Как найти что то у пиромиды

Многогранник, одна грань которого является (n)-угольником, а остальные грани — треугольники с общей вершиной, называется пирамидой, (n)-угольник называется основанием пирамиды, а треугольники — боковыми гранями.

Общая вершина боковых граней называется вершиной пирамиды.

Отрезки, соединяющие вершину пирамиды с вершинами основания, называются рёбрами пирамиды.

В зависимости от количества сторон основания пирамиды могут быть треугольными, четырёхугольными, пятиугольными и т. д.

Перпендикуляр, проведённый из вершины пирамиды к плоскости основания, называется высотой пирамиды.

Важно знать, где на плоскости основания находится проекция вершины пирамиды, она может быть в центре основания, на стороне основания, за пределами многоугольника основания. Решение задачи в большей степени зависит от расположения этой точки.

Чтобы нарисовать пирамиду, нужно соблюдать определённый порядок:

1. первым рисуется основание, 

2. по условию задачи находится проекция вершины на плоскости основания,

3. вертикально проводится высота,

4. проводятся рёбра.

TPT 2.JPG

На рисунке изображена четырёхугольная пирамида (SABCD)

(первой пишут букву вершины).

Основание — четырёхугольник (ABCD).

Вершина проецируется в точку пересечения диагоналей (O) — основание высоты или проекция вершины.

(SA), (SB), (SC), (SD) — рёбра пирамиды,

(AB), (BC), (CD), (DA) — стороны основания.

В курсе средней школы в основном есть задачи, в которых даны:

– правильная пирамида (вершина проецируется в центр основания);
– пирамида, вершина которой проецируется в центр описанной окружности;
– пирамида, вершина которой проецируется в центр вписанной окружности;
– пирамида, высота которой совпадает с боковым ребром;
– пирамида, высота которой также является высотой боковой грани.

Углы, которые образованы боковой гранью и основанием пирамиды, называются двугранными углами при основании пирамиды.

Двугранный угол между боковой гранью (SCD) и гранью основания равен линейному углу 

 (OES). Этот угол образован отрезками (OE) и (SE), лежащими в этих гранях и перпендикулярных их общей прямой (CD). То есть (OE)

⊥CD

  и (SE)

⊥CD

.

Чтобы определить этот угол, часто нужно использовать теорему о трёх перпендикулярах.

Углы, которые образованы боковым ребром и его проекцией на плоскость основания, называются углами между боковым ребром и плоскостью основания.

На рисунке

 (OCS).

Угол, который образован двумя боковыми гранями, называется двугранным углом при боковом ребре пирамиды.

Угол, который образован двумя боковыми рёбрами одной грани пирамиды, называется углом при вершине пирамиды.

Основные формулы пирамиды

Площадь боковой поверхности равна сумме площадей всех боковых граней пирамиды:  

S=S1+S2+S3+…

(Некоторые формулы годятся только для определённых видов пирамиды.)

Площадь полной поверхности

Sп.п.=S+Sоснования

.

Объём пирамиды (V =)

13Sоснования

(H), где (H) — высота пирамиды.

Формула объёма используется для пирамид любого вида.

Источники:

Рис. 1. Пирамида, © ЯКласс.

Видео по теме


Задача 1. В правильной четырехугольной пирамиде SABCD  точка  O – центр основания, S  – вершина,  SB=13,;BD=24. Найдите длину отрезка SO.

fgk

Решение: + показать


Задача 2.  В правильной четырехугольной пирамиде SABCD  точка O – центр основания, S – вершина, SO=8, BD=30.  Найдите боковое ребро SC.

Решение: + показать


Задача 3. Стороны основания правильной четырехугольной пирамиды равны 60, боковые ребра равны 78. Найдите площадь поверхности этой пирамиды.

Решение: + показать


Задача 4.  В правильной четырёхугольной пирамиде SABCD  точка O  —  центр основания, S — вершина, SO=48, SD=60.  Найдите длину отрезка AC.

Решение: + показать


Задача 5. Основанием пирамиды является прямоугольник со сторонами 5 и 6. Ее объем равен 40. Найдите высоту этой пирамиды.

Решение: + показать


Задача 6. В правильной четырёхугольной пирамиде SABCD  с основанием ABCD боковое ребро SA равно 39, сторона основания равна 15sqrt2. Найдите объём пирамиды.

Решение: + показать


Задача 7. В правильной четырёхугольной пирамиде все рёбра равны 7. Найдите площадь сечения пирамиды плоскостью, проходящей через середины боковых рёбер.

Решение: + показать


Задача 8.  Даны две правильные четырёхугольные пирамиды. Объём первой пирамиды равен 9. У второй пирамиды высота в 1,5 раза больше, а сторона основания в 2 раза больше, чем у первой. Найдите объём второй пирамиды.

Решение: + показать


Задача 9.  В правильной четырёхугольной пирамиде боковое ребро равно 22, а тангенс угла между боковой гранью и плоскостью основания равен sqrt{14}. Найти сторону основания пирамиды.

Решение: + показать


Задача 10. Основанием пирамиды является прямоугольник со сторонами 4 и 6. Ее объем равен 48. Найдите высоту этой пирамиды.

18f3561bdbae5ca26a77784787b7d0bc

Решение: + показать


Задача 11. Стороны основания правильной четырехугольной пирамиды равны 42, боковые ребра равны 75. Найдите площадь поверхности этой пирамиды.

8913063b078b7196c5a3071ca02c523b

Решение: + показать


Задача 12. В правильной треугольной пирамиде SABC  медианы основания ABC пересекаются в точке O. Площадь треугольника ABC  равна 9, объем пирамиды равен 6. Найдите длину отрезка OS.

u

Решение: + показать


Задача 13.  В правильной треугольной пирамиде SABC точка L — середина ребра AC, S — вершина. Известно, что BC = 6, а SL = 5. Найдите площадь боковой поверхности пирамиды.

ts

Решение: + показать


Задача 14. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 11, а высота равна 4sqrt3. 

u

Решение: + показать


Задача 15.  Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 5, а объем равен 6sqrt3.

u

Решение: + показать


Задача 16. Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды.

н

Решение: + показать


Задача 17. Объем правильной шестиугольной пирамиды 324. Сторона основания равна 6. Найдите боковое ребро.

н

Решение: + показать


Задача 18. Во сколько раз увеличится объем пирамиды, если ее высоту увеличить в два раза?

1694cdf5de68632ee14aa0c5c5fefad1

Решение: + показать


Задача 19. Во сколько раз увеличится площадь поверхности правильного тетраэдра, если все его ребра увеличить в 5 раз?

d5e28b2cf1aaba18d4a7a6a87f80215a

Решение: + показать


Задача 20.  Во сколько раз увеличится объем правильного тетраэдра, если все его ребра увеличить в пять раз?

п

Решение: + показать


Задача 21. Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60°. Высота пирамиды равна 12. Найдите объем пирамиды.

8fb4942644d6aea0ba85825e7c81c610

Решение: + показать


Задача 22. Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 12. Найдите объем пирамиды.

a8a2781d4cd5ed8f62d05cbf4f061676

Решение: + показать


Задача 23. От треугольной призмы, объем которой равен 129, отсечена треугольная пирамида плоскостью, проходящей через сторону одного основания и противоположную вершину другого основания. Найдите объем оставшейся части.

g

Решение: + показать


Задача 24. Объем треугольной пирамиды SABC, являющейся частью правильной шестиугольной пирамиды SABCDEF, равен 8. Найдите объем шестиугольной пирамиды. Видео по теме 1 2 

efc4238b7e0c4ff80662906a06e27364

Решение: + показать


Задача 25.  Сторона основания правильной шестиугольной пирамиды равна 8, боковое ребро равно 16. Найдите объём пирамиды.

1694cdf5de68632ee14aa0c5c5fefad1

Решение: + показать


Задача 26. Сторона основания правильной шестиугольной пирамиды равна 11, а угол между боковой гранью и основанием равен 45^{circ}. Найдите объем пирамиды.

Решение: + показать


Задача 27. Найдите объём правильной шестиугольной пирамиды SABCDEF, если объём треугольной пирамиды SABD равен 34.

Решение: + показать


Задача 28.  Объем параллелепипеда ABCDA_1B_1C_1D_1 равен 9. Найдите объем треугольной пирамиды ABCA_1. 

Решение: + показать


Задача 29. Объем куба равен 123. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

Решение: + показать


Задача 30. Найдите объем пирамиды, изображенной на рисунке. Ее основанием является многоугольник, соседние стороны которого перпендикулярны, а одно из боковых ребер перпендикулярно плоскости основания и равно 3.

Решение: + показать


Задача 31. Объем правильной четырехугольной пирамиды SABCD равен 120. Точка E — середина ребра SB. Найдите объем треугольной пирамиды EABC.

рб

Решение: + показать


Задача 32. От треугольной пирамиды, объем которой равен 34, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.

ор

Решение: + показать


Задача 33.  Ребра тетраэдра равны 16. Найдите площадь сечения, проходящего через середины четырех его ребер.

ь

Решение: + показать


  Вы можете пройти тест

Вы уже знакомы с пирамидой, т. е. многогранником, одна грань которого является многоугольником, а остальные грани-треугольники имеют общую вершину.

Треугольные грани пирамиды, имеющие общую вершину, называют боковыми гранями, а эту общую вершину — вершиной пирамиды. Ребра боковых граней, сходящиеся в вершине пирамиды, называют боковыми ребрами пирамиды. Многоугольник, которому не принадлежит вершина пирамиды, называют основанием пирамиды (рис. 107).

Пирамиды разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Пирамида, изображенная на рисунке 107, — пятиугольная, а на рисунке 108, — восьмиугольная. Треугольную пирамиду называют еще тетраэдром. У тетраэдра все грани являются треугольниками (рис. 109).

Пирамида в геометрии - элементы, формулы, свойства с примерами

Перпендикуляр, проведенный из вершины пирамиды к плоскости ее основания, называется высотой пирамиды. На рисунке 108 показана высота Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Плоскость, проходящая через два боковых ребра пирамиды, не принадлежащие одной грани, называется диагональной плоскостью, а сечение пирамиды диагональной плоскостью — диагональным сечением. На рисунке 111 показано диагональное сечение шестиугольной пирамиды.

Пирамида, основанием которой является правильный многоугольник, а основание ее высоты совпадает с центром этого многоугольника, называется правильной пирамидой (рис. 112).

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды.

Отметим, что в правильной пирамиде:

  • боковые ребра равны;
  • боковые грани равны;
  • апофемы, равны;
  • двугранные углы при основании равны;
  • двугранные углы при боковых ребрах равны;
  • каждая точка высоты равноудалена от вершин основания;
  • каждая точка высоты равноудалена от ребер основания;
  • каждая точка высоты равноудалена от боковых граней.

Отметим, что если в пирамиде равны все:

  • боковые ребра, то около ее основания можно описать окружность, и центр этой окружности совпадает с основанием высоты пирамиды (рис. 113);
  • двугранные углы при основании, то в это основание можно вписать окружность, и центр этой окружности совпадает с основанием высоты пирамиды (рис. 114).

Пирамида в геометрии - элементы, формулы, свойства с примерами Пирамида в геометрии - элементы, формулы, свойства с примерами

Боковые грани составляют боковую поверхность пирамиды, а боковые грани вместе с основанием — полную поверхность пирамиды.

Вы знаете, что боковая поверхность правильной пирамиды равна произведению полупериметра ее основания и апофемы.

Теорема 1.

Если пирамиду пересечь плоскостью, параллельной основанию, то:

  • а) боковые ребра и высота разделяются на пропорциональные части;
  • б) в сечении получается многоугольник, подобный основанию;
  • в) площади сечения и основания относятся как квадраты их расстояний от вершины пирамиды.

Используя рисунок 115, докажите эту теорему самостоятельно.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Секущая плоскость, параллельная основанию пирамиды, разделяет ее на две части (рис. 116). Одна из этих частей также является пирамидой, а другая — многогранником, который называется усеченной пирамидой.

Параллельные грани усеченной пирамиды называются ее основаниями (рис. 117). Основания усеченной пирамиды — подобные многоугольники, стороны которых попарно параллельны, поэтому ее боковые грани являются трапециями.

Высотой усеченной пирамиды называется перпендикуляр, проведенный из какой-либо точки одного основания пирамиды к плоскости другого основания.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Усеченная пирамида называется правильной, если она является частью правильной пирамиды. Высота боковой грани правильной усеченной пирамиды называется апофемой усеченной пирамиды. На рисунке 118 показана четырехугольная правильная усеченная пирамида и одна из ее апофем.

Теорема 2.

Боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров ее оснований и апофемы:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть правильная Пирамида в геометрии - элементы, формулы, свойства с примерами-угольная усеченная пирамида (рис. 119). Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — соответственно периметры нижнего и верхнего оснований и Пирамида в геометрии - элементы, формулы, свойства с примерами — апофема пирамиды.

Боковая поверхность данной пирамиды состоит из Пирамида в геометрии - элементы, формулы, свойства с примерами равных трапеций. Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — основания одной из этих трапеций, тогда ее площадь равна Пирамида в геометрии - элементы, формулы, свойства с примерами. Учитывая, что боковая поверхность пирамиды состоит из Пирамида в геометрии - элементы, формулы, свойства с примерами таких трапеций, получим, что

Пирамида в геометрии - элементы, формулы, свойства с примерами

Теперь установим формулу для вычисления объема пирамиды.

Тела, имеющие равные объемы, называются равновеликими.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Теорема 3.

Треугольные пирамиды с равновеликими основаниями и равными высотами равновелики.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть две треугольные пирамиды с равновеликими основаниями и равными высотами (рис. 120). Разделим высоты одной и другой пирамид на Пирамида в геометрии - элементы, формулы, свойства с примерами долей и через точки деления проведем плоскости, параллельные основаниям. Этим самым пирамиды разделяются на Пирамида в геометрии - элементы, формулы, свойства с примерами частей. Для каждой части первой пирамиды построим наибольшие по объему призмы, целиком содержащиеся в пирамиде, а для каждой части другой пирамиды — наименьшие по объему призмы, целиком содержащие эту часть.

Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — объемы первой и второй пирамид, a Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — суммарные объемы призм, построенных для этих пирамид. При счете от оснований пирамид призма в Пирамида в геометрии - элементы, формулы, свойства с примерами-й части первой пирамиды равновелика призме для Пирамида в геометрии - элементы, формулы, свойства с примерами-й части второй пирамиды, так как у этих призм равновелики основания и равные высоты. Поэтому объем Пирамида в геометрии - элементы, формулы, свойства с примерами больше объема Пирамида в геометрии - элементы, формулы, свойства с примерами на объем первой призмы, у которой основанием является основание второй пирамиды, а высота равна Пирамида в геометрии - элементы, формулы, свойства с примерами, где Пирамида в геометрии - элементы, формулы, свойства с примерами — высота пирамиды (см. рис. 120), т.е. Пирамида в геометрии - элементы, формулы, свойства с примерами, или Пирамида в геометрии - элементы, формулы, свойства с примерами, где Пирамида в геометрии - элементы, формулы, свойства с примерами — площадь основания пирамиды. Теперь учтем, что Пирамида в геометрии - элементы, формулы, свойства с примерами, a Пирамида в геометрии - элементы, формулы, свойства с примерами. Поэтому Пирамида в геометрии - элементы, формулы, свойства с примерами, или Пирамида в геометрии - элементы, формулы, свойства с примерами. При увеличении значения переменной Пирамида в геометрии - элементы, формулы, свойства с примерами значение выражения Пирамида в геометрии - элементы, формулы, свойства с примерами стремится к нулю, а это означает, что Пирамида в геометрии - элементы, формулы, свойства с примерами, или

Пирамида в геометрии - элементы, формулы, свойства с примерами

Такие же рассуждения можно провести, если первую и вторую пирамиды поменять ролями. В результате получим неравенство

Пирамида в геометрии - элементы, формулы, свойства с примерами

Из неравенств (1) и (2) следует, что Пирамида в геометрии - элементы, формулы, свойства с примерами.

Теорема 4.

Объем пирамиды равен третьей доле произведения площади ее основания и высоты:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть треугольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 121). Достроим ее до призмы Пирамида в геометрии - элементы, формулы, свойства с примерами с основанием Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 122). Отделим от призмы данную пирамиду, получится четырехугольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 122 и 123). Диагональная плоскость Пирамида в геометрии - элементы, формулы, свойства с примерами разделяет ее на две пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, у которых одна и та же высота, проведенная из вершины Пирамида в геометрии - элементы, формулы, свойства с примерами, и равные основания Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами. Поэтому, в соответствии с теоремой 3, пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами равновелики. Сравним пирамиду Пирамида в геометрии - элементы, формулы, свойства с примерами с данной пирамидой Пирамида в геометрии - элементы, формулы, свойства с примерами. У них равные основания Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами и высоты, проведенные из вершин Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, поэтому эти пирамиды также равновелики. Получается, что все три пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами равновелики. Поскольку объем призмы Пирамида в геометрии - элементы, формулы, свойства с примерами равен произведению Пирамида в геометрии - элементы, формулы, свойства с примерами площади Пирамида в геометрии - элементы, формулы, свойства с примерами основания Пирамида в геометрии - элементы, формулы, свойства с примерами и высоты призмы Пирамида в геометрии - элементы, формулы, свойства с примерами, которая равна высоте пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, то объем пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, т. е. третьей части призмы Пирамида в геометрии - элементы, формулы, свойства с примерами, равен третьей доле этого объема, т. е. Пирамида в геометрии - элементы, формулы, свойства с примерами.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пусть теперь есть произвольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 124). Через диагонали Пирамида в геометрии - элементы, формулы, свойства с примерами основания Пирамида в геометрии - элементы, формулы, свойства с примерами, выходящие из одной вершины Пирамида в геометрии - элементы, формулы, свойства с примерами, проведем диагональные сечения, они разделят данную пирамиду на треугольные пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами. Поскольку все они имеют общую высоту Пирамида в геометрии - элементы, формулы, свойства с примерами, то

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пример:

Найдем объем усеченной пирамиды, нижнее и верхнее основания которой имеют площади Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, а высота равна Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 125).

Для этого достроим данную усеченную пирамиду до полной. Пусть высота дополнительной пирамиды равна Пирамида в геометрии - элементы, формулы, свойства с примерами. Искомый объем Пирамида в геометрии - элементы, формулы, свойства с примерами можно найти как разность объемов полной и дополнительной пирамид:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Чтобы найти высоту Пирамида в геометрии - элементы, формулы, свойства с примерами, используем установленное в теореме 1 утверждение о том, что площади сечений пирамиды относятся как квадраты их расстояний от вершины:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Решим это уравнение, учитывая, что Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — положительные числа:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Таким образом, объем Пирамида в геометрии - элементы, формулы, свойства с примерами усеченной пирамиды равен третьей доле произведения высоты Пирамида в геометрии - элементы, формулы, свойства с примерами пирамиды и суммы площадей Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами оснований пирамиды и их среднего геометрического Пирамида в геометрии - элементы, формулы, свойства с примерами.

  • Конус в геометрии
  • Сфера в геометрии
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Возникновение геометрии
  • Призма в геометрии
  • Цилиндр в геометрии
  • Стереометрия – формулы, определение и вычисление

Объем правильной треугольной пирамиды

Пусть сторона основания равна ( displaystyle a), а боковое ребро равно ( displaystyle b). Нужно найти ( displaystyle {{S}_{осн}}) и ( displaystyle H).

( displaystyle {{S}_{осн}}) – это площадь правильного треугольника ( displaystyle ABC).

Вспомним, как искать эту площадь.

Используем формулу площади:

( displaystyle S=frac{1}{2}abcdot sin gamma )

У нас «( displaystyle a)» – это ( displaystyle a), а «( displaystyle b)» — это тоже ( displaystyle a), а ( displaystyle sin gamma =sin 60{}^circ =frac{sqrt{3}}{2})

Значит, ( displaystyle {{S}_{ABC}}=frac{1}{2}{{a}^{2}}frac{sqrt{3}}{2}=frac{{{a}^{2}}sqrt{3}}{4}).

Теперь найдем ( displaystyle H).

По теореме Пифагора для ( displaystyle Delta SOC)

( displaystyle {{H}^{2}}={{b}^{2}}-O{{C}^{2}})

Чему же равно ( displaystyle OC)?

Это радиус описанной окружности в ( displaystyle Delta ABC), потому что пирамида правильная и, значит, ( displaystyle O) — центр ( displaystyle Delta ABC)

Найдем ( displaystyle OC) (Подробнее смотри в теме «Правильный треугольник»).

( displaystyle OC=frac{2}{3}CK), так как ( displaystyle O) — точка пересечения и медиан тоже.

( displaystyle C{{K}^{2}}=A{{C}^{2}}-A{{K}^{2}}) (теорема Пифагора для ( displaystyle Delta ACK))

( displaystyle C{{K}^{2}}-{{a}^{2}}-frac{{{a}^{2}}}{4}=frac{3{{a}^{2}}}{4}); ( displaystyle CK=frac{asqrt{3}}{2})

Значит, ( displaystyle OC=frac{2}{3}cdot frac{asqrt{3}}{2}=frac{asqrt{3}}{3})

Подставим ( displaystyle OC) в формулу для ( displaystyle H).

( displaystyle {{H}^{2}}={{b}^{2}}-O{{C}^{2}}={{b}^{2}}-{{left( frac{asqrt{3}}{3} right)}^{2}}={{b}^{2}}-frac{{{a}^{2}}}{3})

И подставим все в формулу объема:

( displaystyle V=frac{1}{3}{{S}_{ABC}}cdot H=frac{1}{3}cdot frac{{{a}^{2}}sqrt{3}}{4}cdot sqrt{{{b}^{2}}-frac{{{a}^{2}}}{3}})

( displaystyle V=frac{{{a}^{2}}sqrt{3}}{12}sqrt{{{b}^{2}}-frac{{{a}^{2}}}{3}}).

Внимание: если у тебя правильный тетраэдр (т.е. ( displaystyle b=a)), то формула получается такой:

( displaystyle V=frac{{{a}^{3}}}{6sqrt{2}}).

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 сентября 2022 года; проверки требуют 4 правки.

Пирами́да (от др.-греч. πυραμίς, род. п. πυραμίδος) — многогранник, одна из граней которого (называемая основанием) — произвольный многоугольник, а остальные грани (называемые боковыми гранями) — треугольники, имеющие общую вершину[1]. По числу углов основания различают пирамиды треугольные (тетраэдр), четырёхугольные и т. д.
Пирамида является частным случаем конуса[2].

История развития пирамиды в геометрии[править | править код]

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Объём пирамиды был известен древним египтянам. Первым греческим математиком, кто установил, чему равен объём пирамиды, был Демокрит
[3], а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке (книга XI, определение 12[4]).

Элементы пирамиды[править | править код]

SO — высота
SF — апофема
OF — радиус вписанной в основание окружности

  • вершина пирамиды — общая точка боковых граней, не лежащая в плоскости основания;
  • основание — грань, которой не принадлежит вершина пирамиды;
  • боковые грани — треугольные грани, сходящиеся в вершине;
  • боковые рёбра — рёбра, являющиеся сторонами двух боковых граней (и, соответственно, не являющиеся сторонами основания);
  • высота пирамиды — перпендикуляр из вершины пирамиды на её основание;
  • апофема — высота боковой грани правильной пирамиды, проведённая из её вершины;
  • диагональное сечение пирамиды — сечение пирамиды, проходящее через её вершину и диагональ основания.

Развёртка пирамиды[править | править код]

Развёртка правильной пятиугольной пирамиды:
1. в плоскости основания («звезда»)
2. в плоскости одной из боковых граней

Развёрткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).
Приступая к изучению развёртки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую плёнку. Некоторые из представленных таким образом поверхностей можно путём изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещён с плоскостью без разрывов и склеивания, то такую поверхность называют развёртывающейся, а полученную плоскую фигуру — её развёрткой.

Свойства[править | править код]

Если все боковые рёбра равны, то:

  • вокруг основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые рёбра образуют с плоскостью основания равные углы;
  • также верно и обратное, то есть если боковые рёбра образуют с плоскостью основания равные углы, или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые рёбра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом, то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.

Теоремы, связывающие пирамиду с другими геометрическими телами[править | править код]

Описание сферы вокруг правильной пирамиды:
SD — высота пирамиды.
AD — радиус окружности, описывающей основание.
В — середина ребра боковой грани
С — точка пересечения плоскостей проходящих через середину рёбер перпендикулярно им.
AC=CS — радиус сферы описывающей пирамиду

Сфера, вписанная в правильную пирамиду:
D — центр основания
SF — апофема
ASD — биссекторная плоскость угла между боковыми гранями
BCE — биссекторная плоскость угла между основанием и боковой гранью
С — точка пересечения всех биссекторных плоскостей
CK=CD — радиус сферы вписанной в пирамиду

Сфера[править | править код]

  • около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие)[5]. Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им. Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу;
  • в пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.

Конус[править | править код]

  • Конус называется вписанным в пирамиду, если вершины их совпадают, а его основание вписано в основание пирамиды. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой (необходимое и достаточное условие);[6]
  • Конус называется описанным около пирамиды, когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые рёбра пирамиды равны между собой (необходимое и достаточное условие);
  • Высоты у таких конусов и пирамид равны между собой.

Цилиндр[править | править код]

  • Цилиндр называется вписанным в пирамиду, если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды.
  • Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник (необходимое и достаточное условие).

Формулы, связанные с пирамидой[править | править код]

  • Объём пирамиды может быть вычислен по формуле:
V={frac {1}{3}}Sh,
где  S — площадь основания и  h — высота;[7]
V={frac {1}{6}}V_{p},
где {textstyle  V_{p}} — объём параллелепипеда;
  • Также объём треугольной пирамиды (тетраэдра) может быть вычислен по формуле[8]:
V={frac {1}{6}}a_{1}a_{2}dsin varphi ,
где a_{1},a_{2} — скрещивающиеся рёбра , d — расстояние между a_{1} и a_{2} , varphi  — угол между a_{1} и a_{2};
  • Боковая поверхность — это сумма площадей боковых граней:
S_{b}=sum _{i}^{}S_{i}
  • Полная поверхность — это сумма площади боковой поверхности и площади основания:
 S_{p}=S_{b}+S_{o}
  • Для нахождения площади боковой поверхности в правильной пирамиде можно использовать формулы:
{displaystyle S_{b}={frac {1}{2}}Pa={frac {n}{2}}b^{2}sin alpha }
где a — апофема ,  P — периметр основания,  n — число сторон основания,  b — боковое ребро, alpha  — плоский угол при вершине пирамиды.

Особые случаи пирамиды[править | править код]

Правильная пирамида[править | править код]

Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания.
Тогда она обладает такими свойствами:

Прямоугольная пирамида[править | править код]

Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.

Тетраэдр[править | править код]

Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие между понятиями «правильная треугольная пирамида» и «правильный тетраэдр». Правильная треугольная пирамида — это пирамида с правильным треугольником в основании (грани же должны быть равнобедренными треугольниками). Правильным тетраэдром является тетраэдр, у которого все грани являются равносторонними треугольниками.

См. также[править | править код]

  • Усечённая пирамида
  • Бипирамида

Примечания[править | править код]

  1. Александров А. Д., Вернер А. Л. Геометрия. Учебник для 10—11 классов общеобразовательных учреждений. — 2-е изд. — М.: Просвещение, 2003. — 271 с. — ISBN 5-09-010773-4.
  2. Математика в понятиях, определениях и терминах. Ч. 1. Пособие для учителей. Под ред. Л. В. Сабинина. М., Просвещение, 1978. 320 с. С. 253.
  3. Б. Л. ван дер Варден. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. — 3-е изд.. — М.: КомКнига, 2007. — 456 с. — ISBN 978-5-484-00848-3.
  4. М. Е. Ващенко-Захарченко. Начала Евклида с пояснительным введением и толкованиями. — Киев, 1880. — С. 473. — 749 с.
  5. Саакян С. М., Бутузов В. Ф. Изучение геометрии в 10—11-х классах: книга для учителя. — 4-е изд., дораб.. — М.: Просвещение, 2010. — 248 с. — (Математика и информатика). — ISBN 978-5-09-016554-9.
  6. Погорелов А. В. Геометрия: Учебник для 10—11 классов общеобразовательных учреждений. — 8-е изд. — М.: Просвещение, 2008. — 175 с. — 60 000 экз. — ISBN 978-5-09-019708-3.
  7. Геометрия по Киселёву Архивная копия от 1 марта 2021 на Wayback Machine, §357.
  8. Кушнир И. А. Триумф школьной геометрии. — К.: Наш час, 2005. — 432 с. — ISBN 966-8174-01-1.
  9. Готман Э. Свойства правильной пирамиды, вписанной в сферу Архивная копия от 22 января 2012 на Wayback Machine // Квант. — 1998. — № 4.

Литература[править | править код]

  • Александров А. Д., Вернер А. Л. Геометрия. Учебник для 10—11 классов общеобразовательных учреждений. — 2-е изд. — М.: Просвещение, 2003. — 271 с. — ISBN 5-09-010773-4.
  • Калинин А. Ю., Терешин Д. А. Стереометрия. 11 класс. — 2-е изд. — М.: Физматкнига, 2005. — 332 с. — ISBN 5-89155-134-9.
  • А. П. Киселёв, Геометрия по Киселёву, arΧiv:1806.06942 [math.HO].
  • Погорелов А. В. Геометрия: Учебник для 10—11 классов общеобразовательных учреждений. — 8-е изд. — М.: Просвещение, 2008. — 175 с. — 60 000 экз. — ISBN 978-5-09-019708-3.

Ссылки[править | править код]

  • Бумажные модели пирамид Архивная копия от 4 января 2010 на Wayback Machine (англ.)
  • «Начала» Евклида.

Добавить комментарий