблю математику, люблю решать задачи и учиться.  · 25 мар 2021

По теореме синусов в произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

Поэтому в подобных треугольниках подобные стороны лежат напротив равных углов.

В конкретном примере треугольник АВС подобен треугольнику АМР и соответственно пары подобных сторон таковы:

стороны ВС и МР -лежат напротив угла А;

стороны АВ и АМ – лежат напротив прямых углов С и Р;

стороны СА и РА – лежат напротив равных углов В и М.

При этом

ВС/МР = АВ/АМ = СА/РА

Комментировать ответ…Комментировать…

Добавить комментарий