Как найти cos tan sin

Запросы «sin» и «синус» перенаправляются сюда; у терминов sin и синус есть также другие значения.

Запрос «sec» перенаправляется сюда; см. также другие значения.

Рис. 1.
Графики тригонометрических функций:      синуса,      косинуса,      тангенса,      котангенса,      секанса,      косеканса

Тригонометри́ческие фу́нкции — элементарные функции[1], которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:
  • синус (sin x);
  • косинус (cos x);
производные тригонометрические функции:
  • тангенс {displaystyle left(mathrm {tg} ,x={frac {sin x}{cos x}}right)};
  • котангенс {displaystyle left(mathrm {ctg} ,x={frac {cos x}{sin x}}right)};
  • секанс {displaystyle left(sec x={frac {1}{cos x}}right)};
  • косеканс {displaystyle left(mathrm {cosec} ,x={frac {1}{sin x}}right)};
обратные тригонометрические функции:
  • арксинус, арккосинус и т. д.

В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются {displaystyle tan x}, {displaystyle cot x}, csc x. До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[2], но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках pm pi n + frac{pi}{2}, а у котангенса и косеканса — в точках pm pi n.
Графики тригонометрических функций показаны на рис. 1.

Способы определения[править | править код]

Определение для любых углов[править | править код]

Рис. 2.
Определение тригонометрических функций

Обычно тригонометрические функции определяются геометрически[3]. В декартовой системе координат на плоскости построим окружность единичного радиуса (R=1) с центром в начале координат O. Всякий угол станем рассматривать как поворот от положительного направления оси абсцисс до некоторого луча OB (точку B выбираем на окружности), при этом направление поворота против часовой стрелки считаем положительным, а по часовой стрелке — отрицательным. Абсциссу точки B обозначим x_B, а ординату — y_B (см. рисунок 2).

Синусом угла alpha называется ордината точки {displaystyle M_{alpha }} единичной окружности, где {displaystyle {left(cdot right)}M_{alpha }} получается поворотом {displaystyle {left(cdot right)}M_{0}} на угол alpha в положительном направлении (против часовой стрелки), если alpha >0, и в отрицательном (по часовой стрелке), если {displaystyle alpha <0}.

Косинусом угла alpha называется абсцисса точки {displaystyle M_{alpha }} единичной окружности, где {displaystyle {left(cdot right)}M_{alpha }} получается поворотом {displaystyle {left(cdot right)}M_{0}} на угол alpha в положительном направлении (против часовой стрелки), если alpha >0, и в отрицательном (по часовой стрелке), если {displaystyle alpha <0}.

Тангенсом угла alpha называется отношение ординаты точки {displaystyle M_{alpha }} единичной окружности к её абсциссе, причём точка {displaystyle M_{alpha }} не принадлежит оси ординат.

Котангенсом угла alpha называется отношение абсциссы точки {displaystyle M_{alpha }} единичной окружности к её ординате, причём точка {displaystyle M_{alpha }} не принадлежит оси абсцисс.[4]

Таким образом, определения тригонометрических функций выглядят следующим образом:

Нетрудно видеть, что такое определение также основывается на отношениях прямоугольного треугольника, с тем отличием, что учитывается знак (pm 1). Поэтому тригонометрические функции можно определить и по окружности произвольного радиуса R, однако формулы придётся нормировать. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

В тригонометрии удобным оказывается вести счёт углов не в градусной мере, а в радианной. Так, угол в {displaystyle 360^{circ }} запишется длиной единичной окружности 2pi . Угол в 180^{circ } равен, соответственно pi и так далее. Заметим, что угол на 2pi отличающийся от alpha по рисунку эквивалентен alpha , вследствие чего заключим, что тригонометрические функции периодичны.

Наконец, определим тригонометрические функции вещественного числа x тригонометрическими функциями угла, радианная мера которого равна x.

Определение для острых углов[править | править код]

Рис. 4.
Тригонометрические функции острого угла

Определение тангенса. Марка СССР 1961 года

В геометрии тригонометрические функции острого угла определяются отношениями сторон прямоугольного треугольника[5]. Пусть {displaystyle triangle AOB} — прямоугольный (угол {displaystyle angle A} прямой), с острым углом {displaystyle angle AOB=alpha } и гипотенузой OB. Тогда:

Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (См.: теорема синусов, теорема косинусов).

Определение как решений дифференциальных уравнений[править | править код]

Синус и косинус можно определить как единственные функции, вторые производные которых равны самим функциям, взятым со знаком минус:

 left(cos xright)'' = - cos x,
 left(sin  xright)'' = - sin x.

То есть задать их как чётное (косинус) и нечётное (синус) решения дифференциального уравнения

frac{d^2}{dvarphi^2}R(varphi) = - R(varphi),

с дополнительными условиями:
R(0)=1 для косинуса и R'(0)=1 для синуса.

Определение как решений функциональных уравнений[править | править код]

Функции косинус и синус можно определить[7]
как решения (f и g соответственно) системы функциональных уравнений:

left{
begin{array}{rcl}
f(x+y)&=&f(x)f(y)-g(x)g(y)\
g(x+y)&=&g(x)f(y)+f(x)g(y)
end{array}
right.

при дополнительных условиях:

f(x)^{2}+g(x)^{2}=1, g(pi /2)=1, и {displaystyle 0<g(x)<1} при 0<x<pi /2.

Определение через ряды[править | править код]

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

sin x=x-frac{x^3}{3!}+frac{x^5}{5!}-frac{x^7}{7!}+frac{x^9}{9!}-cdots = sum_{n=0}^inftyfrac{(-1)^nx^{2n+1}}{(2n+1)!},
cos x=1-frac{x^2}{2!}+frac{x^4}{4!}-frac{x^6}{6!}+frac{x^8}{8!}-cdots = sum_{n=0}^inftyfrac{(-1)^nx^{2n}}{(2n)!}.

Пользуясь этими формулами, а также равенствами operatorname{tg},x=frac{sin x}{cos x}, operatorname{ctg},x=frac{cos x}{sin x}, sec x=frac{1}{cos x} и operatorname{cosec},x=frac{1}{sin x}, можно найти разложения в ряд и других тригонометрических функций:

{operatorname{tg},x=x+frac{1}{3},x^3 + frac{2}{15},x^5 + frac{17}{315},x^7 + frac{62}{2835},x^9 + cdots = sum_{n=1}^inftyfrac{2^{2n}(2^{2n}-1)|B_{2n}|}{(2n)!}x^{2n-1} quad left(-frac{pi}{2}<x<frac{pi}{2}right),}
{operatorname{ctg},x = frac{1}{x} - frac{x}{3} - frac{x^3}{45} - frac{2x^5}{945} - frac{x^7}{4725} - cdots = frac{1}{x} - sum_{n=1}^infty frac{2^{2n}|B_{2n}|}{(2n)!},x^{2n-1} quad left(-pi < x < piright),}
{sec x=1+frac{1}{2},x^2+frac{5}{24},x^4+frac{61}{720},x^6+frac{277}{8064},x^8+cdots = sum_{n=0}^inftyfrac{|E_{n}|}{(2n)!},x^{2n}, quad left(-frac{pi}{2} < x < frac{pi}{2}right),}
operatorname{cosec} x = frac{1}{x} + frac{1}{6},x + frac{7}{360},x^3 + frac{31}{15120},x^5 + frac{127}{604800},x^7 + cdots = frac{1}{x} + sum_{n=1}^infty frac{2(2^{2n-1}-1) |B_{2n}|}{(2n)!},x^{2n-1} quad left(-pi < x < piright),

где

B_{n} — числа Бернулли,
E_{n} — числа Эйлера.

Значения тригонометрических функций для некоторых углов[править | править код]

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («infty » означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

Значения косинуса и синуса на окружности

Радианы {displaystyle 0} {displaystyle {frac {pi }{6}}} {displaystyle {frac {pi }{4}}} {displaystyle {frac {pi }{3}}} {displaystyle {frac {pi }{2}}} pi {displaystyle {frac {3pi }{2}}} 2pi
Градусы {displaystyle 0^{circ }} {displaystyle 30^{circ }} {displaystyle 45^{circ }} {displaystyle 60^{circ }} {displaystyle 90^{circ }} {displaystyle 180^{circ }} {displaystyle 270^{circ }} {displaystyle 360^{circ }}
{displaystyle sin alpha } {displaystyle 0} {frac {1}{2}} frac{sqrt{2}}{2} frac{sqrt{3}}{2} 1 {displaystyle 0} -1 {displaystyle 0}
cos alpha 1 frac{sqrt{3}}{2} frac{sqrt{2}}{2} {frac {1}{2}} {displaystyle 0} -1 {displaystyle 0} 1
operatorname{tg},alpha {displaystyle 0} {displaystyle {frac {1}{sqrt {3}}}} 1 sqrt{3} infty {displaystyle 0} infty {displaystyle 0}
operatorname{ctg},alpha infty sqrt{3} 1 frac{sqrt{3}}{3} {displaystyle 0} infty {displaystyle 0} infty
{displaystyle sec alpha } 1 {displaystyle {frac {2{sqrt {3}}}{3}}} {sqrt {2}} 2 infty -1 infty 1
{displaystyle operatorname {cosec} ,alpha } infty 2 {sqrt {2}} {displaystyle {frac {2{sqrt {3}}}{3}}} 1 infty -1 infty

Значения тригонометрических функций нестандартных углов[править | править код]

Радианы {displaystyle {frac {2pi }{3}}} {displaystyle {frac {3pi }{4}}} {displaystyle {frac {5pi }{6}}} {displaystyle {frac {7pi }{6}}} {displaystyle {frac {5pi }{4}}} {displaystyle {frac {4pi }{3}}} {displaystyle {frac {5pi }{3}}} {displaystyle {frac {7pi }{4}}} {displaystyle {frac {11pi }{6}}}
Градусы {displaystyle 120^{circ }} {displaystyle 135^{circ }} {displaystyle 150^{circ }} {displaystyle 210^{circ }} {displaystyle 225^{circ }} {displaystyle 240^{circ }} {displaystyle 300^{circ }} {displaystyle 315^{circ }} {displaystyle 330^{circ }}
{displaystyle sin alpha } frac{sqrt{3}}{2} frac{sqrt{2}}{2} {frac {1}{2}} -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -frac{sqrt{3}}{2} -frac{sqrt{2}}{2} -frac{1}{2}
cos alpha -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -frac{sqrt{3}}{2} -frac{sqrt{2}}{2} -frac{1}{2} {frac {1}{2}} frac{sqrt{2}}{2} frac{sqrt{3}}{2}
operatorname{tg},alpha -sqrt{3} -1 -frac{sqrt{3}}{3} frac{sqrt{3}}{3} 1 sqrt{3} -sqrt{3} -1 -frac{sqrt{3}}{3}
operatorname{ctg},alpha -frac{sqrt{3}}{3} -1 -sqrt{3} sqrt{3} 1 frac{sqrt{3}}{3} -frac{sqrt{3}}{3} -1 -sqrt{3}
{displaystyle sec alpha } -2 {displaystyle -{sqrt {2}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{sqrt {2}}} -2 2 {sqrt {2}} {displaystyle {frac {2{sqrt {3}}}{3}}}
{displaystyle operatorname {cosec} ,alpha } {displaystyle {frac {2{sqrt {3}}}{3}}} {sqrt {2}} 2 -2 {displaystyle -{sqrt {2}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{sqrt {2}}} -2
Радианы {displaystyle {frac {pi }{12}}} {displaystyle {frac {pi }{10}}} {displaystyle {frac {pi }{8}}} {displaystyle {frac {pi }{5}}} {displaystyle {frac {3pi }{10}}} {displaystyle {frac {3pi }{8}}} {displaystyle {frac {2pi }{5}}} {displaystyle {frac {5pi }{12}}}
Градусы {displaystyle 15^{circ }} {displaystyle 18^{circ }} {displaystyle 22{,}5^{circ }} {displaystyle 36^{circ }} {displaystyle 54^{circ }} {displaystyle 67{,}5^{circ }} {displaystyle 72^{circ }} {displaystyle 75^{circ }}
{displaystyle sin alpha } {displaystyle {frac {{sqrt {3}}-1}{2{sqrt {2}}}}} frac{sqrt{5}-1}{4} frac{sqrt{2-sqrt{2}}}{2} {displaystyle {frac {sqrt {10-2{sqrt {5}}}}{4}}} frac{sqrt{5}+1}{4} frac{sqrt{2+sqrt{2}}}{2} {displaystyle {frac {sqrt {10+2{sqrt {5}}}}{4}}} {displaystyle {frac {{sqrt {3}}+1}{2{sqrt {2}}}}}
cos alpha {displaystyle {frac {{sqrt {3}}+1}{2{sqrt {2}}}}} {displaystyle {frac {sqrt {10+2{sqrt {5}}}}{4}}} frac{sqrt{2+sqrt{2}}}{2} frac{sqrt{5}+1}{4} {displaystyle {frac {sqrt {10-2{sqrt {5}}}}{4}}} frac{sqrt{2-sqrt{2}}}{2} frac{sqrt{5}-1}{4} {displaystyle {frac {{sqrt {3}}-1}{2{sqrt {2}}}}}
operatorname{tg},alpha 2-sqrt{3} {displaystyle {frac {sqrt {25-10{sqrt {5}}}}{5}}} sqrt{2}-1 {displaystyle {sqrt {5-2{sqrt {5}}}}} {displaystyle {frac {sqrt {25+10{sqrt {5}}}}{5}}} sqrt{2}+1 {displaystyle {sqrt {5+2{sqrt {5}}}}} {displaystyle 2+{sqrt {3}}}
operatorname{ctg},alpha {displaystyle 2+{sqrt {3}}} {displaystyle {sqrt {5+2{sqrt {5}}}}} sqrt{2}+1 {displaystyle {frac {sqrt {25+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {5-2{sqrt {5}}}}} sqrt{2}-1 {displaystyle {frac {sqrt {25-10{sqrt {5}}}}{5}}} 2-sqrt{3}
{displaystyle sec alpha } {displaystyle {sqrt {2}}({sqrt {3}}-1)} {displaystyle {frac {sqrt {50-10{sqrt {5}}}}{5}}} {displaystyle {sqrt {4-2{sqrt {2}}}}} {displaystyle {sqrt {5}}-1} {displaystyle {frac {sqrt {50+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {4+2{sqrt {2}}}}} {displaystyle {sqrt {5}}+1} {displaystyle {sqrt {2}}({sqrt {3}}+1)}
{displaystyle operatorname {cosec} ,alpha } {displaystyle {sqrt {2}}({sqrt {3}}+1)} {displaystyle {sqrt {5}}+1} {displaystyle {sqrt {4+2{sqrt {2}}}}} {displaystyle {frac {sqrt {50+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {5}}-1} {displaystyle {sqrt {4-2{sqrt {2}}}}} {displaystyle {frac {sqrt {50-10{sqrt {5}}}}{5}}} {displaystyle {sqrt {2}}({sqrt {3}}-1)}

Значения тригонометрических функций для некоторых других углов

Свойства тригонометрических функций[править | править код]

Простейшие тождества[править | править код]

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности (x^{2}+y^{2}=1) или теореме Пифагора, имеем:

{displaystyle sin ^{2}alpha +cos ^{2}alpha =1.}

Это соотношение называется основным тригонометрическим тождеством.

Разделив это уравнение на квадрат косинуса и синуса соответственно, получим:

{displaystyle 1+mathop {mathrm {tg} } ,^{2}alpha =mathop {mathrm {sec} } ,^{2}alpha ,}
{displaystyle 1+mathop {mathrm {ctg} } ,^{2}alpha =mathop {mathrm {cosec} } ,^{2}alpha .}

Из определения тангенса и котангенса следует, что

 mathop{mathrm{tg}},alpha  cdot mathop{mathrm{ctg}},alpha=1.

Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом (с точностью до знака из-за неоднозначности раскрытия квадратного корня). Нижеприведённые формулы верны для {displaystyle 0<x<pi /2}:

  sin cos tg ctg sec cosec
{displaystyle ,sin x=} {displaystyle ,sin x} {displaystyle {sqrt {1-cos ^{2}x}}} {displaystyle {frac {operatorname {tg} x}{sqrt {1+operatorname {tg} ^{2}x}}}} {displaystyle {frac {1}{sqrt {operatorname {ctg} ^{2}x+1}}}} {displaystyle {frac {sqrt {sec ^{2}x-1}}{sec x}}} {displaystyle {frac {1}{operatorname {cosec} x}}}
{displaystyle ,cos x=} {displaystyle ,{sqrt {1-sin ^{2}x}}} {displaystyle ,cos x} {displaystyle ,{frac {1}{sqrt {1+operatorname {tg} ^{2}x}}}} {displaystyle ,{frac {operatorname {ctg} x}{sqrt {operatorname {ctg} ^{2}x+1}}}} {displaystyle ,{frac {1}{sec x}}} {displaystyle ,{frac {sqrt {operatorname {cosec} ^{2}x-1}}{operatorname {cosec} x}}}
{displaystyle ,operatorname {tg} x=} {displaystyle ,{frac {sin x}{sqrt {1-sin ^{2}x}}}} {displaystyle ,{frac {sqrt {1-cos ^{2}x}}{cos x}}} {displaystyle ,operatorname {tg} x} {displaystyle ,{frac {1}{operatorname {ctg} x}}} {displaystyle ,{sqrt {sec ^{2}x-1}}} {displaystyle ,{frac {1}{sqrt {operatorname {cosec} ^{2}x-1}}}}
{displaystyle ,operatorname {ctg} x=} {displaystyle ,{frac {sqrt {1-sin ^{2}x}}{sin x}}} {displaystyle ,{frac {cos x}{sqrt {1-cos ^{2}x}}}} {displaystyle ,{frac {1}{operatorname {tg} x}}} {displaystyle ,operatorname {ctg} x} {displaystyle ,{frac {1}{sqrt {sec ^{2}x-1}}}} {displaystyle ,{sqrt {operatorname {cosec} ^{2}x-1}}}
{displaystyle ,sec x=} {displaystyle ,{frac {1}{sqrt {1-sin ^{2}x}}}} {displaystyle ,{frac {1}{cos x}}} {displaystyle ,{sqrt {1+operatorname {tg} ^{2}x}}} {displaystyle ,{frac {sqrt {operatorname {ctg} ^{2}x+1}}{operatorname {ctg} x}}} {displaystyle ,sec x} {displaystyle ,{frac {operatorname {cosec} x}{sqrt {operatorname {cosec} ^{2}x-1}}}}
{displaystyle ,operatorname {cosec} x=} {displaystyle ,{frac {1}{sin x}}} {displaystyle ,{frac {1}{sqrt {1-cos ^{2}x}}}} {displaystyle ,{frac {sqrt {1+operatorname {tg} ^{2}x}}{operatorname {tg} x}}} {displaystyle ,{sqrt {operatorname {ctg} ^{2}x+1}}} {displaystyle ,{frac {sec x}{sqrt {sec ^{2}x-1}}}} {displaystyle ,operatorname {cosec} x}

Непрерывность[править | править код]

Чётность[править | править код]

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

 sin left( - alpha right)  =  - sin alpha ,,
 cos left( - alpha right)  =  cos alpha ,,
 mathop{mathrm{tg}}, left( - alpha right)  = - mathop{mathrm{tg}}, alpha ,,
 mathop{mathrm{ctg}}, left( - alpha right)  = - mathop{mathrm{ctg}}, alpha ,,
 sec left( - alpha right)  =  sec alpha ,,
 mathop{mathrm{cosec}}, left( - alpha right)  = - mathop{mathrm{cosec}}, alpha ,.

Периодичность[править | править код]

Функции {displaystyle sin x,;cos x,;sec x,;mathrm {cosec} ,x} — периодические с периодом 2pi , функции {displaystyle mathrm {tg} ,x} и {displaystyle mathrm {ctg} ,x} — c периодом pi .

Формулы приведения[править | править код]

Формулами приведения называются формулы следующего вида:

{displaystyle f(npi +alpha )=pm f(alpha ),}
{displaystyle f(npi -alpha )=pm f(alpha ),}
{displaystyle fleft({frac {(2n+1)pi }{2}}+alpha right)=pm g(alpha ),}
{displaystyle fleft({frac {(2n+1)pi }{2}}-alpha right)=pm g(alpha ).}

Здесь f — любая тригонометрическая функция, g — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол alpha острый, например:

 cos left(  frac{ pi}{2} - alpha right)  =   sin alpha,, или что то же самое:  cos left( 90^circ - alpha right)  =   sin alpha,.

Некоторые формулы приведения:

alpha frac{pi}{2} - alpha frac{pi}{2} + alpha {displaystyle pi -alpha } {displaystyle pi +alpha } frac{3,pi}{2} - alpha frac{3,pi}{2} + alpha 2,pi - alpha
sinalpha cosalpha cosalpha sinalpha {displaystyle -sin alpha } {displaystyle -cos alpha } {displaystyle -cos alpha } {displaystyle -sin alpha }
cosalpha sinalpha {displaystyle -sin alpha } {displaystyle -cos alpha } {displaystyle -cos alpha } {displaystyle -sin alpha } sinalpha cosalpha
operatorname{tg},alpha operatorname{ctg},alpha -operatorname{ctg},alpha -operatorname{tg},alpha operatorname{tg},alpha operatorname{ctg},alpha -operatorname{ctg},alpha -operatorname{tg},alpha
operatorname{ctg},alpha operatorname{tg},alpha -operatorname{tg},alpha -operatorname{ctg},alpha operatorname{ctg},alpha operatorname{tg},alpha -operatorname{tg},alpha -operatorname{ctg},alpha

Интересующие формулы приведения так же могут легко быть получены рассмотрением функций на единичной окружности.

Формулы сложения и вычитания[править | править код]

Значения тригонометрических функций суммы и разности двух углов:

 sinleft( alpha pm beta right)= sinalpha , cosbeta pm cosalpha , sinbeta,
 cosleft( alpha pm beta right)= cosalpha , cosbeta mp sinalpha , sinbeta,
 operatorname{tg}left( alpha pm beta right) = frac{operatorname{tg},alpha pm operatorname{tg},beta}{1 mp operatorname{tg},alpha , operatorname{tg},beta},
 operatorname{ctg}left( alpha pm beta right) = frac{operatorname{ctg},alpha,operatorname{ctg},beta mp 1}{operatorname{ctg},beta pm operatorname{ctg},alpha}.

Аналогичные формулы для суммы трёх углов:

sin left( alpha + beta + gamma right) = sin alpha cos beta cos gamma + cos alpha sin beta cos gamma + cos alpha cos beta sin gamma - sin alpha sin beta sin gamma,
cos left( alpha + beta + gamma right) = cos alpha cos beta cos gamma - sin alpha sin beta cos gamma - sin alpha cos beta sin gamma - cos alpha sin beta sin gamma.

Формулы для кратных углов[править | править код]

Формулы двойного угла:

sin 2alpha = 2 sin alpha cos alpha = frac{2,operatorname{tg},alpha }{1 + operatorname{tg}^2alpha} = frac{2,operatorname{ctg},alpha }{1 + operatorname{ctg}^2alpha} = frac{2}{operatorname{tg},alpha + operatorname{ctg},alpha},
cos 2alpha = cos^2 alpha,-,sin^2 alpha = 2 cos^2 alpha,-,1 = 1,-,2 sin^2 alpha = frac{1 - operatorname{tg}^2 alpha}{1 + operatorname{tg}^2alpha} = frac{operatorname{ctg}^2 alpha - 1}{operatorname{ctg}^2alpha + 1} = frac{operatorname{ctg},alpha - operatorname{tg},alpha}{operatorname{ctg},alpha + operatorname{tg},alpha},
operatorname{tg},2 alpha = frac{2,operatorname{tg},alpha}{1 - operatorname{tg}^2alpha} = frac{2,operatorname{ctg},alpha}{operatorname{ctg}^2alpha - 1} = frac{2}{operatorname{ctg},alpha - operatorname{tg},alpha},
operatorname{ctg},2 alpha = frac{operatorname{ctg}^2 alpha - 1}{2,operatorname{ctg},alpha} = frac{operatorname{ctg},alpha - operatorname{tg},alpha}{2}.

Формулы тройного угла:

sin,3alpha=3sinalpha - 4sin^3alpha,
cos,3alpha=4cos^3alpha -3cosalpha,
operatorname{tg},3alpha=frac{3,operatorname{tg},alpha - operatorname{tg}^3,alpha}{1 - 3,operatorname{tg}^2,alpha},
operatorname{ctg},3alpha=frac{operatorname{ctg}^3,alpha - 3,operatorname{ctg},alpha}{3,operatorname{ctg}^2,alpha - 1}.

Прочие формулы для кратных углов:

sin,4alpha=cosalpha left(4sinalpha - 8sin^3alpharight),
cos,4alpha=8cos^4alpha - 8cos^2alpha + 1,
operatorname{tg},4alpha=frac{4,operatorname{tg},alpha - 4,operatorname{tg}^3,alpha}{1 - 6,operatorname{tg}^2,alpha + operatorname{tg}^4,alpha},
operatorname{ctg},4alpha=frac{operatorname{ctg}^4,alpha - 6,operatorname{ctg}^2,alpha + 1}{4,operatorname{ctg}^3,alpha - 4,operatorname{ctg},alpha},
sin,5alpha=16sin^5alpha-20sin^3alpha +5sinalpha,
cos,5alpha=16cos^5alpha-20cos^3alpha +5cosalpha,
operatorname{tg},5alpha=operatorname{tg}alphafrac{operatorname{tg}^4alpha-10operatorname{tg}^2alpha+5}{5operatorname{tg}^4alpha-10operatorname{tg}^2alpha+1},
operatorname{ctg},5alpha=operatorname{ctg}alphafrac{operatorname{ctg}^4alpha-10operatorname{ctg}^2alpha+5}{5operatorname{ctg}^4alpha-10operatorname{ctg}^2alpha+1},
 sin (nalpha)=2^{n-1}prod^{n-1}_{k=0}sinleft( alpha+frac{pi k}{n}right) следует из формулы дополнения и формулы Гаусса для гамма-функции.

Из формулы Муавра можно получить следующие общие выражения для кратных углов:

sin(nalpha)=sum_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}cos^{n-2k-1}alpha,sin^{2k+1}alpha,
cos(nalpha)=sum_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}cos^{n-2k}alpha,sin^{2k}alpha,
mathrm{tg}(nalpha)=frac{sin(nalpha)}{cos(nalpha)}=dfrac{displaystyle{sumlimits_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}mathrm{tg}^{2k+1}alpha}}{displaystyle{sumlimits_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}mathrm{tg}^{2k}alpha}},
mathrm{ctg}(nalpha)=frac{cos(nalpha)}{sin(nalpha)}=dfrac{displaystyle{sumlimits_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}mathrm{ctg}^{n-2k}alpha}}{displaystyle{sumlimits_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}mathrm{ctg}^{n-2k-1}alpha}},

где [n] — целая часть числа n, binom{n}{k} — биномиальный коэффициент.

Формулы половинного угла:

sinfrac{alpha}{2}=sqrt{frac{1-cosalpha}{2}},quad 0 leqslant alpha leqslant 2pi,
cosfrac{alpha}{2}=sqrt{frac{1+cosalpha}{2}},quad -pi leqslant alpha leqslant pi,
operatorname{tg},frac{alpha}{2}=frac{1-cosalpha}{sinalpha}=frac{sinalpha}{1+cosalpha},
operatorname{ctg},frac{alpha}{2}=frac{sinalpha}{1-cosalpha}=frac{1+cosalpha}{sinalpha},
operatorname{tg},frac{alpha}{2}=sqrt{frac{1-cosalpha}{1+cosalpha}},quad 0 leqslant alpha < pi,
operatorname{ctg},frac{alpha}{2}=sqrt{frac{1+cosalpha}{1-cosalpha}},quad 0 < alpha leqslant pi.

Произведения[править | править код]

Формулы для произведений функций двух углов:

sin alpha sin beta ={frac {cos(alpha -beta )-cos(alpha +beta )}{2}},
sinalpha cosbeta = frac{sin(alpha-beta) + sin(alpha+beta)}{2},
cosalpha cosbeta = frac{cos(alpha-beta) + cos(alpha+beta)}{2},
operatorname{tg},alpha,operatorname{tg},beta = frac{cos(alpha-beta) - cos(alpha+beta)}{cos(alpha-beta) + cos(alpha+beta)},
operatorname{tg},alpha,operatorname{ctg},beta = frac{sin(alpha-beta) + sin(alpha+beta)}{sin(alpha+beta) -sin(alpha-beta)},
operatorname{ctg},alpha,operatorname{ctg},beta = frac{cos(alpha-beta) + cos(alpha+beta)}{cos(alpha-beta) - cos(alpha+beta)}.

Аналогичные формулы для произведений синусов и косинусов трёх углов:

sinalpha sinbeta singamma = frac{sin(alpha+beta-gamma) + sin(beta+gamma-alpha) + sin(alpha-beta+gamma) - sin(alpha+beta+gamma)}{4},
sinalpha sinbeta cosgamma = frac{-cos(alpha+beta-gamma) + cos(beta+gamma-alpha) + cos(alpha-beta+gamma) - cos(alpha+beta+gamma)}{4},
sinalpha cosbeta cosgamma = frac{sin(alpha+beta-gamma) - sin(beta+gamma-alpha) + sin(alpha-beta+gamma) - sin(alpha+beta+gamma)}{4},
cosalpha cosbeta cosgamma = frac{cos(alpha+beta-gamma) + cos(beta+gamma-alpha) + cos(alpha-beta+gamma) + cos(alpha+beta+gamma)}{4}.

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Степени[править | править код]

{displaystyle sin ^{2}alpha ={frac {1-cos 2,alpha }{2}}={frac {operatorname {tg} ^{2},alpha }{1+operatorname {tg} ^{2},alpha }},}
cos ^{2}alpha ={frac  {1+cos 2,alpha }{2}}={frac  {operatorname {ctg}^{2},alpha }{1+operatorname {ctg}^{2},alpha }},
operatorname {tg}^{2},alpha ={frac  {1-cos 2,alpha }{1+cos 2,alpha }}={frac  {operatorname {sin}^{2},alpha }{1-operatorname {sin}^{2},alpha }},
{displaystyle operatorname {ctg} ^{2},alpha ={frac {1+cos 2,alpha }{1-cos 2,alpha }}={frac {operatorname {cos} ^{2},alpha }{1-operatorname {cos} ^{2},alpha }},}
sin^3alpha = frac{3sinalpha - sin 3,alpha}{4},
cos^3alpha = frac{3cosalpha + cos 3,alpha}{4},
operatorname{tg}^3,alpha = frac{3sinalpha - sin 3,alpha}{3cosalpha + cos 3,alpha},
operatorname{ctg}^3,alpha = frac{3cosalpha + cos 3,alpha}{3sinalpha - sin 3,alpha},
sin^4alpha = frac{cos 4alpha - 4cos 2,alpha + 3}{8},
cos^4alpha = frac{cos 4alpha + 4cos 2,alpha + 3}{8},
operatorname{tg}^4,alpha = frac{cos 4alpha - 4cos 2,alpha + 3}{cos 4alpha + 4cos 2,alpha + 3},
operatorname{ctg}^4,alpha = frac{cos 4alpha + 4cos 2,alpha + 3}{cos 4alpha - 4cos 2,alpha + 3}.

Иллюстрация равенства {displaystyle sin x-cos x={sqrt {2}}cdot sin left(x-{pi  over 4}right)}

Суммы[править | править код]

{displaystyle sin alpha pm sin beta =2sin {frac {alpha pm beta }{2}}cos {frac {alpha mp beta }{2}},}
{displaystyle cos alpha +cos beta =2cos {frac {alpha +beta }{2}}cos {frac {alpha -beta }{2}},}
{displaystyle cos alpha -cos beta =-2sin {frac {alpha +beta }{2}}sin {frac {alpha -beta }{2}},}
{displaystyle operatorname {tg} alpha pm operatorname {tg} beta ={frac {sin(alpha pm beta )}{cos alpha cos beta }},}
{displaystyle operatorname {ctg} alpha pm operatorname {ctg} beta ={frac {sin(beta pm alpha )}{sin alpha sin beta }},}
{displaystyle 1pm sin {2alpha }=(sin alpha pm cos alpha )^{2},}
{displaystyle sin alpha pm cos alpha ={sqrt {2}}cdot sin left(alpha pm {pi  over 4}right).}

Существует представление:

Asin alpha +Bcos alpha ={sqrt  {A^{2}+B^{2}}};sin(alpha +phi ),

где угол phi находится из соотношений:

{displaystyle sin phi ={frac {B}{sqrt {A^{2}+B^{2}}}},}
{displaystyle cos phi ={frac {A}{sqrt {A^{2}+B^{2}}}}.}

Универсальная тригонометрическая подстановка[править | править код]

Все тригонометрические функции можно выразить через тангенс половинного угла:

{displaystyle sin x={frac {sin x}{1}}={frac {2sin {frac {x}{2}}cos {frac {x}{2}}}{sin ^{2}{frac {x}{2}}+cos ^{2}{frac {x}{2}}}}={frac {2operatorname {tg} {frac {x}{2}}}{1+operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle cos x={frac {cos x}{1}}={frac {cos ^{2}{frac {x}{2}}-sin ^{2}{frac {x}{2}}}{cos ^{2}{frac {x}{2}}+sin ^{2}{frac {x}{2}}}}={frac {1-operatorname {tg} ^{2}{frac {x}{2}}}{1+operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {tg} ~x={frac {sin x}{cos x}}={frac {2operatorname {tg} {frac {x}{2}}}{1-operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {ctg} ~x={frac {cos x}{sin x}}={frac {1-operatorname {tg} ^{2}{frac {x}{2}}}{2operatorname {tg} {frac {x}{2}}}},}

{displaystyle sec x={frac {1}{cos x}}={frac {1+operatorname {tg} ^{2}{frac {x}{2}}}{1-operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {cosec} ~x={frac {1}{sin x}}={frac {1+operatorname {tg} ^{2}{frac {x}{2}}}{2operatorname {tg} {frac {x}{2}}}}.}

Исследование функций в математическом анализе[править | править код]

Разложение в бесконечные произведения[править | править код]

Тригонометрические функции могут быть представлены в виде бесконечного произведения многочленов:

{displaystyle sin x=x,prod _{n=1}^{infty }left(1-{frac {x^{2}}{pi ^{2}n^{2}}}right),}
{displaystyle cos x=prod _{n=0}^{infty }left(1-{frac {4x^{2}}{pi ^{2}(2n+1)^{2}}}right).}

Эти соотношения выполняются при любом значении x.

Непрерывные дроби[править | править код]

Разложение тангенса в непрерывную дробь:

{displaystyle mathop {rm {tg}} x={frac {x}{1-{frac {x^{2}}{3-{frac {x^{2}}{5-{frac {x^{2}}{7-{frac {x^{2}}{ddots }}}}}}}}}}}

Производные и первообразные[править | править код]

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

( sin x )' = cos x ,,

( cos x )' = -sin x ,,

{displaystyle (operatorname {tg} x)'={frac {1}{cos ^{2}x}}=1+operatorname {tg} ^{2}x=sec ^{2}x,}

{displaystyle (operatorname {ctg} x)'=-{frac {1}{sin ^{2}x}}=-operatorname {cosec} ^{2}x,}

{displaystyle (sec x)'={frac {sin x}{cos ^{2}x}}=sec xoperatorname {tg} x,}

( operatorname{cosec}~x)' = -frac{cos x}{sin ^2 x}.

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом[8]:

intsin x, dx = -cos x + C ,,

intcos x, dx = sin x + C ,,

{displaystyle int operatorname {tg} x,dx=-ln left|cos xright|+C,,}

{displaystyle int operatorname {ctg} x,dx=ln left|sin xright|+C,,}

intsec x, dx=ln left| operatorname{tg} , left( frac {pi}{4}+frac{x}{2}right) right|+ C ,,

int operatorname{cosec}~ x, dx=ln left| operatorname{tg} , frac{x}{2} right|+ C.

Тригонометрические функции комплексного аргумента[править | править код]

Определение[править | править код]

Формула Эйлера:

{displaystyle e^{ivartheta }=cos vartheta +isin vartheta .}

Формула Эйлера позволяет определить тригонометрические функции от комплексных аргументов через экспоненту по аналогии с гиперболическими функциями, или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

sin z = sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!}z^{2n+1} = frac{e^{i z} - e^{-i z}}{2i}, = frac{operatorname{sh}  i z }{i};
cos z = sum_{n=0}^infty frac{(-1)^{n}}{(2n)!}z^{2n} = frac{e^{i z} + e^{-i z}}{2}, = operatorname{ch} i z;
operatorname{tg}, z = frac{sin z}{cos z} = frac{e^{i z} - e^{-i z}}{i(e^{i z} + e^{-i z})};
operatorname{ctg}, z = frac{cos z}{sin z} = frac{i(e^{i z} + e^{-i z})}{e^{i z} - e^{-i z}};
sec z = frac{1}{cos z} = frac{2}{e^{i z} + e^{-i z}};
{displaystyle operatorname {cosec} ,z={frac {1}{sin z}}={frac {2i}{e^{iz}-e^{-iz}}},} где {displaystyle i^{2}=-1.}

Соответственно, для вещественного x:

{displaystyle cos x=operatorname {Re} (e^{ix}),}
{displaystyle sin x=operatorname {Im} (e^{ix}).}

Комплексные синус и косинус тесно связаны с гиперболическими функциями:

{displaystyle sin(x+iy)=sin x,operatorname {ch} ,y+icos x,operatorname {sh} ,y,}
{displaystyle cos(x+iy)=cos x,operatorname {ch} ,y-isin x,operatorname {sh} ,y.}

Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства:

  • комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения;
  • все нули комплексных синуса и косинуса лежат на вещественной оси.

Комплексные графики[править | править код]

На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный — ноль). Цвет изменяется от аргумента и угла согласно карте.

Тригонометрические функции в комплексной плоскости

Complex sin.jpg

Complex cos.jpg

Complex tan.jpg

Complex Cot.jpg

Complex Sec.jpg

Complex Csc.jpg

{displaystyle sin ,z} {displaystyle cos ,z} {displaystyle operatorname {tg} ,z} {displaystyle operatorname {ctg} ,z} {displaystyle sec ,z} {displaystyle operatorname {cosec} ,z}

История названий[править | править код]

Линия синуса (линия AB на рис. 2) у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды данной дуги, поскольку дуга с хордой напоминает лук с тетивой). Затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские математики, переводя индийские книги с санскрита, не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали его арабскими буквами и стали называть линию синуса «джиба» (جيب‎). Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса как «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus — «синус», имеющим то же значение (именно в этом значении оно применяется как анатомический термин синус). Термин «косинус» (лат. cosinus) — это сокращение от лат. complementi sinus — дополнительный синус.

Современные краткие обозначения sin, cos введены Уильямом Отредом и Бонавентурой Кавальери и закреплены в трудах Леонарда Эйлера.

Термины «тангенс» (лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке в его книге «Геометрия круглого» (Geometria rotundi, 1583).

Сам термин тригонометрические функции введён Клюгелем в 1770 году.

Позднее были введены и термины для обратных тригонометрических функций — арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс — с помощью добавления приставки «арк» (от лат. arcus — дуга), — Ж. Лагранжем и др.

См. также[править | править код]

  • Гиперболические функции
  • Интегральный синус
  • Интегральный косинус
  • Интегральный секанс
  • Обратные тригонометрические функции
  • Редко используемые тригонометрические функции
  • Решение треугольников
  • Синус-верзус
  • Сферическая тригонометрия
  • Тригонометрические тождества
  • Тригонометрические функции от матрицы
  • Тригонометрический ряд Фурье
  • Функция Гудермана
  • Четырёхзначные математические таблицы (Таблицы Брадиса)
  • Эллиптические функции

Литература[править | править код]

  • Бермант А. Ф., Люстерник Л. А. Тригонометрия. — М.: Наука, 1967.
  • Тригонометрические функции — статья из Большой советской энциклопедии.  — М.: Советская энциклопедия, 1977. — Т. 26. — С. 204—206.
  • Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
    • Переиздание: М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6 www.alleng.ru/d/math/math42.htm
  • Двайт Г. Б. Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.
  • Кожеуров П. А. Тригонометрия. — М.: Физматгиз, 1963.
  • Маркушевич А. И. Замечательные синусы. — М.: Наука, 1974.
  • Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. — И. М. Виноградов. Тригонометрические функции // Математическая энциклопедия. — М.: Советская энциклопедия. — 1977—1985.
  • Тригонометрические функции // Энциклопедический словарь юного математика / Ред. коллегия, Гнеденко Б. В. (гл. ред.), Савин А. П. и др. — М.: Педагогика, 1985 (1989). — С. 299—301—305. — 352 с., ил. — ISBN 5-7155-0218-7 (С. 342, 343 — таблицы тригонометрических функций 0°-90°, в том числе в радианах)
  • Тригонометрические функции // Справочник по математике (для ср. уч. заведений) / Цыпкин А. Г., под ред. Степанова С. А. — 3-е изд. — М.: Наука, Гл. редакция физ.-мат. литературы, 1983. — С. 240—258. — 480 с.

Ссылки[править | править код]

  • GonioLab — прояснённая единичная окружность, тригонометрические и гиперболические функции (Java Web Start)
  • Weisstein, Eric W. Trigonometric Functions (англ.) на сайте Wolfram MathWorld.
  • Онлайн калькулятор: вычисление значений тригонометрических функций (в том числе нахождение углов треугольника по сторонам)
  • Интерактивная карта значений тригонометрических функций
  • Тригонометрические таблицы (0° — 360°)
  • «Синус и косинус — это проценты» — перевод статьи How To Learn Trigonometry Intuitively | BetterExplained (англ.)

Примечания[править | править код]

  1. Справочник: Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с. Архивная копия от 19 января 2015 на Wayback Machine относит их к специальным функциям.
  2. Знак математический. // Большая советская энциклопедия. 1-е изд. Т. 27. — М., 1933.
  3. Справочник по элементарной математике, 1978, с. 282—284.
  4. Шахмейстер А. Х. Определение основных тригонометрических функций // Тригонометрия : [рус.] : книга / А. Х. Шахмейстер; под ред. Б. Г. Зива. — 3-е изд., стереотипное. — М. : Издательство МЦНМО ; СПб. : «Петроглиф» : «Виктория плюс», 2013. — С. 11, 14, 18, 20. — 752 с. : илл. — (Математика. Элективные курсы). — 1500 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-4439-0050-6. — ISBN 978-5-98712-042-2. — ISBN 978-5-91673-097-5.
  5. Справочник по элементарной математике, 1978, с. 271—272.
  6. Латинско-русский словарь. Дата обращения: 9 апреля 2023.
  7. Ильин В. А., Позняк Э. Г. Основы математического анализа. Ч. 1. — М.: Наука, 1998. — ISBN 5-02-015231-5.
  8. В формулах, содержащих логарифм в правой части равенств, константы интегрирования scriptstyle C, вообще говоря, различны для различных интервалов непрерывности.

Тригонометрическая таблица sin cos tan представляет собой серию таблиц, содержащих тригонометрическое значение или тангенс угла sin cos.

В этой статье таблица тригонометрических значений sin cos tan показана под различными особыми углами от угла 0º до 360º (или того, что обычно называется углом круга 360 градусов), так что вам больше не придется запоминать их.

Что касается формулы тригонометрического тождества, вы можете прочитать ее в этой статье.

Прежде чем вводить таблицу тригонометрических значений, рекомендуется сначала понять термины тригонометрия и sin cos tan.

  • Тригонометрия – это раздел математики, изучающий взаимосвязь между длиной и углом треугольника.
  • Sin (синус) – это отношение длины треугольника между передней частью угла и гипотенузой y / z.
  • Cos (косинус) – это отношение длины в треугольнике между стороной угла и гипотенузой, x / z.
  • Тан (тангенс) – это отношение длин треугольника между передней частью угла и стороной y / x.

Все тригонометрические сравнения tan sin cos ограничиваются только допустимыми прямоугольными треугольниками или треугольниками с одним углом 90 градусов.

Таблица тригонометрии со специальным углом в квадранте I (0 – 90 градусов)

Угловой 0 º 30 º 45 º 60 º 90 º
Грех 0 1/2 1/2 √2 1/2 √3 1
Cos 1 1/2 √3 1/2 √2 1/2 0
Загар 0 1/2 √3 1 √3

Специальный угловой квадрант II (90 – 180 градусов) Таблица тригонометрии

Угловой 90 º 120 º 135 º 150 º 180 º
Грех 1 1/2 √3 1/2 √2 1/2 0
Cos 0 – 1/2 – 1/2 √2 – 1/2 √3 -1
Загар -√3 -1 – 1/3 √3 0

Sin Cos Tan Table Special Angle Quadrant III (180 – 270 градусов)

Угловой 180 º 210 º 225 º 240 º 270 º
Грех 0 – 1/2 – 1/2 √2 – 1 / 2√3 -1
Cos -1 – 1 / 2√3 – 1 / 2√2 – 1/2 0
Загар 0 1 / 3√3 1 √3

Специальный угловой квадрант IV стола Cos Sin Tan (270 – 360 градусов)

Угловой 270 º 300 º 315 º 330 º 360 º
Грех -1 -½√3 -½√2 0
Cos 0 ½ ½√2 ½√3 1
Загар -√3 -1 -1 / 3√3 0

Это полный список тригонометрических таблиц для всех специальных углов от 0 до 360 градусов.

Также прочтите: Процесс работы с механизмами зрения человека и советы по уходу за глазами

Вы можете использовать эти таблицы, чтобы упростить бизнес при вычислении или анализе тригонометрии в математике.

Вызов тригонометрической таблицы со специальным углом без запоминания

Фактически, вам не нужно запоминать все тригонометрические значения со всех сторон.

Все, что вам нужно, это базовая концепция понимания, которую вы можете использовать, чтобы найти значение триггера для любого конкретного угла.

Вам просто нужно запомнить компоненты длины стороны треугольника под особыми углами 0, 30, 45, 60 и 90 градусов.

Специальная угловая тригонометрия

Предположим, вы хотите найти значение cos (60).

Вам нужно только запомнить длину стороны треугольника с углом 60 градусов, а затем выполнить операцию косинуса, которая равна x / z на этом треугольнике.

Из рисунка видно, что значение cos 60 = 1/2.

Легко, правда?

Для углов в других квадрантах метод тот же, и вам нужно только настроить положительный или отрицательный знак для каждого квадранта.

Таблица в форме круга

Если приведенная выше таблица cos sin tan слишком длинна для запоминания, а также если метод концепции специального угла, по вашему мнению, все еще труден …

Вы можете использовать тригонометрическую таблицу в форме круга, чтобы непосредственно увидеть значение sin cos tan под углом в 360 градусов.

Круговой тригонометрический стол

Быстрые приемы запоминания тригонометрических таблиц

В дополнение к описанным выше методам есть еще один метод, который вы можете использовать, чтобы легко запомнить таблицы тригонометрических формул.

Вам нужно сделать следующие шаги:

  • Шаг 1 . Создайте таблицу, содержащую углы от 0 до 90 градусов и столбцы с описанием sin cos tan
  • Шаг 2 . Обратите внимание, что общая формула для sin в диапазоне от 0 до 90 градусов равна √x / 2.
  • Шаг 3 . Измените значение x на 0 на √x / 2 в самом первом столбце. Верхний левый угол.
  • Шаг 4. Заполните последовательность, изменив x на 0, 1, 2, 3, 4 в столбце sin. Таким образом, вы получили полное тригонометрическое значение sin
  • Шаг 5 . Чтобы найти значение cos, все, что вам нужно сделать, это изменить порядок в столбце sin.
  • Шаг 6 . Чтобы найти значение tan, все, что вам нужно сделать, это разделить значение sin на значение cos.

Также прочтите: «Вымышленные рассказы: примеры, определения и элементы» [FULL Как запомнить тригонометрическую таблицу sin cos tan

Какой из них вам легче понять, чтобы запомнить триггерное значение tan sin cos?

В любом случае выберите тот, который вам легче всего понять. Потому что у каждого человека свой стиль обучения.

Таблицы для всех углов

Если в таблицах выше показаны только тригонометрические значения особых углов, то в этой таблице показаны все тригонометрические значения всех углов от 0 до 90 градусов.

Угловой Радианы Грех Cos Загар
0 ° 0 0 1 0
1 ° 0,01746 0,01746 0,99985 0,01746
2 ° 0,03492 0,03491 0,99939 0,03494
3 ° 0,05238 0,05236 0,99863 0,05243
4 ° 0,06984 0,06979 0,99756 0,06996
5 ° 0,0873 0,08719 0,99619 0,08752
6 ° 0,10476 0,10457 0,99452 0,10515
7 ° 0,12222 0,12192 0,99254 0,12283
8 ° 0,13968 0,13923 0,99026 0,1406
9 ° 0,15714 0,1565 0,98768 0,15845
10 ° 0,1746 0,17372 0,9848 0,1764
11 ° 0,19206 0,19089 0,98161 0,19446
12 ° 0,20952 0,20799 0,97813 0,21265
13 ° 0,22698 0,22504 0,97435 0,23096
14 ° 0,24444 0,24202 0,97027 0,24943
15 ° 0,26191 0,25892 0,9659 0,26806
16 ° 0,27937 0,27575 0,96123 0,28687
17 ° 0,29683 0,29249 0,95627 0,30586
18 ° 0,31429 0,30914 0,95102 0,32506
19 ° 0,33175 0,32569 0,94548 0,34448
20 ° 0,34921 0,34215 0,93965 0,36413
21 ° 0,36667 0,35851 0,93353 0,38403
22 ° 0,38413 0,37475 0,92713 0,40421
23 ° 0,40159 0,39088 0,92044 0,42467
24 ° 0,41905 0,40689 0,91348 0,44543
25 ° 0,43651 0,42278 0,90623 0,46652
26 ° 0,45397 0,43854 0,89871 0,48796
27 ° 0,47143 0,45416 0,89092 0,50976
28 ° 0,48889 0,46965 0,88286 0,53196
29 ° 0,50635 0,48499 0,87452 0,55458
30 ° 0,52381 0,50018 0,86592 0,57763
31 ° 0,54127 0,51523 0,85706 0,60116
32 ° 0,55873 0,53011 0,84793 0,62518
33 ° 0,57619 0,54483 0,83854 0,64974
34 ° 0,59365 0,55939 0,8289 0,67486
35 ° 0,61111 0,57378 0,81901 0,70057
36 ° 0,62857 0,58799 0,80887 0,72693
37 ° 0,64603 0,60202 0,79848 0,75396
38 ° 0,66349 0,61587 0,78785 0,78172
39 ° 0,68095 0,62953 0,77697 0,81024
40 ° 0,69841 0,643 0,76586 0,83958
41 ° 0,71587 0,65628 0,75452 0,86979
42 ° 0,73333 0,66935 0,74295 0,90094
43 ° 0,75079 0,68222 0,73115 0,93308
44 ° 0,76825 0,69488 0,71913 0,96629
45 ° 0,78571 0,70733 0,70688 1 00063
46 ° 0,80318 0,71956 0,69443 1,0362
47 ° 0,82064 0,73158 0,68176 1,07308
48 ° 0,8381 0,74337 0,66888 1,11137
49 ° 0,85556 0,75494 0,6558 1,15117
50 ° 0,87302 0,76627 0,64252 1,1926
51 ° 0,89048 0,77737 0,62904 1,2358
52 ° 0,90794 0,78824 0,61537 1,28091
53 ° 0,9254 0,79886 0,60152 1,32807
54 ° 0,94286 0,80924 0,58748 1,37748
55 ° 0,96032 0,81937 0,57326 1.42932
56 ° 0,97778 0,82926 0,55887 1,48382
57 ° 0,99524 0,83889 0,5443 1,54122
58 ° 1,0127 0,84826 0,52957 1,60179
59 ° 1.03016 0,85738 0,51468 1,66584
60 ° 1,04762 0,86624 0,49964 1,73374
61 ° 1,06508 0,87483 0,48444 1,80587
62 ° 1,08254 0,88315 0,46909 1,8827
63 ° 1.1 0,89121 0,4536 1 96476
64 ° 1,11746 0,89899 0,43797 2,05265
65 ° 1,13492 0,9065 0,4222 2,14707
66 ° 1,15238 0,91373 0,40631 2,24884
67 ° 1,16984 0,92069 0,3903 2,35894
68 ° 1,1873 0,92736 0,37416 2,4785
69 ° 1,20476 0,93375 0,35792 2,60887
70 ° 1,22222 0,93986 0,34156 2,75169
71 ° 1,23968 0,94568 0,3251 2,90892
72 ° 1,25714 0,95121 0,30854 3,08299
73 ° 1,2746 0,95646 0,29188 3,27686
74 ° 1,29206 0,96141 0,27514 3,49427
75 ° 1,30952 0,96606 0,25831 3,73993
76 ° 1,32698 0,97043 0,2414 4,0 1992
77 ° 1,34444 0,97449 0,22442 4,34219
78 ° 1,36191 0,97826 0,20738 4,71734
79 ° 1,37937 0,98173 0,19026 5,15984
80 ° 1,39683 0,98491 0,1731 5,68998
81 ° 1,41429 0,98778 0,15587 6,33709
82 ° 1,43175 0,99035 0,1386 7,14523
83 ° 1,44921 0,99262 0,12129 8,18379
84 ° 1,46667 0,99458 0,10394 9 56868
85 ° 1,48413 0,99625 0,08656 11 5092
86 ° 1,50159 0,99761 0,06915 14,4259
87 ° 1,51905 0,99866 0,05173 19 3069
88 ° 1,53651 0,99941 0,03428 29 153
89 ° 1,55397 0,99986 0,01683 59,4189
90 ° 1,57143 1 0

Надеюсь, это тригонометрическое объяснение может быть вам полезно.

Этот материал будет очень полезен для различных приложений в продвинутой математике и физике.

Вы также можете изучить другие школьные материалы в Saintif, такие как простые числа, преобразование единиц измерения, прямоугольные формулы и т. Д.

Справка

  • Тригонометрия – Википедия
  • Математические инструменты – тригонометрия

Sin, Cos, and Tan are the basic ratios of Trigonometry that are used to study the relationship between the angles and respective sides of a triangle. These ratios are initially defined on a Right Angled Triangle using Pythagoras Theorem. 

What is Sin Cos Tan in Trigonometry?

Let’s understand Sin, Cos, and Tan in trigonometry using formulas and examples.

A triangle that has one angle of 90° is called a right-angled triangle. It has sides called the base, perpendicular (height), and hypotenuse. The right-angled triangle follows the Pythagoras theorem. 

  • Base: The side which contains the angle is called the base of the triangle.
  • Perpendicular (Height): The side which forms 90° with the base is called perpendicular or the height of the triangle.
  • Hypotenuse: The longest side of the triangle is called the hypotenuse of the triangle. 

Right-Angled Triangle

Sin, Cos, and Tan are the ratios of the sides of any right-angled triangle. In the right-angled triangle ABC given above for angle C the Sin, Cos, and Tan are,

  • Sin C = Perpendicular / Hypotenuse = AB / CA
  • Cos C = Base / Hypotenuse = BC / CA
  • Tan C = Perpendicular / Base = AB / BC

Sin Cos Tan Values

Sin, Cos, and Tan values are the value of specific angles of a right-angled triangle. In trigonometry, the values of Sin, Cos, and Tan are different for different values of angles in the triangle. For each specific angle, the value of sin, cos, and tan are the fixed ratio between the sides.

Sin Cos Tan Values

We will understand the Sin Cos Tan Formulas later in the article.

Sin Cos Tan Formulas

Sin, Cos, and Tan functions are defined as the ratios of the sides (opposite, adjacent, and hypotenuse) of a right-angled triangle. The formulas of any angle θ sin, cos, and tan are:

  • sin θ = Opposite/Hypotenuse
  • cos θ = Adjacent/Hypotenuse
  • tan θ = Opposite/Adjacent

There are three more trigonometric functions that are reciprocal of sin, cos, and tan which are cosec, sec, and cot respectively, thus

  • cosec θ = 1 / sin θ = Hypotenuse / Opposite
  • sec θ = 1 / cos θ = Hypotenuse / Adjacent
  • cot θ = 1 / tan θ = Adjacent / Opposite

Trigonometric Functions

The trigonometric functions are also called trigonometric ratios. There are three basic and important trigonometric functions: Sine, Cosine, and Tangent.

  • The sine trigonometric function is written as sin, cosine as cos, and tangent as tan in trigonometry.
  • There are three more trigonometric functions: cosec, sec, and cot, which are the reciprocals of the sin, cos, and tan.
  • These functions can be evaluated for the right-angled triangle.

Let a right-angled triangle with base b, perpendicular p, and hypotenuse h form θ angle with the base. Then, the trigonometric functions are given by:

Trigonometric Functions 

Formula of Trigonometric Functions 

sin θ

  • sinθ = perpendicular/hypotenuse  
  • sinθ = p / h   or  θ = sin-1( p / h)

cos θ

  • cosθ = base/hypotenuse  
  • cosθ = b / h  or  θ = cos-1( b / h)

tan θ = sin θ/cos θ

  • tanθ = perpendicular/base 
  • tanθ = p / b  or  θ = tan-1( p / b)

cosecθ = 1/sin θ

  • cosecθ = hypotenuse/perpendicular  
  • cosecθ = h / p or  θ = cosec-1(h / p)

secθ = 1/cos θ

  • secθ = hypotenuse/ base  
  • secθ = h / b  or θ = sec-1(h / b)

cotθ = 1/tan θ

  • cotθ = base/perpendicular
  • cotθ = b / p  or  θ = cot-1( b / p)

Trick to Remember Sin, Cos, Tan Ratio

Statement to remember

Some people have curly black hair to produce beauty

Some people have sinθ (some) = perpendicular(people)/hypotenuse(have)
curly black hair cosθ (curly)= base(black)/hypotenuse(hair)  
to produce beauty tanθ (to)= perpendicular(produce)/base(beauty) 

Trigonometric functions for some basic angles 

In trigonometry, we have basic angles of 0°, 30°, 45°, 60°, and 90°. The below Trigonometric table gives the value of trigonometric functions for basic angles:

 θ 30° 45° 60° 90°
sin 0 1/2 1/√2 √3/2 1
cos 1 √3/2 1/√2 1/2 0
tan 0 1/√3 1 √3
cosec  2 √2 2/√3 1
sec 1 2/√3 √2 2
cot  √3 1 1/√3 0

Sin, Cos, Tan Chart

  • The sine and cosecant functions are positive in the first and second quadrants and negative in the third and fourth quadrants.
  • The cosine and secant functions are positive in the first and fourth quadrants and negative in the second and third quadrants.
  • The tangent and cotangent functions are positive in the first and third quadrants and negative in the second and fourth quadrants.
Degrees  Quadrant  Sign of sin  Sign of cos Sign of tan Sign of cosec Sign of sec Sign of cot
0° to 90°  1stquadrant  +(positive) +(positive) +(positive) +(positive) +(positive) +(positive)
90° to 180°  2ndquadrant  +(positive) –(negative) –(negative) +(positive) -(negative) -(negative)
180° to 270°  3rd quadrant –(negative) -(negative) +(positive) -(negative) -(negative) +(positive)
270° to 360° 4th quadrant –(negative) +(positive) -(negative) -(negative) +(positive) -(negative)

Reciprocal Identities

A cosecant function is the reciprocal function of the sine function and vice versa. Similarly, the secant function is the reciprocal function of the cosine function, and the cotangent function is the reciprocal function of the tangent function.

  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ
  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ

Pythagorean Identities

Pythagoras Identities of trigonometric functions are:

  • sin2θ + cos2θ = 1
  • sec2θ – tan2θ = 1
  • cosec2θ – cot2θ = 1

Negative Angle Identity

The negative angle of a cosine function is always equal to the positive cosine of the angle, whereas the negative angle of the sine and tangent function is equal to the negative sine and tangent of the angle.

  • sin (– θ) = – sin θ
  • cos (– θ) = cos θ
  • tan (– θ) = – tan θ

Also, Check

  • Trigonometric Ratios
  • Trigonometric Identities

Solved Examples on Sine Cosine Tangent Formula

Example 1: The sides of the right-angled triangle are base = 3 cm, perpendicular = 4 cm, and hypotenuse = 5 cm. Find the value of sin θ, cos θ, and tan θ. 

Solution: 

Given that, 

Base (B) = 3 cm, 

Perpendicular (P)= 4 cm

hypotenuse (H) = 5 cm

From the trigonometric functions formula:

sinθ = P/H = 4/5

cosθ = B/H = 3/5

tanθ = P/H = 4/3

Example 2: The sides of the right-angled triangle are base = 3 cm, perpendicular = 4 cm, and hypotenuse = 5 cm. Find the value of cosecθ, secθ, and cotθ. 

Solution: 

Given that, Base(b) = 3 cm, Perpendicular (p)= 4 cm and hypotenuse(h) = 5 cm

From the trigonometric functions formula:

cosecθ = 1/sinθ = H / P = 5/4

secθ = 1/cosθ = H / B= 5/3

cotθ = 1/tanθ = B / P = 3/4

Example 3: Find θ if the base = √3 and perpendicular = 1 of a right-angled triangle. 

Solution: 

Since, the perpendicular and base of the right-angled triangle is given so tan θ is used.

tan θ = perpendicular/ base 

tan θ = 1/√3

θ = tan-1(1/√3)           [from trigonometric table]

θ = 30°

Example 4: Find θ if the base = √3 and hypotenuse = 2 of a right-angled triangle. 

Solution: 

Since the base and hypotenuse of the right-angled triangle are given so cosθ is used.

cos θ = base / hypotenuse

cos θ = √3/2

θ = cos-1(√3/2)                [from trigonometric table]

   = 30°

Example 5: Find θ if the perpendicular = 1 and hypotenuse = 2 of a right-angled triangle. 

Solution: 

Since, perpendicular and hypotenuse of the right-angled triangle is given so sinθ is used.

sinθ = perpendicular/hypotenuse

sinθ = 1/2

θ = sin-1(1/2)              [from trigonometric table]

   = 30°

FAQs on Sine Cosine Tangent

Question 1: What are the values of sin 60°, cos 60°, and tan 60°?

Answer:

The values of sin 60°, cos 60°, and tan 60° is,

  • sin 60° = √3/2
  • cos 60° = 1/2
  • tan 60° = √3

Question 2: What is the value of sin 90°?

Answer:

The value of sin 90° is 1.

Question 3: Which angle in cos gives the value 0?

Answer:

The angle in cos gives the value 0 is 90° as cos 90° = 0

Question 4: How to find the value of tan θ using sin θ and cos θ?

Answer:

The value of the tan θ is given by the formula, 

  • tan θ = sin θ/cos θ

Что такое синус, косинус, тангенс, котангенс

18 мая 2022

Сегодня мы узнаем, что такое синус, косинус, тангенс и котангенс. Это первый и самый важный урок по тригонометрии на всём сайте.

Содержание:

  1. Ключевые определения: синус, косинус, тангенс, котангенс.
  2. Почему эти значения зависят только от углов?
  3. Стандартные углы: 30°, 45°, 60°.
  4. Простейшие свойства синуса, косинуса, тангенса, котангенса.
  5. Тригонометрия на координатной сетке.

Никаких сложных формул и длинных решений. Всё расписано максимально подробно. Изучите этот урок — и никаких проблем с тригонометрией не будет. Погнали!

1. Ключевые определения

Рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Мы видим, что острый угол $alpha $ образован гипотенузой $c$ и катетом $b$. Такой катет будем называть прилежащим. А катет $a$, который не участвует в формировании угла $alpha $, назовём противолежащим:

Прилежащий катет, противолежащий катет и гипотенуза

Это общепринятые названия: как только в прямоугольном треугольнике отмечен острый угол, для него немедленно можно указать прилежащий катет и противолежащий. И тут мы переходим к ключевым определениям.

1.1. Синус, косинус, тангенс, котангенс

Итак, пусть дан прямоугольный треугольник с острым углом $alpha $.

Прямоугольный треугольник

Тогда:

Определение 1. Синус угла $alpha $ — это отношение противолежащего катета к гипотенузе:

[sin alpha =frac{text{противолежащий катет}}{text{гипотенуза}}=frac{a}{c}]

Определение 2. Косинус угла $alpha $ — это отношение прилежащего катета к гипотенузе:

[cos alpha =frac{text{прилежащий катет}}{text{гипотенуза}}=frac{b}{c}]

Определение 3. Тангенс угла $alpha $ — это отношение противолежащего катета к прилежащему:

[operatorname{tg}alpha =frac{text{противолежащий катет}}{text{прилежащий катет}}=frac{a}{b}]

Определение 3. Котангенс угла $alpha $ — это отношение прилежащего катета к противолежащему:

[operatorname{ctg}alpha =frac{text{прилежащий катет}}{text{противолежащий катет}}=frac{b}{a}]

Вот так всё просто! Берём один катет, делим его на гипотенузы (или на другой катет) — и получаем выражение для синуса, косинуса, тангенса и котангенса. Все эти выражения называются тригонометрическими («тригонометрия» = «треугольники измеряю»).

Рассмотрим пару примеров.

Задача 1. Дан треугольник $ABC$. Найдите синус, косинус и тангенс угла $alpha $.

Прямоугольный треугольник и острый угол

Решение. Это классический прямоугольный треугольник с катетами 3 и 4 и гипотенузой 5. Угол $alpha $ (он же — угол $A$ или угол $BAC$) образован прилежащим катетом $AB=3$гипотенузой $AC=5$. Следовательно катет $BC=4$ — противолежащий.

Имеем:

[begin{align}sin alpha& =frac{BC}{AC}=frac{5}{4} \ cos alpha& =frac{AB}{AC}=frac{3}{5} \ operatorname{tg}alpha& =frac{BC}{AB}=frac{4}{3} end{align}]

Далеко не всегда будут получаться такие красивые ответы. Чаще они будут содержать корни — это следствие теоремы Пифагора. Но важно понимать: как только мы находим длины катетов и гипотенузу, мы сразу можем найти и синусы, косинусы, тангенсы.

Далее в примерах мы не будем считать котангенсы, потому что из формулы котангенса очевидно, что они легко выражаются через тангенсы:

[operatorname{ctg}alpha =frac{1}{operatorname{tg}alpha }]

Но об этом чуть позже.

Задача 2. Дан треугольник $ABC$. Найдите синус, косинус и тангенс угла $alpha $.

Равнобедренный прямоугольный треугольник

Это равнобедренный прямоугольный треугольник с катетами $AB=BC=1$. Найдём гипотенузу по теореме Пифагора:

[begin{align}{{ AC}^{2}} & ={{AB}^{2}}+{{BC}^{2}}=1+1=2 \ AC & =sqrt{2} \ end{align}]

Теперь найдём синус, косинус и тангенс:

[begin{align}sin alpha &=frac{BC}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ cos alpha &=frac{AB}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ operatorname{tg}alpha&=frac{BC}{AB}=frac{1}{1}=1 end{align}]

Простое правило, чтобы не запутаться, где прилежащий катет, а где противолежащий. Просто помните: приставка «ко» означает «вместе», «сообща». Поэтому «косинус» — это «катет, лежащий рядом, к гипотенузе», «котангенс» — это «катет, лежащий рядом, к противолежащему». И никак иначе.:)

1.2. Задачи для тренировки

Перед тем как переходить к следующей части урока, предлагаю 4 примера для тренировки.

Задача 3. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Cинус, косинус, тангенс острого угла снизу

Решение.

[begin{align}sin alpha &=frac{5}{13} \ cos alpha &=frac{12}{13} \ operatorname{tg}alpha &=frac{5}{12} \ end{align}]

Задача 4. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Синус, косинус, тангенс острого угла сверху

Решение.

[begin{align}sin alpha &=frac{8}{17} \ cos alpha &=frac{15}{17} \ operatorname{tg}alpha &=frac{8}{15} \ end{align}]

Задача 5. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Синус, косинус, тангенс и теорема Пифагора

Прилежащий катет по теореме Пифагора:

[begin{align}{{l}^{2}}&={{3}^{2}}-{{1}^{2}}=9-1=8 \ l&=sqrt{8}=2sqrt{2} \ end{align}]

Синус, косинус и тангенс:

[begin{align}sin alpha&=frac{1}{3} \ cos alpha&=frac{2sqrt{2}}{3} \ operatorname{tg}alpha&=frac{1}{2sqrt{2}}=frac{sqrt{2}}{4} \ end{align}]

Задача 6. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Прямоугольный треугольник и теорема Пифагора

Прилежащий катет по теореме Пифагора:

[begin{align}{{l}^{2}} &={{2}^{2}}-{{1}^{2}}=4-1=3 \ l &=sqrt{3} \ end{align}]

Синус, косинус и тангенс:

[begin{align}sin alpha&=frac{1}{2} \ cos alpha&=frac{sqrt{3}}{2} \ operatorname{tg}alpha&=frac{1}{sqrt{3}}=frac{sqrt{3}}{3} \ end{align}]

Как видим, считать синусы, косинусы и тангенсы совсем несложно. Перейдём теперь к принципиально важному вопросу: а зачем вообще всё это нужно?

2. Теорема о единственности

Ключевая идея: синус, косинус, тангенс и котангенс зависят только от величины угла $alpha $ и никак не зависят от прямоугольного треугольника, в котором идут вычисления.

Такого не произойдёт. Потому что есть теорема о единственности.

2.1. Формулировка теоремы

Теорема. Значение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике определяются только величиной этого угла и никак не зависят от самого треугольника.

2.2. Доказательство

Рассмотрим произвольный острый угол $alpha $. Для удобства обозначим его вершину буквой $A$:

Острый угол

А затем впишем в него два произвольных прямоугольных треугольника — $ABC$ и $AMN$. Любым удобным способом. Например, можно вписать эти треугольники вот так:

Острый угол и подобные треугольники

А можно и вот так — это не имеет никакого значения:

Острый угол и перевернутые треугольники

Рассмотрим треугольники $ABC$ и $AMN$. Угол $A$ у них общий; углы [angle ABC=angle AMN=90{}^circ ] по условию. Следовательно, треугольники $ABC$ и $AMN$ подобны по двум углам:

[Delta ABCsim Delta AMN]

Из подобия треугольников следует двойное равенство

[frac{AB}{AM}=frac{BC}{MN}=frac{AC}{AN}]

Выпишем второе равенство — получим пропорцию

[frac{BC}{MN}=frac{AC}{AN}]

Попробуем выразить $sin alpha $. Вспомним основное свойство пропорции: произведение крайних членов равно произведению средних. Поэтому

[BCcdot AN=MNcdot AC]

Разделим обе части равенства на длину каждой гипотенузы — $AN$ и $AC$:

[begin{align}frac{BCcdot AN}{ANcdot AC} &=frac{MNcdot AC}{ANcdot AC} \ frac{BC}{AC} &=frac{MN}{AN} end{align}]

Однако по определению синуса имеем:

[begin{align}sin BAC &=frac{BC}{AC} \ sin MAN &=frac{MN}{AN} \ end{align}]

Получается, что $sin BAC=sin MAN$. Другими словами, вне зависимости от выбора треугольника для данного угла $alpha $ мы всегда будем получать одно и то же значение $sin alpha $.

То же самое касается и $cos alpha $, $operatorname{tg}alpha $ и $operatorname{ctg}alpha $ — они зависят лишь от градусной меры угла $alpha $ и никак не зависят от конкретного прямоугольного треугольника, в котором они находятся. Теорема доказана.

3. Стандартные углы

Итак, значения $sin alpha $, $cos alpha $, $operatorname{tg}alpha $ и $operatorname{ctg}alpha $ однозначно определяются величиной угла $alpha $. Нам не важен треугольник — важна только градусная мера угла. Можно один раз посчитать синусы, косинусы и т.д. для нужных углов, а затем просто подставлять их.

Но тут мы сталкиваемся с проблемой, из-за которой многие как раз и не понимают тригонометрию. Проблема состоит из двух пунктов:

  1. Для большинства углов $alpha $ нельзя найти точные значения $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.
  2. Верно и обратное: для большинства «красивых» $sin alpha $, $cos alpha $ и т.д. нельзя подобрать подходящий угол $alpha $.

Звучит немного непонятно, поэтому разберём каждый пункт на конкретных примерах.

3.1. Три стандартных угла

Существует лишь три острых угла, для которых легко считаются синусы, косинусы и т.д. Это 30°, 45°, 60°. Вот их синусы, косинусы и тангенсы:

[begin{array}{c|ccc} alpha& 30{}^circ& 45{}^circ & 60{}^circ \ hlinesin alpha & frac{1}{2} & frac{sqrt{2}}{2} & frac{sqrt{3}}{2} \ cos alpha & frac{sqrt{3}}{2} & frac{sqrt{2}}{2} & frac{1}{2} \ operatorname{tg}alpha& frac{sqrt{3}}{3} & 1 & sqrt{3} \ end{array}]

Чтобы понять, чем эти углы такие особенные, просто посчитаем все эти синусы, косинусы и тангенсы. Начнём с $alpha =45{}^circ $. Для этого рассмотрим равнобедренный прямоугольный треугольник. Мы уже встречались с ним:

Равнобедренный прямоугольный треугольник тригонометрия

Поскольку в равнобедренном треугольнике $angle A=angle B=45{}^circ $, получим:

[begin{align}sin 45{}^circ &=sin A=frac{BC}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ cos 45{}^circ &=sin A=frac{AB}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ operatorname{tg}45{}^circ&=sin A=frac{BC}{AB}=frac{1}{1}=1 end{align}]

Это именно те значения, которые указаны в таблице!

Теперь разберёмся с углами $alpha =30{}^circ $ и $alpha =60{}^circ $. Здесь рассуждения будут чуть сложнее. Сначала рассмотрим равносторонний треугольник $ABC$ со стороной $AB=2$ (просто так удобнее) и проведём высоту $BH$:

Равносторонний треугольник тригонометрия

Мы знаем, что высота $BH$ — ещё и медиана, и биссектриса. Поэтому $AH=CH=1$, $angle ABH=angle CBH=30{}^circ $.

Следовательно, треугольник $ABH$ — прямоугольный, да ещё и с острыми углами 30° и 60°. По теореме Пифагора легко найти $BH=sqrt{3}$. Нанесём все данные на чертёж:

Равносторонний треугольник высота

Разберёмся с углом 60°:

[begin{align} sin{60}^circ &=sin A=frac{BH}{AB}=frac{sqrt{3}}{2} \ cos{60}^circ&=cos A=frac{AH}{AB}=frac{1}{2} \ operatorname{tg}{60}^circ&=operatorname{tg}A=frac{BH}{AH}=sqrt{3} \ end{align}]

И с углом 30°:

[begin{align} sin{30}^circ &=sin ABH=frac{AH}{AB} =frac{1}{2} \ cos{30}^circ &=cos ABH=frac{BH}{AB} =frac{sqrt{3}}{2} \ operatorname{tg}{30}^circ &=operatorname{tg} ABH=frac{AH}{BH} =frac{1}{sqrt{3}} =frac{sqrt{3}}{3} \ end{align}]

Попробуйте повторить все эти рассуждения самостоятельно. Это очень полезное упражнение!

Возникает вопрос: как быть с другими углами? Например, можно ли найти $sin {50}^circ $? Или, быть может, $cos {10}^circ $? Спойлер: можно, но это будут очень громоздкие выражения. И у нас пока не хватает технологий, чтобы их найти.

Поэтому идём дальше и посмотрим на ситуацию с другой стороны: как подобрать угол к заданному синусу, косинусу, тангенсу?

3.2. Что с другими углами?

Взгляните ещё раз на «классический» прямоугольный треугольник, с которого мы начинали наши рассуждения:

Стандартная пифагорова тройка

Катеты 4 и 3, гипотенуза 5 — вполне обычный треугольник. Для него можно посчитать, например, синус острого угла $alpha $:

[sin alpha =sin A=frac{BC}{AB}=frac{3}{5}=0,6]

Итак, мы знаем синус. Внимание, вопрос: каким должен быть угол $alpha $, чтобы $sin alpha =0,6$? Сколько градусов должно быть в угле $alpha $? Ответ: неизвестно.:)

Точнее, правильнее сказать, что у нас пока нет технологий, позволяющих найти такой угол $alpha $, чтобы $sin alpha =0,6$. Хотя такой угол точно есть, ведь мы предъявили треугольник, в котором он присутствует.

Из всех этих рассуждений сделаем важный вывод. В тригонометрии мы:

  • Либо берём угол и считаем для него синусы, косинусы и т.д. Но лишь для трёх острых углов — 30°, 45°, 60° — всё будет считаться быстро и красиво. Такие углы называются табличными.
  • Либо берём синус, косинус или тангенс и для него пытаемся подобрать острый угол. Но лишь для табличных значений мы сможем подобрать такие углы. И да: это будут углы 30°, 45°, 60°.

Ещё раз:

Мы можем посчитать лишь синус, косинус и тангенс для трёх табличных углов.

Например, $sin 30{}^circ $, $cos 45{}^circ $, $operatorname{tg}60{}^circ $ и т.д. А всякие $sin 15{}^circ $, $cos 25{}^circ $ или $operatorname{tg}89,5{}^circ $ — не сможем. По крайней мере пока.:)

И наоборот:

Зная $sin alpha $, $cos alpha $ или $operatorname{tg}alpha $, мы сможем назвать точный угол $alpha $ только в том случае, если все эти синусы, косинусы и тангенсы — среди табличных значений.

Например, мы точно знаем, что если $sin alpha =frac{sqrt{2}}{2}$, то $alpha =45{}^circ $. Но когда $sin alpha =0,6$, мы уже не можем назвать угол $alpha $ (хотя всегда можем построить такой угол).

С этой мыслью мы и переходим к следующему пункту — свойства тригонометрических выражений.

4. Свойства синуса, косинуса, тангенса

Мы разберём три ключевых свойства:

  1. Связь между синусом, косинусом и тангенсом.
  2. Связь между острыми углами прямоугольного треугольника.
  3. Основное тригонометрическое тождество.

Свойствам 2 и 3 далее в курсе будут посвящены отдельные уроки. Но основные идеи полезно взять на вооружение уже сейчас.

4.1. Связь между синусом, косинусом и тангенсом

Рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Выразим синус, косинус:

[sin alpha =frac{a}{c};quad cos alpha =frac{b}{c}]

А теперь выразим тангенс и заметим, что

[operatorname{tg}alpha =frac{a}{b}=frac{a}{c}cdot frac{c}{b}=frac{sin alpha }{cos alpha }]

Точно так же можно выразить и котангенс:

[operatorname{ctg}alpha =frac{b}{a}=frac{b}{c}cdot frac{c}{a}=frac{cos alpha }{sin alpha }]

Более того, сам тангенс и котангенс тоже связаны:

[operatorname{tg}alpha cdot operatorname{ctg}alpha =frac{a}{b}cdot frac{b}{a}=1]

Мы получили три важнейших тригонометрических формулы:

Основные формулы тригонометрии:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha };quad operatorname{ctg}alpha =frac{cos alpha }{sin alpha };quad operatorname{tg}alpha cdot operatorname{ctg}alpha =1]

Эти формулы нужно знать наизусть. И понимать, откуда они берутся.

4.2. Связь между острыми углами

Рассмотрим прямоугольный треугольник $ABC$, где $angle C=90{}^circ $. Пусть градусная мера $angle A=alpha $ градусов:

Острые углы прямоугольного треугольника связь

Мы помним, что сумма острых углов прямоугольного треугольника равна 90°. Поэтому если $angle A=alpha $, то угол $angle B=90{}^circ -alpha $. Но тогда:

[sin alpha =sin A=frac{BC}{AB}=cos B=cos left( 90{}^circ -alpha right)]

То же самое и с косинусами:

[cos alpha =cos A=frac{AC}{AB}=sin B=sin left( 90{}^circ -alpha right)]

И даже с тангенсами и котангенсами:

[begin{align} operatorname{tg}alpha&=operatorname{tg}A=frac{BC}{AC} =operatorname{ctg}B=operatorname{ctg}left( {90}^circ -alpharight) \ operatorname{ctg}alpha&=operatorname{ctg}A=frac{AC}{BC} = operatorname{tg}B=tgleft( {90}^circ -alpha right) \ end{align}]

Другими словами, если вместо $alpha $ поставить ${90}^circ -alpha $, то исходная тригонометрическая функция поменяется на ко-функцию:

[begin{align}sin left( {90}^circ-alpharight) &=cos alpha \ cos left( {90}^circ-alpharight) &=sin alpha \ operatorname{tg}left( {90}^circ-alpharight) &=operatorname{ctg}alpha\ operatorname{ctg}left( {90}^circ-alpharight) &=operatorname{tg}alphaend{align}]

Но это ещё не всё. Есть гораздо более интересная формула.

4.3. Основное тригонометрическое тождество

Вновь рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Запишем выражения для $sin alpha $ и $cos alpha $:

[sin alpha =frac{a}{c};quad cos alpha =frac{b}{c}]

Далее заметим, что

[begin{align} {{sin }^{2}}alpha +{{cos }^{2}}alpha&={{left( frac{a}{c} right)}^{2}}+{{left( frac{b}{c} right)}^{2}}= \ & =frac{{{a}^{2}}}{{{c}^{2}}} +frac{{{b}^{2}}}{{{c}^{2}}}= \ & =frac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}} end{align}]

В числителе можем применить теорему Пифагора: ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$, поэтому

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =frac{{{c}^{2}}}{{{c}^{2}}}=1]

Правая часть этой формулы вообще не зависит от угла $alpha $.

Основное тригонометрическое тождество:

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =1]

Это равенство связывает синус и косинус одного и того же угла и верно для всех $alpha $.

С помощью основного тригонометрического тождества можно вычислять косинус, зная синус, и наоборот.

Задача 7. Найдите $18cos alpha $ для острого угла $alpha $, если $sin alpha =frac{sqrt{65}}{9}$.

Решение. Запишем основное тригонометрическое тождество:

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =1]

Подставим указанное значение $sin alpha $ и выразим $cos alpha $:

[begin{align}{{left( frac{sqrt{65}}{9} right)}^{2}}+{{cos }^{2}}alpha &=1 \ frac{65}{81}+{{cos }^{2}}alpha &=1 \ {{cos }^{2}}alpha &=frac{16}{81} \ cos alpha&=pm frac{4}{9} end{align}]

Поскольку косинус угла в прямоугольном треугольнике не может быть отрицательным, выбираем вариант $cos alpha ={4}/{9};$. Остаётся сделать финальный шаг:

[18cos alpha =18cdot frac{4}{9}=2cdot 4=8]

Вот и всё! Ответ: 8.

В следующем примере мы уже не будем подробно расписывать каждый шаг. Оформим всё так, как надо оформлять на контрольных и экзаменах.

Задача 8. Найдите $48operatorname{tg}alpha $ для острого угла $alpha $, если $cos alpha =frac{8}{sqrt{113}}$.

Решение. Найдём $sin alpha $:

[begin{align}{{sin }^{2}}alpha &=1-{{cos }^{2}}alpha = \ & =1-{{left( frac{8}{sqrt{113}} right)}^{2}}= \ & =1-frac{64}{113}=frac{49}{113} \ sin alpha&=pm frac{7}{sqrt{113}} end{align}]

Но ${0}^circ lt alpha lt {90}^circ $, поэтому $sin alpha gt 0$. Следовательно

[sin alpha =frac{7}{sqrt{113}}]

Найдём $operatorname{tg}alpha $:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha }=frac{7}{sqrt{113}}cdot frac{sqrt{113}}{8}=frac{7}{8}]

Окончательный ответ:

[48operatorname{tg}alpha =48cdot frac{7}{8}=6cdot 7=42]

Ответ: 42.

Заметка на будущее: замечание о том, что угол $alpha $ острый, весьма существенно. То, как мы сейчас определяем синусы, косинусы и тангенсы (через прямоугольный треугольник), называется геометрической тригонометрией. Её проходят в 8—9 классе.

Но в 10—11 классах появится алгебраическая тригонометрия, где синусы, косинусы и т.д. вполне могут быть отрицательными. И уже не получится просто так избавиться от минуса.

Но всё это будет чуть позже. А сейчас потренируемся.

Задача 9. ►

Найдите $52cos alpha $ для острого угла $alpha $, если $sin alpha =frac{5}{13}$.

Решение. Найдём $cos alpha $:

[begin{align}{{cos }^{2}}alpha &=1-{{sin }^{2}}alpha = \ &=1-frac{25}{169}=frac{144}{169} \ cos alpha&=pm frac{12}{13} end{align}]

Поскольку $cos alpha gt 0$ для острых $alpha $, выбираем $cos alpha ={12}/{13};$. Итого

[52cos alpha =52cdot frac{12}{13}=48]

Ответ: 48.

Задача 10. ►

Найдите $1+2operatorname{tg}alpha $ для острого угла $alpha $, если $cos alpha =frac{1}{sqrt{26}}$.

Решение. Найдём $sin alpha $:

[begin{align}{{sin }^{2}}alpha &=1-{{cos }^{2}}alpha = \ & =1-frac{1}{26}=frac{25}{26} \ sin alpha&=pm frac{5}{sqrt{26}} end{align}]

Поскольку $sin alpha gt 0$ для острых $alpha $, выбираем

[sin alpha =frac{5}{sqrt{26}}]

Считаем $operatorname{tg}alpha $:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha }=frac{5}{sqrt{26}}cdot frac{sqrt{26}}{1}=5]

Откуда

[1+2operatorname{tg}alpha =1+2cdot 5=11]

Ответ: 11.

5. Тригонометрия на координатной сетке

Задачи, которые мы сейчас разберём, вполне могут встретиться в ОГЭ и даже ЕГЭ. Часто в них нет прямоугольного треугольника — есть лишь угол, в который этот треугольник предлагается вписать.

Для решения задач на координатной сетке достаточно посмотреть, через какие узлы сетки проходят интересующие нас лучи. И понять, какие из этих узлов имеет смысл соединить дополнительными построениями.

Звучит страшно, но на практике всё легко.:)

Задача 11. Найдите тангенс угла $ABC$, изображённого на координатной сетке:

Координатная сетка угол

Решение. Дополнительное построение: $AHbot BC$ — перпендикуляр из точки $A$ на луч $BC$.

Координатная сетка прямоугольный треугольник

Треугольник $BAH$ — прямоугольный, причём угол $ABC$ — один из его острых углов. Поэтому

[operatorname{tg}ABC=frac{AH}{BH}=frac{3}{4}=0,75]

Это и есть искомый тангенс.

Ответ: 0,75.

Ещё раз: важно, чтобы основание перпендикуляра попадало в узел сетки. Иначе нахождение длины катетов резко усложняется. Попробуйте сами:

Задача 12. ►

Найдите тангенс угла $ABC$, изображённого на координатной сетке:

Координатная сетка угол самостоятельно

Решение.

Дополнительное построение: $AHbot BC$ — перпендикуляр из точки $A$ к лучу $BC$.

Координатная сетка треугольник самостоятельно

Треугольник $BAH$ — прямоугольный с острым углом $ABC$. Поэтому

[operatorname{tg}ABC=frac{AH}{BH}=frac{2}{4}=frac{1}{2}]

Ответ: 0,5.

Разумеется, это были совсем простые задачи. Потому что один из лучей был параллелен линиям сетки.

Куда интереснее (и полезнее) рассмотреть ситуации, где лучи направлены под углом к сетке. Суть та же: ищем и соединяем узлы на лучах. Но тут уже нужна наблюдательность.

Задача 13. Найдите тангенс угла $MNK$, изображённого на координатной сетке:

Координатная сетка наклон

Решение. Луч $KN$ содержит лишь две точки в узлах координатной сетки — собственно, $K$ и $N$. Понятно, что если продолжить луч за точку $K$, мы найдём ещё много таких точек, но будем решать задачу с тем, что есть.

Заметим, что прямая $MN$ наклонена к линиям сетки под углом 45° и образует диагонали квадратов. Это значит, что перпендикуляр к ней тоже будет наклонён под углом 45°.

Дополнительное построение: отрезок $KH$ — диагональ одного из квадратов сетки.

Координатная сетка наклон высота

Очевидно, что угол $NHK$ прямой, поэтому треугольник $KHN$ прямоугольный и содержит искомый острый угол $MNK$. Находим тангенс:

[operatorname{tg}MNK=frac{HK}{HN}=frac{sqrt{2}}{2sqrt{2}}=frac{1}{2}=0,5]

Здесь мы предположили, что сторона квадрата сетки равна 1. Но с тем же успехом можно считать, что сторона квадрата $a$:

[operatorname{tg}MNK=frac{HK}{HN}=frac{asqrt{2}}{2asqrt{2}}=frac{1}{2}=0,5]

Ответ: 0,5.

Подобные задачи считаются довольно сложными. По статистике большинство выпускников 9 классов не способны их решать. Но вы-то теперь точно справитесь. Попробуйте:

Задача 14. ►

Найдите тангенс угла $DEF$, изображённого на координатной сетке:

Координатная сетка наклон самостоятельно

Решение.

Дополнительное построение: отрезок $DH$.

Координатная сетка наклон высота самостоятельно

Очевидно, $EH=DH$, угол $EHD$ прямой. Следовательно, треугольник $EDH$ — прямоугольный и равнобедренный. Поэтому $operatorname{tg}DEF=1$.

Либо можно посчитать «напролом», полагая, что сторона квадрата сетки равна $a$:

[operatorname{tg}DEF=frac{asqrt{10}}{asqrt{10}}=1]

Ответ: 1.

Вообще, поиск «правильных» узлов на координатной сетке — это своего рода искусство. И если углубляться в эту тему, то можно быстро выйти на «полуолимпиадные» задачи.

К тому же не существует «самого правильного» дополнительного построения. Задачу на координатной сетке всегда можно решить множеством различных способов. Так, в последнем примере можно было провести перпендикуляр вот так:

Координатная сетка второе решение

И даже так (хотя вряд ли этот способ можно назвать рациональным):

Координатная сетка третье решение

Во всех случаях ответ будет один и тот же. Поэтому не бойтесь экспериментировать. И переходите к следующему уроку — к действительно важным и полезным свойствам синусов, косинусов, тангенсов и котангенсов.:)

Смотрите также:

  1. Радианная и градусная мера угла
  2. Как быстро запомнить таблицу синусов и косинусов
  3. Сложные логарифмические неравенства
  4. Сложные выражения с дробями. Порядок действий
  5. Задача B5: площадь фигур с вершиной в начале координат
  6. Обход точек в стереометрии — 2

В данном материале, мы изучим основное определение тригонометрии, какие свойства ей характерны, применение в математике, приведем примеры решения уравнений.

Определение

Тригонометрия — это раздел алгебры, в котором изучаются тригонометрические функции и их применение.

В математике применяются основные определения, связанные с тригонометрией, а именно:

  • синус — соотношение стороны противолежащего катета к стороне гипотенузы, (sin);
  • косинус — это прилежащая сторона катет к гипотенузе, обозначается как (cos);
  • тангенс — отношение стороны противолежащего катета к стороне прилежащего, (tg);
  • котангенс — отношение прилежащей стороны катета к противолежащей (это значение, обратное значению тангенса), обозначается как (ctg).

В науке чаще всего применяются два основных вида функций: прямые и косвенные, реже обратные функции.

Стоит выделить главные тригонометрические тождества, существующие в математике:

[
sin ^{2 alpha}+cos ^{2} alpha=1;
]

[
tan alpha=frac{sin alpha}{cos alpha};
]

[
cot alpha=frac{cos alpha}{sin alpha};
]

[
tan alpha cdot cot alpha=1;
]

[tan ^{2} alpha+1=frac{1}{cos ^{2} alpha};]

[cot ^{2} alpha+1=frac{1}{sin ^{2} alpha}.]

Применим основные формулы тригонометрии, решая задачи.

Пример:

Известно: cosα=0.8;

Необходимо определить: косинус, тангенс, котангенс, соответствующего угла a.

Решение:

Для определения значения косинуса в квадрате, возводим число 0,8 в квадрат и вычисляем синус. Полученное значение подставляем в формулу и можем определить тангенс угла 0,8. Таким же методом, вычисляем котангенс.

Решение довольно простое и особых сложней не вызывает.

Основные тригонометрические тождества формул приведения

Формулы помогают, преобразовать основные тождества и перейти к вычислению углов в пределах 90 градусов. Это очень удобно, не только в алгебре, но и во всей математике.

Существует два основных способа, использования формул приведения:

  • Если угол можно записать как (π/2 ±α) или (3*π/2 ±α), то название функции меняется с  косинуса на определение синус, тангенс, в свою очередь на котангенс, либо наоборот. Если же угол можно представить в виде (π±α) или (2*π±α), то название функции не меняется.
  • Обозначение приведенного уравнения не изменяется. Если изначально функция была со знаком «+», тогда и приведенная функция будет со знаком «+», с отрицательным знаком тоже самое.

Формулы приведения, примеры:

Формулы приведения пример 1

Формулы приведения пример 2

При расчетах очень часто возникают трудности при вычислении больших значений степеней. Для этого в тригонометрии, существует такое понятие как понижение значения степени.

Тождества понижения степени, помогают справиться с этой непростой задачей. Они выражают степень sin и cos через sin и cos первой степени, но определенного кратного угла. Поэтому, тригонометрические уравнения  снижают степень первоначальных функций с определенной до первой степени, но при этом повышают кратность угла от до n.

Тригонометрические формулы для косинуса и синуса понижения степени, записываются в следующем виде:

Тригонометрические формулы для косинуса и синуса

После преобразования основных формул понижения получаем их общий вид. Рассмотрим на примерах ниже.

Для четных значений уравнения:

Пример решения уравнения 1

Для нечетных значений уравнения:

Пример решения уравнения 2

Применение основных тригонометрических формул для решения уравнений

Тригонометрические тождества можно выражать различным способом, для облегчения решения уравнения.

Рассмотрим характеристики тригонометрических функций для косинуса, синуса, тангенса и котангенса.

а) Сложение и вычитание тригонометрических функций.

Сложение и вычитание тригонометрических функций можно представить как — произведение. Преобразовать на множители косинус или синус, и тем самым упростить процесс вычисления.

Сложение и вычитание тригонометрических функций

б) Произведение тригонометрических функций.

Произведение функций можно вычислить путем сложения и вычитания тождеств.

В свою очередь произведение тригонометрических функций, позволяет вычислить сумму. Эти два действия являются противоположными по отношению к друг другу.

Произведение тригонометрических функций

в) Тригонометрические формулы сложения.

При их применении можно сложение и вычитание углов выразить через тригонометрические функции заданных значений угла.

Тригонометрические формулы сложения

Преобразовав формулы сложения, мы получим тригонометрические уравнения угла.

Нет времени решать самому?

Наши эксперты помогут!

Формулы кратности значения угла

Формулы кратности значения угла

Формулы угла, определяющие половину значения (половинного угла):

Универсальное использование тригонометрических функций

Все изученные математические уравнения в тригонометрии — синус, косинус, тангенс и котангенс — имеют свойство выражаться через тангенс (tg) половинного угла.

Универсальное использование тригонометрических функций

Тригонометрические функции имеют характерные особенности. Они способны преобразовывать основные уравнения и тем самым выражать различные функции. Понижать степень, для удобства расчета и другие полезные действия

Добавить комментарий