Как найти cos угла альфа

Определение косинуса угла

Косинусом угла в прямоугольном треугольнике называют отношение прилежащего катета к гипотенузе.

Для простоты запоминания можно дать такое определение: косинус угла — это отношение ближнего от рассматриваемого угла катета к гипотенузе.

1.png

В случае с рисунком, описанным выше: cos⁡α=bccosalpha=frac{b}{c}

Задача 1

Гипотенуза прямоугольного треугольника равна 10 см10text{ см}. Один из катетов равен 6 см6text{ см}. Найдите косинус угла, прилежащего к наибольшему катету.

Решение

Пользуясь теоремой Пифагора вычислим длину неизвестного нам катета.

a2+b2=c2a^2+b^2=c^2

62+b2=1026^2+b^2=10^2

36+b2=10036+b^2=100

b2=64b^2=64

b=8b=8

Катет bb длиннее катета aa. Нам нужно найти косинус угла, прилежащего к наибольшему катету, то есть, к катету bb:

cos⁡α=bc=810=0.8cosalpha=frac{b}{c}=frac{8}{10}=0.8

Ответ

0.8

Задача 2

Две стороны треугольника равны 4 см4text{ см} и 9 см9text{ см}. Периметр его равен 25 см25text{ см}.
Найдите косинус угла, прилежащего к неизвестной стороне и стороне с длиной 4 см4text{ см}.

Решение

Найдем третью сторону треугольника. Так как известен периметр, это будет легко сделать:

P=a+b+cP=a+b+c

25=9+4+c25=9+4+c

c=12c=12

При нахождении косинуса угла нам поможет следствие из теоремы косинусов, которое выглядит так:

cos⁡α=b2+c2−a22⋅b⋅c=42+122−922⋅4⋅12=16+144−8196=7996≈0.82cosalpha=frac{b^2+c^2-a^2}{2cdot bcdot c}=frac{4^2+12^2-9^2}{2cdot 4cdot 12}=frac{16+144-81}{96}=frac{79}{96}approx0.82

Ответ

0.820.82

Решение задач по математике от экспертов сайта Студворк!

Тест по теме “Вычисление косинуса”

Косинус угла cos(A)

Косинус угла cos(A) — есть отношение прилежащего катета b к гипотенузе c

[ cos(A) = frac{b}{c} ]

Косинус угла — cos(A), таблица

0°
Косинус угла 0 градусов

$ cos(0°) = cos(0) = 1 $
1.000
30°
Косинус угла 30 градусов

$ cos(30°) = cosBig(Largefrac{pi}{6}normalsizeBig) = Largefrac{sqrt{3}}{2}normalsize $
0.866
45°
Косинус угла 45 градусов

$ cos(45°) = cosBig(Largefrac{pi}{4}normalsizeBig) = Largefrac{sqrt{2}}{2}normalsize $
0.707
60°
Косинус угла 60 градусов

$ cos(60°) = cosBig(Largefrac{pi}{3}normalsizeBig) = Largefrac{1}{2}normalsize $
0.500
90°
Косинус угла 90 градусов

$ cos(90°) = cosBig(Largefrac{pi}{2}normalsizeBig) = 0 $
0.000

Вычислить, найти косинус угла cos(A) и угол, в прямоугольном треугольнике

Вычислить, найти косинус угла cos(A) по углу A в градусах

Вычислить, найти косинус угла cos(A) по углу A в радианах

Косинус угла — cos(A)

стр. 218

Косинус угла. Таблица косинусов.

Косинус угла через градусы, минуты и секунды

Косинус угла через десятичную запись угла

Как найти угол зная косинус этого угла

У косинуса есть обратная тригонометрическая функция – arccos(y)=x

cos(arccos(y))=y

Пример cos(60°) = 1/2; arccos(1/2) = 60°

Рассчитать арккосинус

Определение косинуса

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Косинусом угла α называется абсцисса точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.

Косинус острого угла

cos(α) = AC/AB

cos(-α) = cos(α)

cos(α ± 2π) = cos(α)

Таблица косинусов в радианах

cos(0°) = 1cos(π/12) = cos(15°) = 0.9659258263cos(π/6) = cos(30°) = 0.8660254038cos(π/4) = cos(45°) = 0.7071067812cos(π/3) = cos(60°) = 0.5cos(5π/12) = cos(75°) = 0.2588190451cos(π/2) = cos(90°) = 0cos(7π/12) = cos(105°) = -0.2588190451cos(2π/3) = cos(120°) = -0.5cos(3π/4) = cos(135°) = -0.7071067812cos(5π/6) = cos(150°) = -0.8660254038cos(11π/12) = cos(165°) = -0.9659258263cos(π) = cos(180°) = -1cos(13π/12) = cos(195°) = -0.9659258263cos(7π/6) = cos(210°) = -0.8660254038cos(5π/4) = cos(225°) = -0.7071067812cos(4π/3) = cos(240°) = -0.5cos(17π/12) = cos(255°) = -0.2588190451cos(3π/2) = cos(270°) = 0cos(19π/12) = cos(285°) = 0.2588190451cos(5π/3) = cos(300°) = 0.5cos(7π/4) = cos(315°) = 0.7071067812cos(11π/6) = cos(330°) = 0.8660254038cos(23π/12) = cos(345°) = 0.9659258263

Таблица Брадиса косинусы

cos(0) = 1 cos(120) = -0.5 cos(240) = -0.5
cos(1) = 0.9998476952 cos(121) = -0.5150380749 cos(241) = -0.4848096202
cos(2) = 0.999390827 cos(122) = -0.5299192642 cos(242) = -0.4694715628
cos(3) = 0.9986295348 cos(123) = -0.544639035 cos(243) = -0.4539904997
cos(4) = 0.9975640503 cos(124) = -0.5591929035 cos(244) = -0.4383711468
cos(5) = 0.9961946981 cos(125) = -0.5735764364 cos(245) = -0.4226182617
cos(6) = 0.9945218954 cos(126) = -0.5877852523 cos(246) = -0.4067366431
cos(7) = 0.9925461516 cos(127) = -0.6018150232 cos(247) = -0.3907311285
cos(8) = 0.9902680687 cos(128) = -0.6156614753 cos(248) = -0.3746065934
cos(9) = 0.9876883406 cos(129) = -0.629320391 cos(249) = -0.3583679495
cos(10) = 0.984807753 cos(130) = -0.6427876097 cos(250) = -0.3420201433
cos(11) = 0.9816271834 cos(131) = -0.656059029 cos(251) = -0.3255681545
cos(12) = 0.9781476007 cos(132) = -0.6691306064 cos(252) = -0.3090169944
cos(13) = 0.9743700648 cos(133) = -0.6819983601 cos(253) = -0.2923717047
cos(14) = 0.9702957263 cos(134) = -0.6946583705 cos(254) = -0.2756373558
cos(15) = 0.9659258263 cos(135) = -0.7071067812 cos(255) = -0.2588190451
cos(16) = 0.9612616959 cos(136) = -0.7193398003 cos(256) = -0.2419218956
cos(17) = 0.956304756 cos(137) = -0.7313537016 cos(257) = -0.2249510543
cos(18) = 0.9510565163 cos(138) = -0.7431448255 cos(258) = -0.2079116908
cos(19) = 0.9455185756 cos(139) = -0.7547095802 cos(259) = -0.1908089954
cos(20) = 0.9396926208 cos(140) = -0.7660444431 cos(260) = -0.1736481777
cos(21) = 0.9335804265 cos(141) = -0.7771459615 cos(261) = -0.156434465
cos(22) = 0.9271838546 cos(142) = -0.7880107536 cos(262) = -0.139173101
cos(23) = 0.9205048535 cos(143) = -0.79863551 cos(263) = -0.1218693434
cos(24) = 0.9135454576 cos(144) = -0.8090169944 cos(264) = -0.1045284633
cos(25) = 0.906307787 cos(145) = -0.8191520443 cos(265) = -0.08715574275
cos(26) = 0.8987940463 cos(146) = -0.8290375726 cos(266) = -0.06975647374
cos(27) = 0.8910065242 cos(147) = -0.8386705679 cos(267) = -0.05233595624
cos(28) = 0.8829475929 cos(148) = -0.8480480962 cos(268) = -0.0348994967
cos(29) = 0.8746197071 cos(149) = -0.8571673007 cos(269) = -0.01745240644
cos(30) = 0.8660254038 cos(150) = -0.8660254038 cos(270) = 0
cos(31) = 0.8571673007 cos(151) = -0.8746197071 cos(271) = 0.01745240644
cos(32) = 0.8480480962 cos(152) = -0.8829475929 cos(272) = 0.0348994967
cos(33) = 0.8386705679 cos(153) = -0.8910065242 cos(273) = 0.05233595624
cos(34) = 0.8290375726 cos(154) = -0.8987940463 cos(274) = 0.06975647374
cos(35) = 0.8191520443 cos(155) = -0.906307787 cos(275) = 0.08715574275
cos(36) = 0.8090169944 cos(156) = -0.9135454576 cos(276) = 0.1045284633
cos(37) = 0.79863551 cos(157) = -0.9205048535 cos(277) = 0.1218693434
cos(38) = 0.7880107536 cos(158) = -0.9271838546 cos(278) = 0.139173101
cos(39) = 0.7771459615 cos(159) = -0.9335804265 cos(279) = 0.156434465
cos(40) = 0.7660444431 cos(160) = -0.9396926208 cos(280) = 0.1736481777
cos(41) = 0.7547095802 cos(161) = -0.9455185756 cos(281) = 0.1908089954
cos(42) = 0.7431448255 cos(162) = -0.9510565163 cos(282) = 0.2079116908
cos(43) = 0.7313537016 cos(163) = -0.956304756 cos(283) = 0.2249510543
cos(44) = 0.7193398003 cos(164) = -0.9612616959 cos(284) = 0.2419218956
cos(45) = 0.7071067812 cos(165) = -0.9659258263 cos(285) = 0.2588190451
cos(46) = 0.6946583705 cos(166) = -0.9702957263 cos(286) = 0.2756373558
cos(47) = 0.6819983601 cos(167) = -0.9743700648 cos(287) = 0.2923717047
cos(48) = 0.6691306064 cos(168) = -0.9781476007 cos(288) = 0.3090169944
cos(49) = 0.656059029 cos(169) = -0.9816271834 cos(289) = 0.3255681545
cos(50) = 0.6427876097 cos(170) = -0.984807753 cos(290) = 0.3420201433
cos(51) = 0.629320391 cos(171) = -0.9876883406 cos(291) = 0.3583679495
cos(52) = 0.6156614753 cos(172) = -0.9902680687 cos(292) = 0.3746065934
cos(53) = 0.6018150232 cos(173) = -0.9925461516 cos(293) = 0.3907311285
cos(54) = 0.5877852523 cos(174) = -0.9945218954 cos(294) = 0.4067366431
cos(55) = 0.5735764364 cos(175) = -0.9961946981 cos(295) = 0.4226182617
cos(56) = 0.5591929035 cos(176) = -0.9975640503 cos(296) = 0.4383711468
cos(57) = 0.544639035 cos(177) = -0.9986295348 cos(297) = 0.4539904997
cos(58) = 0.5299192642 cos(178) = -0.999390827 cos(298) = 0.4694715628
cos(59) = 0.5150380749 cos(179) = -0.9998476952 cos(299) = 0.4848096202
cos(60) = 0.5 cos(180) = -1 cos(300) = 0.5
cos(61) = 0.4848096202 cos(181) = -0.9998476952 cos(301) = 0.5150380749
cos(62) = 0.4694715628 cos(182) = -0.999390827 cos(302) = 0.5299192642
cos(63) = 0.4539904997 cos(183) = -0.9986295348 cos(303) = 0.544639035
cos(64) = 0.4383711468 cos(184) = -0.9975640503 cos(304) = 0.5591929035
cos(65) = 0.4226182617 cos(185) = -0.9961946981 cos(305) = 0.5735764364
cos(66) = 0.4067366431 cos(186) = -0.9945218954 cos(306) = 0.5877852523
cos(67) = 0.3907311285 cos(187) = -0.9925461516 cos(307) = 0.6018150232
cos(68) = 0.3746065934 cos(188) = -0.9902680687 cos(308) = 0.6156614753
cos(69) = 0.3583679495 cos(189) = -0.9876883406 cos(309) = 0.629320391
cos(70) = 0.3420201433 cos(190) = -0.984807753 cos(310) = 0.6427876097
cos(71) = 0.3255681545 cos(191) = -0.9816271834 cos(311) = 0.656059029
cos(72) = 0.3090169944 cos(192) = -0.9781476007 cos(312) = 0.6691306064
cos(73) = 0.2923717047 cos(193) = -0.9743700648 cos(313) = 0.6819983601
cos(74) = 0.2756373558 cos(194) = -0.9702957263 cos(314) = 0.6946583705
cos(75) = 0.2588190451 cos(195) = -0.9659258263 cos(315) = 0.7071067812
cos(76) = 0.2419218956 cos(196) = -0.9612616959 cos(316) = 0.7193398003
cos(77) = 0.2249510543 cos(197) = -0.956304756 cos(317) = 0.7313537016
cos(78) = 0.2079116908 cos(198) = -0.9510565163 cos(318) = 0.7431448255
cos(79) = 0.1908089954 cos(199) = -0.9455185756 cos(319) = 0.7547095802
cos(80) = 0.1736481777 cos(200) = -0.9396926208 cos(320) = 0.7660444431
cos(81) = 0.156434465 cos(201) = -0.9335804265 cos(321) = 0.7771459615
cos(82) = 0.139173101 cos(202) = -0.9271838546 cos(322) = 0.7880107536
cos(83) = 0.1218693434 cos(203) = -0.9205048535 cos(323) = 0.79863551
cos(84) = 0.1045284633 cos(204) = -0.9135454576 cos(324) = 0.8090169944
cos(85) = 0.08715574275 cos(205) = -0.906307787 cos(325) = 0.8191520443
cos(86) = 0.06975647374 cos(206) = -0.8987940463 cos(326) = 0.8290375726
cos(87) = 0.05233595624 cos(207) = -0.8910065242 cos(327) = 0.8386705679
cos(88) = 0.0348994967 cos(208) = -0.8829475929 cos(328) = 0.8480480962
cos(89) = 0.01745240644 cos(209) = -0.8746197071 cos(329) = 0.8571673007
cos(90) = 0 cos(210) = -0.8660254038 cos(330) = 0.8660254038
cos(91) = -0.01745240644 cos(211) = -0.8571673007 cos(331) = 0.8746197071
cos(92) = -0.0348994967 cos(212) = -0.8480480962 cos(332) = 0.8829475929
cos(93) = -0.05233595624 cos(213) = -0.8386705679 cos(333) = 0.8910065242
cos(94) = -0.06975647374 cos(214) = -0.8290375726 cos(334) = 0.8987940463
cos(95) = -0.08715574275 cos(215) = -0.8191520443 cos(335) = 0.906307787
cos(96) = -0.1045284633 cos(216) = -0.8090169944 cos(336) = 0.9135454576
cos(97) = -0.1218693434 cos(217) = -0.79863551 cos(337) = 0.9205048535
cos(98) = -0.139173101 cos(218) = -0.7880107536 cos(338) = 0.9271838546
cos(99) = -0.156434465 cos(219) = -0.7771459615 cos(339) = 0.9335804265
cos(100) = -0.1736481777 cos(220) = -0.7660444431 cos(340) = 0.9396926208
cos(101) = -0.1908089954 cos(221) = -0.7547095802 cos(341) = 0.9455185756
cos(102) = -0.2079116908 cos(222) = -0.7431448255 cos(342) = 0.9510565163
cos(103) = -0.2249510543 cos(223) = -0.7313537016 cos(343) = 0.956304756
cos(104) = -0.2419218956 cos(224) = -0.7193398003 cos(344) = 0.9612616959
cos(105) = -0.2588190451 cos(225) = -0.7071067812 cos(345) = 0.9659258263
cos(106) = -0.2756373558 cos(226) = -0.6946583705 cos(346) = 0.9702957263
cos(107) = -0.2923717047 cos(227) = -0.6819983601 cos(347) = 0.9743700648
cos(108) = -0.3090169944 cos(228) = -0.6691306064 cos(348) = 0.9781476007
cos(109) = -0.3255681545 cos(229) = -0.656059029 cos(349) = 0.9816271834
cos(110) = -0.3420201433 cos(230) = -0.6427876097 cos(350) = 0.984807753
cos(111) = -0.3583679495 cos(231) = -0.629320391 cos(351) = 0.9876883406
cos(112) = -0.3746065934 cos(232) = -0.6156614753 cos(352) = 0.9902680687
cos(113) = -0.3907311285 cos(233) = -0.6018150232 cos(353) = 0.9925461516
cos(114) = -0.4067366431 cos(234) = -0.5877852523 cos(354) = 0.9945218954
cos(115) = -0.4226182617 cos(235) = -0.5735764364 cos(355) = 0.9961946981
cos(116) = -0.4383711468 cos(236) = -0.5591929035 cos(356) = 0.9975640503
cos(117) = -0.4539904997 cos(237) = -0.544639035 cos(357) = 0.9986295348
cos(118) = -0.4694715628 cos(238) = -0.5299192642 cos(358) = 0.999390827
cos(119) = -0.4848096202 cos(239) = -0.5150380749 cos(359) = 0.9998476952

Похожие калькуляторы

Тригонометрия – раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой нужной науки внесли ученые Ближнего Востока и Индии, которые придумали наиболее важные понятия, объяснили многие свойства, предложили варианты измерения и др.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии без таблиц и графиков.

Синус, косинус, тангенс и котангенс. Определения

Зачем разделять понятия синуса, косинуса, тангенса и котангенса?

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Что такое синус?

Синус угла (sin α) – это отношение противолежащего этому углу катета к гипотенузе.

Что такое косинус?

Косинус угла (cosα) – это отношение прилежащего катета к гипотенузе.

Что такое тангенс?

Тангенс угла (tg α) – это отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) – отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Синус и косинус можно представить через экспоненту (экспоненциальная функция).

Приведем иллюстрацию. 

Синус, косинус, тангенс и котангенс. Определения

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Означения синуса, косинуса, тангенса и котангенса позволяют вычислять (находить) значения этих функций по известным длинам сторон треугольника.

Что и почему важно и принято помнить в ходе такого нахождения?

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тг и ктг – вся числовая прямая, то есть эти функции могут принимать любые значения.

Как найти синус? Для начала нужно определиться, какой перед нами треугольник: прямоугольный или произвольный. В первом случае можно использовать обычный тригонометрический метод, а во втором – теорему косинусов.

Как найти косинус? Соответственно, нам нужно знать значения прилежающего катета и гипотенузы. 

Как найти тангенс? Если треугольник прямоугольный, то тангенс вычисляется при помощи значений противоположного катета и прилежащего (в уравнении нужно поделить одно на другое). Если речь идет о числах, тупых, развернутых углов и углов, превышающих 360 градусов, то тангенс определяется при помощи синуса и косинуса (посредством их отношения и деления).

Теорема синусов и косинусов используется для того чтобы искать элементы в произвольном треугольнике. Такой поиск используется часто.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность (круг) с центром в начале декартовой системы координат.

                                                                 Угол поворота

Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1. Определение дается через координаты точки A1(x , y). 

Синус (sin или син) угла поворота

Синус угла поворота α – это ордината точки A1(x , y). sin α=y

Косинус (cos) угла поворота

Косинус угла поворота α – это абсцисса точки A1(x , y). cos α=икс

Тангенс (tg) угла поворота

Тангенс угла поворота α – это отношение ординаты точки A1(x , y) к ее абсциссе. tg α=yx

Котангенс (ctg) угла поворота

Котанг угла поворота α – это отношение абсциссы точки A1(x , y) к ее ординате. ctg α=xy

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0, 1) и (0, -1). В таких случаях выражение для тангенса tg α=yx просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогична ситуация с котангенсом. Отличие состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Простое правило: синус и косинус определены для любых углов α.

Тангенс определен для всех углов, кроме α=90°+180°·k, k∈Z (α=π2+π·k, k∈Z)

Котангенс определен для всех углов, кроме α=180°·k, k∈Z (α=π·k, k∈Z)

При решении практических примеров не говорят “синус угла поворота α”. Слова “угол поворота” просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь. 

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в радиан.

Например, синус числа 10π равен синусу угла поворота величиной 10π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности – точка A c координатами (1, 0).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t – ордината точки единичной окружности, соответствующей числу t. sin t=y

Косинус (cos) числа t

Косинус числа t – абсцисса точки единичной окружности, соответствующей числу t. cos t=x

Тангенс (tg) числа t

Тангенс числа t – отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. tg t=yx=sin tcos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α – это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс – основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью  соотношений сторон прямоугольного треугольника. Покажем это.

                                                                     Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A(1,0) на угол величиной до 90 градусов и проведем из полученной точки A1(x,y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A1OH равен углу поворота α, длина катета OH равна абсциссе точки A1(x,y). Длина катета, противолежащего углу, равна ординате точки A1(x,y), а длина гипотенузы равна единице, так как она является радиусом единичной окружности. 

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе. 

sin α=A1HOA1=y1=y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α, при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Синус, косинус, тангенс и котангенс: основные формулы

Синус, косинус, тангенс и котангенс: основные формулы​​​​​​​

Вместо слова альфа будем просто писать букву а. И здесь знак вопроса, вероятно, обозначает греческую букву Пи = 3,1416. Я понял так, что sina = 0,8. Надо найти угол «а» (то есть альфа), который больше Пи/2, но меньше, чем Пи, то есть угол а должен находится в промежутке Пи/2 < a < Пи (если заменить знак вопроса на букву Пи). А это вторая четверть, полный круг равен 2Пи = 360°. Итак, sina = 0,8. Здесь надо использовать из тригонометрии таблицу синусов. Пройдемся по таблице и найдем, что sin(53°8`) примерно равен 0,800. То есть, угол а = 53 градуса и 8 минут. Или а = 53,13°. А угол Пи/2 = 90°. Возьмем формулу из тригонометрии sin(Пи – а) = sina. Итак, находим, что наш угол а = Пи – а = 180° – 53,13° = 126,87°. Этот угол больше, чем Пи/2 (90°) и меньше, чем Пи = 180°.

Остальные функции находим по формулам. Для нахождения косинуса имеем

cosa = sqrt(1 – sin^2(а)). (1)

Где sin^2(а) – это sina в квадрате. Мы знаем, что sina = 0,800. Тогда синус в квадрате sin^2(а) = 0,8^2 = 0,64. Далее 1 – sin^2(а) = 1 – 0,64 = 0,36. По формуле (1) находим cosa = sqrt(1 – 0,64) = sqrt(0,36) = 0,6.

Для нахождения tga используем формулу tga = sina/cosa = 0,8/0,6 = 4/3 = 1,333… Для нахождения котангенса используем формулу ctga = 1/tga = 1/(4/3) =3/4 = 0,75. Только бы у меня не было ошибок при численных расчетах.

Добавить комментарий