Как найти ctg в алгебре

Определение котангенса угла

Котангенс является обратно пропорциональной величиной к тангенсу. То есть, это отношение прилежащего катета к противолежащему.

Для простоты запоминания можно дать такое определение: котангенс угла — это отношение ближнего от рассматриваемого угла катета к дальнему катету.

1.png

В случае с рисунком, описанным выше: ctg⁡α=bactgalpha=frac{b}{a}

ctg⁡α=cos⁡αsin⁡αctgalpha=frac{cosalpha}{sinalpha}

Задача 1

Пусть в прямоугольном треугольнике синус угла равен 0.200.20, а косинус этого угла равен 0.980.98. Найдите котангенс данного по условию угла.

Решение

sin⁡α=0.20sinalpha=0.20
cos⁡α=0.98cosalpha=0.98

ctg⁡α=cos⁡αsin⁡α=0.980.20=4.9ctgalpha=frac{cosalpha}{sinalpha}=frac{0.98}{0.20}=4.9

Ответ

4.94.9

После того, как мы изучили и тангенс, и котангенс, можно рассмотреть еще одно тождество:

Связь тангенса с котангенсом

tg⁡α⋅ctg⁡α=1tgalphacdotctgalpha=1

Вывод его прост:

tg⁡α⋅ctg⁡α=sin⁡αcos⁡α⋅cos⁡αsin⁡α=1tgalphacdotctgalpha=frac{sinalpha}{cosalpha}cdotfrac{cosalpha}{sinalpha}=1

Благодаря ему можно быстро и без каких-либо трудностей вычислять одну из этих величин.

Задача 2

Каков тангенс угла, если его котангенс равен 4.54.5?

Решение

ctg⁡α=4.5ctgalpha=4.5

tg⁡α⋅ctg⁡α=1tgalphacdotctgalpha=1

tg⁡α⋅4.5=1tgalphacdot4.5=1

tg⁡α=14.5tgalpha=frac{1}{4.5}

tg⁡α≈0.22tgalphaapprox0.22

Ответ

0.220.22

Еще одно тождество помогает решить задачи, связанные с котангенсом:

1+ctg⁡2α=1sin⁡2α1+ctg^2alpha=frac{1}{sin^2alpha}

Оно появляется путем деление каждого слагаемого основного тождества тригонометрии на квадрат синуса.

Задача 3

Найдите котангенс угла, если квадрат его синуса равен 0.490.49.

Решение

sin⁡2α=0.49sin^2alpha=0.49

1+ctg⁡2α=1sin⁡2α1+ctg^2alpha=frac{1}{sin^2alpha}

1+ctg⁡2α=10.491+ctg^2alpha=frac{1}{0.49}

1+ctg⁡2α≈2.041+ctg^2alphaapprox2.04

ctg⁡2α≈1.04ctg^2alphaapprox1.04

ctg⁡α≈1.02ctgalphaapprox1.02

Ответ

1.021.02

Решение задач по математике недорого от экспертов биржи!

Тест по теме «Вычисление котангенса»

  • Определение

  • График котангенса

  • Свойства котангенса

  • Обратная к котангенсу функция

  • Таблица котангенсов

Определение

Котангенс острого угла α (ctg α или cotan α) – это отношение прилежащего катета (b) к противолежащему (a) в прямоугольном треугольнике.

ctg α = b / a

Котангенс угла

Например:
a = 3
b = 4
ctg α = b / a = 4 / 3 ≈ 1,334.

График котангенса

Функция котангенса пишется как y = ctg (x). График в общем виде выглядит следующим образом (x, –∞ < y < +∞):

График котангенса

Свойства котангенса

Ниже в табличном виде представлены основные свойства котангенса с формулами.

Обратная к котангенсу функция

Арккотангенс x – это обратная функция к котангенсу x.

Если котангенс угла у равняется х (ctg y = x), значит арккотангенс x равен у:

arcctg x = ctg-1 x = y

Таблица котангенсов

x (°) x (рад) ctg x
0 0
30 π/6 3
45 π/4 1
60 π/3 1/√3
90 π/2 0
120 2π/3 -1/√3
135 3π/4 -1
150 5π/6 -√3
180 π
210 7π/6 3
225 5π/4 1
240 4π/3 1/√3
270 3π/2 0
300 5π/3 -1/√3
315 7π/4 -1
330 11π/6 -√3
360

microexcel.ru

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Тригонометрия в прямоугольном треугольнике
  • Тригонометрический круг
  • Основное тригонометрическое тождество
  • Таблица значений тригонометрических функций
  • Градусы и радианы
  • Формулы приведения
  • Теорема синусов
  • Расширенная теорема синусов
  • Теорема косинусов
  • Тригонометрические уравнения (10-11 класс)
  • Примеры решений заданий из ОГЭ

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Тригонометрические функции в прямоугольном треугольнике Тригонометрические функции в прямоугольном треугольнике

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник ABC, угол C равен 90°:

Прямоугольный треугольник

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат. 

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x, ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x, против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A. Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Тригонометрический круг

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B) и на ось игрек (точка C).

Синус и косинус на тригонометрическом круге

Отрезок OB является проекцией отрезка OA на ось x, отрезок OC является проекцией отрезка OA на ось y.

Рассмотрим прямоугольный треугольник AOB:

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Тригонометрический круг, тупой угол

Опускаем из точки A перпендикуляры к осям x и y. Точка B в этом случае будет иметь отрицательную координату по оси x. Косинус тупого угла отрицательный.

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x.  (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y.

Тригонометрический круг, значения углов

Координата по оси x – косинус угла, координата по оси y – синус угла.

Пример:

cos 150 ° = − 3 2

sin 150 ° = 1 2

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный.

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный.

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

Основное тригонометрическое тождество, тригонометрический круг

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Тригонометрия: Таблица значений тригонометрических функций

30° 45° 60° 90°
sinα 0 12 22 32 1
cosα 1 32 22 12 0
tgα 0 33 1 3 нет
ctgα нет 3 1 33 0

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

Тригонометрический круг, формулы приведения

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β:

Смежные углы

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

Треугольник ABC

a sin ∠ A = b sin ∠ B = c sin ∠ C

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

Треугольник ABC, описанная окружность радиуса R

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Треугольник ABC

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Скачать домашнее задание к уроку 1.

Тригонометрия: Тригонометрические уравнения

Это тема 10-11 классов.

Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!

Тригонометрия – раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой нужной науки внесли ученые Ближнего Востока и Индии, которые придумали наиболее важные понятия, объяснили многие свойства, предложили варианты измерения и др.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии без таблиц и графиков.

Синус, косинус, тангенс и котангенс. Определения

Зачем разделять понятия синуса, косинуса, тангенса и котангенса?

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Что такое синус?

Синус угла (sin α) – это отношение противолежащего этому углу катета к гипотенузе.

Что такое косинус?

Косинус угла (cosα) – это отношение прилежащего катета к гипотенузе.

Что такое тангенс?

Тангенс угла (tg α) – это отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) – отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Синус и косинус можно представить через экспоненту (экспоненциальная функция).

Приведем иллюстрацию. 

Синус, косинус, тангенс и котангенс. Определения

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Означения синуса, косинуса, тангенса и котангенса позволяют вычислять (находить) значения этих функций по известным длинам сторон треугольника.

Что и почему важно и принято помнить в ходе такого нахождения?

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тг и ктг – вся числовая прямая, то есть эти функции могут принимать любые значения.

Как найти синус? Для начала нужно определиться, какой перед нами треугольник: прямоугольный или произвольный. В первом случае можно использовать обычный тригонометрический метод, а во втором – теорему косинусов.

Как найти косинус? Соответственно, нам нужно знать значения прилежающего катета и гипотенузы. 

Как найти тангенс? Если треугольник прямоугольный, то тангенс вычисляется при помощи значений противоположного катета и прилежащего (в уравнении нужно поделить одно на другое). Если речь идет о числах, тупых, развернутых углов и углов, превышающих 360 градусов, то тангенс определяется при помощи синуса и косинуса (посредством их отношения и деления).

Теорема синусов и косинусов используется для того чтобы искать элементы в произвольном треугольнике. Такой поиск используется часто.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность (круг) с центром в начале декартовой системы координат.

                                                                 Угол поворота

Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1. Определение дается через координаты точки A1(x , y). 

Синус (sin или син) угла поворота

Синус угла поворота α – это ордината точки A1(x , y). sin α=y

Косинус (cos) угла поворота

Косинус угла поворота α – это абсцисса точки A1(x , y). cos α=икс

Тангенс (tg) угла поворота

Тангенс угла поворота α – это отношение ординаты точки A1(x , y) к ее абсциссе. tg α=yx

Котангенс (ctg) угла поворота

Котанг угла поворота α – это отношение абсциссы точки A1(x , y) к ее ординате. ctg α=xy

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0, 1) и (0, -1). В таких случаях выражение для тангенса tg α=yx просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогична ситуация с котангенсом. Отличие состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Простое правило: синус и косинус определены для любых углов α.

Тангенс определен для всех углов, кроме α=90°+180°·k, k∈Z (α=π2+π·k, k∈Z)

Котангенс определен для всех углов, кроме α=180°·k, k∈Z (α=π·k, k∈Z)

При решении практических примеров не говорят “синус угла поворота α”. Слова “угол поворота” просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь. 

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в радиан.

Например, синус числа 10π равен синусу угла поворота величиной 10π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности – точка A c координатами (1, 0).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t – ордината точки единичной окружности, соответствующей числу t. sin t=y

Косинус (cos) числа t

Косинус числа t – абсцисса точки единичной окружности, соответствующей числу t. cos t=x

Тангенс (tg) числа t

Тангенс числа t – отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. tg t=yx=sin tcos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α – это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс – основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью  соотношений сторон прямоугольного треугольника. Покажем это.

                                                                     Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A(1,0) на угол величиной до 90 градусов и проведем из полученной точки A1(x,y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A1OH равен углу поворота α, длина катета OH равна абсциссе точки A1(x,y). Длина катета, противолежащего углу, равна ординате точки A1(x,y), а длина гипотенузы равна единице, так как она является радиусом единичной окружности. 

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе. 

sin α=A1HOA1=y1=y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α, при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Синус, косинус, тангенс и котангенс: основные формулы

Синус, косинус, тангенс и котангенс: основные формулы​​​​​​​

Запросы «sin» и «синус» перенаправляются сюда; у терминов sin и синус есть также другие значения.

Запрос «sec» перенаправляется сюда; см. также другие значения.

Рис. 1.
Графики тригонометрических функций:      синуса,      косинуса,      тангенса,      котангенса,      секанса,      косеканса

Тригонометри́ческие фу́нкции — элементарные функции[1], которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:
  • синус (sin x);
  • косинус (cos x);
производные тригонометрические функции:
  • тангенс {displaystyle left(mathrm {tg} ,x={frac {sin x}{cos x}}right)};
  • котангенс {displaystyle left(mathrm {ctg} ,x={frac {cos x}{sin x}}right)};
  • секанс {displaystyle left(sec x={frac {1}{cos x}}right)};
  • косеканс {displaystyle left(mathrm {cosec} ,x={frac {1}{sin x}}right)};
обратные тригонометрические функции:
  • арксинус, арккосинус и т. д.

В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются {displaystyle tan x}, {displaystyle cot x}, csc x. До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[2], но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках pm pi n + frac{pi}{2}, а у котангенса и косеканса — в точках pm pi n.
Графики тригонометрических функций показаны на рис. 1.

Способы определения[править | править код]

Определение для любых углов[править | править код]

Рис. 2.
Определение тригонометрических функций

Обычно тригонометрические функции определяются геометрически[3]. В декартовой системе координат на плоскости построим окружность единичного радиуса (R=1) с центром в начале координат O. Всякий угол станем рассматривать как поворот от положительного направления оси абсцисс до некоторого луча OB (точку B выбираем на окружности), при этом направление поворота против часовой стрелки считаем положительным, а по часовой стрелке — отрицательным. Абсциссу точки B обозначим x_B, а ординату — y_B (см. рисунок 2).

Синусом угла alpha называется ордината точки {displaystyle M_{alpha }} единичной окружности, где {displaystyle {left(cdot right)}M_{alpha }} получается поворотом {displaystyle {left(cdot right)}M_{0}} на угол alpha в положительном направлении (против часовой стрелки), если alpha >0, и в отрицательном (по часовой стрелке), если {displaystyle alpha <0}.

Косинусом угла alpha называется абсцисса точки {displaystyle M_{alpha }} единичной окружности, где {displaystyle {left(cdot right)}M_{alpha }} получается поворотом {displaystyle {left(cdot right)}M_{0}} на угол alpha в положительном направлении (против часовой стрелки), если alpha >0, и в отрицательном (по часовой стрелке), если {displaystyle alpha <0}.

Тангенсом угла alpha называется отношение ординаты точки {displaystyle M_{alpha }} единичной окружности к её абсциссе, причём точка {displaystyle M_{alpha }} не принадлежит оси ординат.

Котангенсом угла alpha называется отношение абсциссы точки {displaystyle M_{alpha }} единичной окружности к её ординате, причём точка {displaystyle M_{alpha }} не принадлежит оси абсцисс.[4]

Таким образом, определения тригонометрических функций выглядят следующим образом:

Нетрудно видеть, что такое определение также основывается на отношениях прямоугольного треугольника, с тем отличием, что учитывается знак (pm 1). Поэтому тригонометрические функции можно определить и по окружности произвольного радиуса R, однако формулы придётся нормировать. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

В тригонометрии удобным оказывается вести счёт углов не в градусной мере, а в радианной. Так, угол в {displaystyle 360^{circ }} запишется длиной единичной окружности 2pi . Угол в 180^{circ } равен, соответственно pi и так далее. Заметим, что угол на 2pi отличающийся от alpha по рисунку эквивалентен alpha , вследствие чего заключим, что тригонометрические функции периодичны.

Наконец, определим тригонометрические функции вещественного числа x тригонометрическими функциями угла, радианная мера которого равна x.

Определение для острых углов[править | править код]

Рис. 4.
Тригонометрические функции острого угла

Определение тангенса. Марка СССР 1961 года

В геометрии тригонометрические функции острого угла определяются отношениями сторон прямоугольного треугольника[5]. Пусть {displaystyle triangle AOB} — прямоугольный (угол {displaystyle angle A} прямой), с острым углом {displaystyle angle AOB=alpha } и гипотенузой OB. Тогда:

Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (См.: теорема синусов, теорема косинусов).

Определение как решений дифференциальных уравнений[править | править код]

Синус и косинус можно определить как единственные функции, вторые производные которых равны самим функциям, взятым со знаком минус:

 left(cos xright)'' = - cos x,
 left(sin  xright)'' = - sin x.

То есть задать их как чётное (косинус) и нечётное (синус) решения дифференциального уравнения

frac{d^2}{dvarphi^2}R(varphi) = - R(varphi),

с дополнительными условиями:
R(0)=1 для косинуса и R'(0)=1 для синуса.

Определение как решений функциональных уравнений[править | править код]

Функции косинус и синус можно определить[7]
как решения (f и g соответственно) системы функциональных уравнений:

left{
begin{array}{rcl}
f(x+y)&=&f(x)f(y)-g(x)g(y)\
g(x+y)&=&g(x)f(y)+f(x)g(y)
end{array}
right.

при дополнительных условиях:

f(x)^{2}+g(x)^{2}=1, g(pi /2)=1, и {displaystyle 0<g(x)<1} при 0<x<pi /2.

Определение через ряды[править | править код]

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

sin x=x-frac{x^3}{3!}+frac{x^5}{5!}-frac{x^7}{7!}+frac{x^9}{9!}-cdots = sum_{n=0}^inftyfrac{(-1)^nx^{2n+1}}{(2n+1)!},
cos x=1-frac{x^2}{2!}+frac{x^4}{4!}-frac{x^6}{6!}+frac{x^8}{8!}-cdots = sum_{n=0}^inftyfrac{(-1)^nx^{2n}}{(2n)!}.

Пользуясь этими формулами, а также равенствами operatorname{tg},x=frac{sin x}{cos x}, operatorname{ctg},x=frac{cos x}{sin x}, sec x=frac{1}{cos x} и operatorname{cosec},x=frac{1}{sin x}, можно найти разложения в ряд и других тригонометрических функций:

{operatorname{tg},x=x+frac{1}{3},x^3 + frac{2}{15},x^5 + frac{17}{315},x^7 + frac{62}{2835},x^9 + cdots = sum_{n=1}^inftyfrac{2^{2n}(2^{2n}-1)|B_{2n}|}{(2n)!}x^{2n-1} quad left(-frac{pi}{2}<x<frac{pi}{2}right),}
{operatorname{ctg},x = frac{1}{x} - frac{x}{3} - frac{x^3}{45} - frac{2x^5}{945} - frac{x^7}{4725} - cdots = frac{1}{x} - sum_{n=1}^infty frac{2^{2n}|B_{2n}|}{(2n)!},x^{2n-1} quad left(-pi < x < piright),}
{sec x=1+frac{1}{2},x^2+frac{5}{24},x^4+frac{61}{720},x^6+frac{277}{8064},x^8+cdots = sum_{n=0}^inftyfrac{|E_{n}|}{(2n)!},x^{2n}, quad left(-frac{pi}{2} < x < frac{pi}{2}right),}
operatorname{cosec} x = frac{1}{x} + frac{1}{6},x + frac{7}{360},x^3 + frac{31}{15120},x^5 + frac{127}{604800},x^7 + cdots = frac{1}{x} + sum_{n=1}^infty frac{2(2^{2n-1}-1) |B_{2n}|}{(2n)!},x^{2n-1} quad left(-pi < x < piright),

где

B_{n} — числа Бернулли,
E_{n} — числа Эйлера.

Значения тригонометрических функций для некоторых углов[править | править код]

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («infty » означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

Значения косинуса и синуса на окружности

Радианы {displaystyle 0} {displaystyle {frac {pi }{6}}} {displaystyle {frac {pi }{4}}} {displaystyle {frac {pi }{3}}} {displaystyle {frac {pi }{2}}} pi {displaystyle {frac {3pi }{2}}} 2pi
Градусы {displaystyle 0^{circ }} {displaystyle 30^{circ }} {displaystyle 45^{circ }} {displaystyle 60^{circ }} {displaystyle 90^{circ }} {displaystyle 180^{circ }} {displaystyle 270^{circ }} {displaystyle 360^{circ }}
{displaystyle sin alpha } {displaystyle 0} {frac {1}{2}} frac{sqrt{2}}{2} frac{sqrt{3}}{2} 1 {displaystyle 0} -1 {displaystyle 0}
cos alpha 1 frac{sqrt{3}}{2} frac{sqrt{2}}{2} {frac {1}{2}} {displaystyle 0} -1 {displaystyle 0} 1
operatorname{tg},alpha {displaystyle 0} {displaystyle {frac {1}{sqrt {3}}}} 1 sqrt{3} infty {displaystyle 0} infty {displaystyle 0}
operatorname{ctg},alpha infty sqrt{3} 1 frac{sqrt{3}}{3} {displaystyle 0} infty {displaystyle 0} infty
{displaystyle sec alpha } 1 {displaystyle {frac {2{sqrt {3}}}{3}}} {sqrt {2}} 2 infty -1 infty 1
{displaystyle operatorname {cosec} ,alpha } infty 2 {sqrt {2}} {displaystyle {frac {2{sqrt {3}}}{3}}} 1 infty -1 infty

Значения тригонометрических функций нестандартных углов[править | править код]

Радианы {displaystyle {frac {2pi }{3}}} {displaystyle {frac {3pi }{4}}} {displaystyle {frac {5pi }{6}}} {displaystyle {frac {7pi }{6}}} {displaystyle {frac {5pi }{4}}} {displaystyle {frac {4pi }{3}}} {displaystyle {frac {5pi }{3}}} {displaystyle {frac {7pi }{4}}} {displaystyle {frac {11pi }{6}}}
Градусы {displaystyle 120^{circ }} {displaystyle 135^{circ }} {displaystyle 150^{circ }} {displaystyle 210^{circ }} {displaystyle 225^{circ }} {displaystyle 240^{circ }} {displaystyle 300^{circ }} {displaystyle 315^{circ }} {displaystyle 330^{circ }}
{displaystyle sin alpha } frac{sqrt{3}}{2} frac{sqrt{2}}{2} {frac {1}{2}} -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -frac{sqrt{3}}{2} -frac{sqrt{2}}{2} -frac{1}{2}
cos alpha -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -frac{sqrt{3}}{2} -frac{sqrt{2}}{2} -frac{1}{2} {frac {1}{2}} frac{sqrt{2}}{2} frac{sqrt{3}}{2}
operatorname{tg},alpha -sqrt{3} -1 -frac{sqrt{3}}{3} frac{sqrt{3}}{3} 1 sqrt{3} -sqrt{3} -1 -frac{sqrt{3}}{3}
operatorname{ctg},alpha -frac{sqrt{3}}{3} -1 -sqrt{3} sqrt{3} 1 frac{sqrt{3}}{3} -frac{sqrt{3}}{3} -1 -sqrt{3}
{displaystyle sec alpha } -2 {displaystyle -{sqrt {2}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{sqrt {2}}} -2 2 {sqrt {2}} {displaystyle {frac {2{sqrt {3}}}{3}}}
{displaystyle operatorname {cosec} ,alpha } {displaystyle {frac {2{sqrt {3}}}{3}}} {sqrt {2}} 2 -2 {displaystyle -{sqrt {2}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{sqrt {2}}} -2
Радианы {displaystyle {frac {pi }{12}}} {displaystyle {frac {pi }{10}}} {displaystyle {frac {pi }{8}}} {displaystyle {frac {pi }{5}}} {displaystyle {frac {3pi }{10}}} {displaystyle {frac {3pi }{8}}} {displaystyle {frac {2pi }{5}}} {displaystyle {frac {5pi }{12}}}
Градусы {displaystyle 15^{circ }} {displaystyle 18^{circ }} {displaystyle 22{,}5^{circ }} {displaystyle 36^{circ }} {displaystyle 54^{circ }} {displaystyle 67{,}5^{circ }} {displaystyle 72^{circ }} {displaystyle 75^{circ }}
{displaystyle sin alpha } {displaystyle {frac {{sqrt {3}}-1}{2{sqrt {2}}}}} frac{sqrt{5}-1}{4} frac{sqrt{2-sqrt{2}}}{2} {displaystyle {frac {sqrt {10-2{sqrt {5}}}}{4}}} frac{sqrt{5}+1}{4} frac{sqrt{2+sqrt{2}}}{2} {displaystyle {frac {sqrt {10+2{sqrt {5}}}}{4}}} {displaystyle {frac {{sqrt {3}}+1}{2{sqrt {2}}}}}
cos alpha {displaystyle {frac {{sqrt {3}}+1}{2{sqrt {2}}}}} {displaystyle {frac {sqrt {10+2{sqrt {5}}}}{4}}} frac{sqrt{2+sqrt{2}}}{2} frac{sqrt{5}+1}{4} {displaystyle {frac {sqrt {10-2{sqrt {5}}}}{4}}} frac{sqrt{2-sqrt{2}}}{2} frac{sqrt{5}-1}{4} {displaystyle {frac {{sqrt {3}}-1}{2{sqrt {2}}}}}
operatorname{tg},alpha 2-sqrt{3} {displaystyle {frac {sqrt {25-10{sqrt {5}}}}{5}}} sqrt{2}-1 {displaystyle {sqrt {5-2{sqrt {5}}}}} {displaystyle {frac {sqrt {25+10{sqrt {5}}}}{5}}} sqrt{2}+1 {displaystyle {sqrt {5+2{sqrt {5}}}}} {displaystyle 2+{sqrt {3}}}
operatorname{ctg},alpha {displaystyle 2+{sqrt {3}}} {displaystyle {sqrt {5+2{sqrt {5}}}}} sqrt{2}+1 {displaystyle {frac {sqrt {25+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {5-2{sqrt {5}}}}} sqrt{2}-1 {displaystyle {frac {sqrt {25-10{sqrt {5}}}}{5}}} 2-sqrt{3}
{displaystyle sec alpha } {displaystyle {sqrt {2}}({sqrt {3}}-1)} {displaystyle {frac {sqrt {50-10{sqrt {5}}}}{5}}} {displaystyle {sqrt {4-2{sqrt {2}}}}} {displaystyle {sqrt {5}}-1} {displaystyle {frac {sqrt {50+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {4+2{sqrt {2}}}}} {displaystyle {sqrt {5}}+1} {displaystyle {sqrt {2}}({sqrt {3}}+1)}
{displaystyle operatorname {cosec} ,alpha } {displaystyle {sqrt {2}}({sqrt {3}}+1)} {displaystyle {sqrt {5}}+1} {displaystyle {sqrt {4+2{sqrt {2}}}}} {displaystyle {frac {sqrt {50+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {5}}-1} {displaystyle {sqrt {4-2{sqrt {2}}}}} {displaystyle {frac {sqrt {50-10{sqrt {5}}}}{5}}} {displaystyle {sqrt {2}}({sqrt {3}}-1)}

Значения тригонометрических функций для некоторых других углов

Свойства тригонометрических функций[править | править код]

Простейшие тождества[править | править код]

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности (x^{2}+y^{2}=1) или теореме Пифагора, имеем:

{displaystyle sin ^{2}alpha +cos ^{2}alpha =1.}

Это соотношение называется основным тригонометрическим тождеством.

Разделив это уравнение на квадрат косинуса и синуса соответственно, получим:

{displaystyle 1+mathop {mathrm {tg} } ,^{2}alpha =mathop {mathrm {sec} } ,^{2}alpha ,}
{displaystyle 1+mathop {mathrm {ctg} } ,^{2}alpha =mathop {mathrm {cosec} } ,^{2}alpha .}

Из определения тангенса и котангенса следует, что

 mathop{mathrm{tg}},alpha  cdot mathop{mathrm{ctg}},alpha=1.

Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом (с точностью до знака из-за неоднозначности раскрытия квадратного корня). Нижеприведённые формулы верны для {displaystyle 0<x<pi /2}:

  sin cos tg ctg sec cosec
{displaystyle ,sin x=} {displaystyle ,sin x} {displaystyle {sqrt {1-cos ^{2}x}}} {displaystyle {frac {operatorname {tg} x}{sqrt {1+operatorname {tg} ^{2}x}}}} {displaystyle {frac {1}{sqrt {operatorname {ctg} ^{2}x+1}}}} {displaystyle {frac {sqrt {sec ^{2}x-1}}{sec x}}} {displaystyle {frac {1}{operatorname {cosec} x}}}
{displaystyle ,cos x=} {displaystyle ,{sqrt {1-sin ^{2}x}}} {displaystyle ,cos x} {displaystyle ,{frac {1}{sqrt {1+operatorname {tg} ^{2}x}}}} {displaystyle ,{frac {operatorname {ctg} x}{sqrt {operatorname {ctg} ^{2}x+1}}}} {displaystyle ,{frac {1}{sec x}}} {displaystyle ,{frac {sqrt {operatorname {cosec} ^{2}x-1}}{operatorname {cosec} x}}}
{displaystyle ,operatorname {tg} x=} {displaystyle ,{frac {sin x}{sqrt {1-sin ^{2}x}}}} {displaystyle ,{frac {sqrt {1-cos ^{2}x}}{cos x}}} {displaystyle ,operatorname {tg} x} {displaystyle ,{frac {1}{operatorname {ctg} x}}} {displaystyle ,{sqrt {sec ^{2}x-1}}} {displaystyle ,{frac {1}{sqrt {operatorname {cosec} ^{2}x-1}}}}
{displaystyle ,operatorname {ctg} x=} {displaystyle ,{frac {sqrt {1-sin ^{2}x}}{sin x}}} {displaystyle ,{frac {cos x}{sqrt {1-cos ^{2}x}}}} {displaystyle ,{frac {1}{operatorname {tg} x}}} {displaystyle ,operatorname {ctg} x} {displaystyle ,{frac {1}{sqrt {sec ^{2}x-1}}}} {displaystyle ,{sqrt {operatorname {cosec} ^{2}x-1}}}
{displaystyle ,sec x=} {displaystyle ,{frac {1}{sqrt {1-sin ^{2}x}}}} {displaystyle ,{frac {1}{cos x}}} {displaystyle ,{sqrt {1+operatorname {tg} ^{2}x}}} {displaystyle ,{frac {sqrt {operatorname {ctg} ^{2}x+1}}{operatorname {ctg} x}}} {displaystyle ,sec x} {displaystyle ,{frac {operatorname {cosec} x}{sqrt {operatorname {cosec} ^{2}x-1}}}}
{displaystyle ,operatorname {cosec} x=} {displaystyle ,{frac {1}{sin x}}} {displaystyle ,{frac {1}{sqrt {1-cos ^{2}x}}}} {displaystyle ,{frac {sqrt {1+operatorname {tg} ^{2}x}}{operatorname {tg} x}}} {displaystyle ,{sqrt {operatorname {ctg} ^{2}x+1}}} {displaystyle ,{frac {sec x}{sqrt {sec ^{2}x-1}}}} {displaystyle ,operatorname {cosec} x}

Непрерывность[править | править код]

Чётность[править | править код]

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

 sin left( - alpha right)  =  - sin alpha ,,
 cos left( - alpha right)  =  cos alpha ,,
 mathop{mathrm{tg}}, left( - alpha right)  = - mathop{mathrm{tg}}, alpha ,,
 mathop{mathrm{ctg}}, left( - alpha right)  = - mathop{mathrm{ctg}}, alpha ,,
 sec left( - alpha right)  =  sec alpha ,,
 mathop{mathrm{cosec}}, left( - alpha right)  = - mathop{mathrm{cosec}}, alpha ,.

Периодичность[править | править код]

Функции {displaystyle sin x,;cos x,;sec x,;mathrm {cosec} ,x} — периодические с периодом 2pi , функции {displaystyle mathrm {tg} ,x} и {displaystyle mathrm {ctg} ,x} — c периодом pi .

Формулы приведения[править | править код]

Формулами приведения называются формулы следующего вида:

{displaystyle f(npi +alpha )=pm f(alpha ),}
{displaystyle f(npi -alpha )=pm f(alpha ),}
{displaystyle fleft({frac {(2n+1)pi }{2}}+alpha right)=pm g(alpha ),}
{displaystyle fleft({frac {(2n+1)pi }{2}}-alpha right)=pm g(alpha ).}

Здесь f — любая тригонометрическая функция, g — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол alpha острый, например:

 cos left(  frac{ pi}{2} - alpha right)  =   sin alpha,, или что то же самое:  cos left( 90^circ - alpha right)  =   sin alpha,.

Некоторые формулы приведения:

alpha frac{pi}{2} - alpha frac{pi}{2} + alpha {displaystyle pi -alpha } {displaystyle pi +alpha } frac{3,pi}{2} - alpha frac{3,pi}{2} + alpha 2,pi - alpha
sinalpha cosalpha cosalpha sinalpha {displaystyle -sin alpha } {displaystyle -cos alpha } {displaystyle -cos alpha } {displaystyle -sin alpha }
cosalpha sinalpha {displaystyle -sin alpha } {displaystyle -cos alpha } {displaystyle -cos alpha } {displaystyle -sin alpha } sinalpha cosalpha
operatorname{tg},alpha operatorname{ctg},alpha -operatorname{ctg},alpha -operatorname{tg},alpha operatorname{tg},alpha operatorname{ctg},alpha -operatorname{ctg},alpha -operatorname{tg},alpha
operatorname{ctg},alpha operatorname{tg},alpha -operatorname{tg},alpha -operatorname{ctg},alpha operatorname{ctg},alpha operatorname{tg},alpha -operatorname{tg},alpha -operatorname{ctg},alpha

Интересующие формулы приведения так же могут легко быть получены рассмотрением функций на единичной окружности.

Формулы сложения и вычитания[править | править код]

Значения тригонометрических функций суммы и разности двух углов:

 sinleft( alpha pm beta right)= sinalpha , cosbeta pm cosalpha , sinbeta,
 cosleft( alpha pm beta right)= cosalpha , cosbeta mp sinalpha , sinbeta,
 operatorname{tg}left( alpha pm beta right) = frac{operatorname{tg},alpha pm operatorname{tg},beta}{1 mp operatorname{tg},alpha , operatorname{tg},beta},
 operatorname{ctg}left( alpha pm beta right) = frac{operatorname{ctg},alpha,operatorname{ctg},beta mp 1}{operatorname{ctg},beta pm operatorname{ctg},alpha}.

Аналогичные формулы для суммы трёх углов:

sin left( alpha + beta + gamma right) = sin alpha cos beta cos gamma + cos alpha sin beta cos gamma + cos alpha cos beta sin gamma - sin alpha sin beta sin gamma,
cos left( alpha + beta + gamma right) = cos alpha cos beta cos gamma - sin alpha sin beta cos gamma - sin alpha cos beta sin gamma - cos alpha sin beta sin gamma.

Формулы для кратных углов[править | править код]

Формулы двойного угла:

sin 2alpha = 2 sin alpha cos alpha = frac{2,operatorname{tg},alpha }{1 + operatorname{tg}^2alpha} = frac{2,operatorname{ctg},alpha }{1 + operatorname{ctg}^2alpha} = frac{2}{operatorname{tg},alpha + operatorname{ctg},alpha},
cos 2alpha = cos^2 alpha,-,sin^2 alpha = 2 cos^2 alpha,-,1 = 1,-,2 sin^2 alpha = frac{1 - operatorname{tg}^2 alpha}{1 + operatorname{tg}^2alpha} = frac{operatorname{ctg}^2 alpha - 1}{operatorname{ctg}^2alpha + 1} = frac{operatorname{ctg},alpha - operatorname{tg},alpha}{operatorname{ctg},alpha + operatorname{tg},alpha},
operatorname{tg},2 alpha = frac{2,operatorname{tg},alpha}{1 - operatorname{tg}^2alpha} = frac{2,operatorname{ctg},alpha}{operatorname{ctg}^2alpha - 1} = frac{2}{operatorname{ctg},alpha - operatorname{tg},alpha},
operatorname{ctg},2 alpha = frac{operatorname{ctg}^2 alpha - 1}{2,operatorname{ctg},alpha} = frac{operatorname{ctg},alpha - operatorname{tg},alpha}{2}.

Формулы тройного угла:

sin,3alpha=3sinalpha - 4sin^3alpha,
cos,3alpha=4cos^3alpha -3cosalpha,
operatorname{tg},3alpha=frac{3,operatorname{tg},alpha - operatorname{tg}^3,alpha}{1 - 3,operatorname{tg}^2,alpha},
operatorname{ctg},3alpha=frac{operatorname{ctg}^3,alpha - 3,operatorname{ctg},alpha}{3,operatorname{ctg}^2,alpha - 1}.

Прочие формулы для кратных углов:

sin,4alpha=cosalpha left(4sinalpha - 8sin^3alpharight),
cos,4alpha=8cos^4alpha - 8cos^2alpha + 1,
operatorname{tg},4alpha=frac{4,operatorname{tg},alpha - 4,operatorname{tg}^3,alpha}{1 - 6,operatorname{tg}^2,alpha + operatorname{tg}^4,alpha},
operatorname{ctg},4alpha=frac{operatorname{ctg}^4,alpha - 6,operatorname{ctg}^2,alpha + 1}{4,operatorname{ctg}^3,alpha - 4,operatorname{ctg},alpha},
sin,5alpha=16sin^5alpha-20sin^3alpha +5sinalpha,
cos,5alpha=16cos^5alpha-20cos^3alpha +5cosalpha,
operatorname{tg},5alpha=operatorname{tg}alphafrac{operatorname{tg}^4alpha-10operatorname{tg}^2alpha+5}{5operatorname{tg}^4alpha-10operatorname{tg}^2alpha+1},
operatorname{ctg},5alpha=operatorname{ctg}alphafrac{operatorname{ctg}^4alpha-10operatorname{ctg}^2alpha+5}{5operatorname{ctg}^4alpha-10operatorname{ctg}^2alpha+1},
 sin (nalpha)=2^{n-1}prod^{n-1}_{k=0}sinleft( alpha+frac{pi k}{n}right) следует из формулы дополнения и формулы Гаусса для гамма-функции.

Из формулы Муавра можно получить следующие общие выражения для кратных углов:

sin(nalpha)=sum_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}cos^{n-2k-1}alpha,sin^{2k+1}alpha,
cos(nalpha)=sum_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}cos^{n-2k}alpha,sin^{2k}alpha,
mathrm{tg}(nalpha)=frac{sin(nalpha)}{cos(nalpha)}=dfrac{displaystyle{sumlimits_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}mathrm{tg}^{2k+1}alpha}}{displaystyle{sumlimits_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}mathrm{tg}^{2k}alpha}},
mathrm{ctg}(nalpha)=frac{cos(nalpha)}{sin(nalpha)}=dfrac{displaystyle{sumlimits_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}mathrm{ctg}^{n-2k}alpha}}{displaystyle{sumlimits_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}mathrm{ctg}^{n-2k-1}alpha}},

где [n] — целая часть числа n, binom{n}{k} — биномиальный коэффициент.

Формулы половинного угла:

sinfrac{alpha}{2}=sqrt{frac{1-cosalpha}{2}},quad 0 leqslant alpha leqslant 2pi,
cosfrac{alpha}{2}=sqrt{frac{1+cosalpha}{2}},quad -pi leqslant alpha leqslant pi,
operatorname{tg},frac{alpha}{2}=frac{1-cosalpha}{sinalpha}=frac{sinalpha}{1+cosalpha},
operatorname{ctg},frac{alpha}{2}=frac{sinalpha}{1-cosalpha}=frac{1+cosalpha}{sinalpha},
operatorname{tg},frac{alpha}{2}=sqrt{frac{1-cosalpha}{1+cosalpha}},quad 0 leqslant alpha < pi,
operatorname{ctg},frac{alpha}{2}=sqrt{frac{1+cosalpha}{1-cosalpha}},quad 0 < alpha leqslant pi.

Произведения[править | править код]

Формулы для произведений функций двух углов:

sin alpha sin beta ={frac {cos(alpha -beta )-cos(alpha +beta )}{2}},
sinalpha cosbeta = frac{sin(alpha-beta) + sin(alpha+beta)}{2},
cosalpha cosbeta = frac{cos(alpha-beta) + cos(alpha+beta)}{2},
operatorname{tg},alpha,operatorname{tg},beta = frac{cos(alpha-beta) - cos(alpha+beta)}{cos(alpha-beta) + cos(alpha+beta)},
operatorname{tg},alpha,operatorname{ctg},beta = frac{sin(alpha-beta) + sin(alpha+beta)}{sin(alpha+beta) -sin(alpha-beta)},
operatorname{ctg},alpha,operatorname{ctg},beta = frac{cos(alpha-beta) + cos(alpha+beta)}{cos(alpha-beta) - cos(alpha+beta)}.

Аналогичные формулы для произведений синусов и косинусов трёх углов:

sinalpha sinbeta singamma = frac{sin(alpha+beta-gamma) + sin(beta+gamma-alpha) + sin(alpha-beta+gamma) - sin(alpha+beta+gamma)}{4},
sinalpha sinbeta cosgamma = frac{-cos(alpha+beta-gamma) + cos(beta+gamma-alpha) + cos(alpha-beta+gamma) - cos(alpha+beta+gamma)}{4},
sinalpha cosbeta cosgamma = frac{sin(alpha+beta-gamma) - sin(beta+gamma-alpha) + sin(alpha-beta+gamma) - sin(alpha+beta+gamma)}{4},
cosalpha cosbeta cosgamma = frac{cos(alpha+beta-gamma) + cos(beta+gamma-alpha) + cos(alpha-beta+gamma) + cos(alpha+beta+gamma)}{4}.

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Степени[править | править код]

{displaystyle sin ^{2}alpha ={frac {1-cos 2,alpha }{2}}={frac {operatorname {tg} ^{2},alpha }{1+operatorname {tg} ^{2},alpha }},}
cos ^{2}alpha ={frac  {1+cos 2,alpha }{2}}={frac  {operatorname {ctg}^{2},alpha }{1+operatorname {ctg}^{2},alpha }},
operatorname {tg}^{2},alpha ={frac  {1-cos 2,alpha }{1+cos 2,alpha }}={frac  {operatorname {sin}^{2},alpha }{1-operatorname {sin}^{2},alpha }},
{displaystyle operatorname {ctg} ^{2},alpha ={frac {1+cos 2,alpha }{1-cos 2,alpha }}={frac {operatorname {cos} ^{2},alpha }{1-operatorname {cos} ^{2},alpha }},}
sin^3alpha = frac{3sinalpha - sin 3,alpha}{4},
cos^3alpha = frac{3cosalpha + cos 3,alpha}{4},
operatorname{tg}^3,alpha = frac{3sinalpha - sin 3,alpha}{3cosalpha + cos 3,alpha},
operatorname{ctg}^3,alpha = frac{3cosalpha + cos 3,alpha}{3sinalpha - sin 3,alpha},
sin^4alpha = frac{cos 4alpha - 4cos 2,alpha + 3}{8},
cos^4alpha = frac{cos 4alpha + 4cos 2,alpha + 3}{8},
operatorname{tg}^4,alpha = frac{cos 4alpha - 4cos 2,alpha + 3}{cos 4alpha + 4cos 2,alpha + 3},
operatorname{ctg}^4,alpha = frac{cos 4alpha + 4cos 2,alpha + 3}{cos 4alpha - 4cos 2,alpha + 3}.

Иллюстрация равенства {displaystyle sin x-cos x={sqrt {2}}cdot sin left(x-{pi  over 4}right)}

Суммы[править | править код]

{displaystyle sin alpha pm sin beta =2sin {frac {alpha pm beta }{2}}cos {frac {alpha mp beta }{2}},}
{displaystyle cos alpha +cos beta =2cos {frac {alpha +beta }{2}}cos {frac {alpha -beta }{2}},}
{displaystyle cos alpha -cos beta =-2sin {frac {alpha +beta }{2}}sin {frac {alpha -beta }{2}},}
{displaystyle operatorname {tg} alpha pm operatorname {tg} beta ={frac {sin(alpha pm beta )}{cos alpha cos beta }},}
{displaystyle operatorname {ctg} alpha pm operatorname {ctg} beta ={frac {sin(beta pm alpha )}{sin alpha sin beta }},}
{displaystyle 1pm sin {2alpha }=(sin alpha pm cos alpha )^{2},}
{displaystyle sin alpha pm cos alpha ={sqrt {2}}cdot sin left(alpha pm {pi  over 4}right).}

Существует представление:

Asin alpha +Bcos alpha ={sqrt  {A^{2}+B^{2}}};sin(alpha +phi ),

где угол phi находится из соотношений:

{displaystyle sin phi ={frac {B}{sqrt {A^{2}+B^{2}}}},}
{displaystyle cos phi ={frac {A}{sqrt {A^{2}+B^{2}}}}.}

Универсальная тригонометрическая подстановка[править | править код]

Все тригонометрические функции можно выразить через тангенс половинного угла:

{displaystyle sin x={frac {sin x}{1}}={frac {2sin {frac {x}{2}}cos {frac {x}{2}}}{sin ^{2}{frac {x}{2}}+cos ^{2}{frac {x}{2}}}}={frac {2operatorname {tg} {frac {x}{2}}}{1+operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle cos x={frac {cos x}{1}}={frac {cos ^{2}{frac {x}{2}}-sin ^{2}{frac {x}{2}}}{cos ^{2}{frac {x}{2}}+sin ^{2}{frac {x}{2}}}}={frac {1-operatorname {tg} ^{2}{frac {x}{2}}}{1+operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {tg} ~x={frac {sin x}{cos x}}={frac {2operatorname {tg} {frac {x}{2}}}{1-operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {ctg} ~x={frac {cos x}{sin x}}={frac {1-operatorname {tg} ^{2}{frac {x}{2}}}{2operatorname {tg} {frac {x}{2}}}},}

{displaystyle sec x={frac {1}{cos x}}={frac {1+operatorname {tg} ^{2}{frac {x}{2}}}{1-operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {cosec} ~x={frac {1}{sin x}}={frac {1+operatorname {tg} ^{2}{frac {x}{2}}}{2operatorname {tg} {frac {x}{2}}}}.}

Исследование функций в математическом анализе[править | править код]

Разложение в бесконечные произведения[править | править код]

Тригонометрические функции могут быть представлены в виде бесконечного произведения многочленов:

{displaystyle sin x=x,prod _{n=1}^{infty }left(1-{frac {x^{2}}{pi ^{2}n^{2}}}right),}
{displaystyle cos x=prod _{n=0}^{infty }left(1-{frac {4x^{2}}{pi ^{2}(2n+1)^{2}}}right).}

Эти соотношения выполняются при любом значении x.

Непрерывные дроби[править | править код]

Разложение тангенса в непрерывную дробь:

{displaystyle mathop {rm {tg}} x={frac {x}{1-{frac {x^{2}}{3-{frac {x^{2}}{5-{frac {x^{2}}{7-{frac {x^{2}}{ddots }}}}}}}}}}}

Производные и первообразные[править | править код]

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

( sin x )' = cos x ,,

( cos x )' = -sin x ,,

{displaystyle (operatorname {tg} x)'={frac {1}{cos ^{2}x}}=1+operatorname {tg} ^{2}x=sec ^{2}x,}

{displaystyle (operatorname {ctg} x)'=-{frac {1}{sin ^{2}x}}=-operatorname {cosec} ^{2}x,}

{displaystyle (sec x)'={frac {sin x}{cos ^{2}x}}=sec xoperatorname {tg} x,}

( operatorname{cosec}~x)' = -frac{cos x}{sin ^2 x}.

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом[8]:

intsin x, dx = -cos x + C ,,

intcos x, dx = sin x + C ,,

{displaystyle int operatorname {tg} x,dx=-ln left|cos xright|+C,,}

{displaystyle int operatorname {ctg} x,dx=ln left|sin xright|+C,,}

intsec x, dx=ln left| operatorname{tg} , left( frac {pi}{4}+frac{x}{2}right) right|+ C ,,

int operatorname{cosec}~ x, dx=ln left| operatorname{tg} , frac{x}{2} right|+ C.

Тригонометрические функции комплексного аргумента[править | править код]

Определение[править | править код]

Формула Эйлера:

{displaystyle e^{ivartheta }=cos vartheta +isin vartheta .}

Формула Эйлера позволяет определить тригонометрические функции от комплексных аргументов через экспоненту по аналогии с гиперболическими функциями, или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

sin z = sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!}z^{2n+1} = frac{e^{i z} - e^{-i z}}{2i}, = frac{operatorname{sh}  i z }{i};
cos z = sum_{n=0}^infty frac{(-1)^{n}}{(2n)!}z^{2n} = frac{e^{i z} + e^{-i z}}{2}, = operatorname{ch} i z;
operatorname{tg}, z = frac{sin z}{cos z} = frac{e^{i z} - e^{-i z}}{i(e^{i z} + e^{-i z})};
operatorname{ctg}, z = frac{cos z}{sin z} = frac{i(e^{i z} + e^{-i z})}{e^{i z} - e^{-i z}};
sec z = frac{1}{cos z} = frac{2}{e^{i z} + e^{-i z}};
{displaystyle operatorname {cosec} ,z={frac {1}{sin z}}={frac {2i}{e^{iz}-e^{-iz}}},} где {displaystyle i^{2}=-1.}

Соответственно, для вещественного x:

{displaystyle cos x=operatorname {Re} (e^{ix}),}
{displaystyle sin x=operatorname {Im} (e^{ix}).}

Комплексные синус и косинус тесно связаны с гиперболическими функциями:

{displaystyle sin(x+iy)=sin x,operatorname {ch} ,y+icos x,operatorname {sh} ,y,}
{displaystyle cos(x+iy)=cos x,operatorname {ch} ,y-isin x,operatorname {sh} ,y.}

Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства:

  • комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения;
  • все нули комплексных синуса и косинуса лежат на вещественной оси.

Комплексные графики[править | править код]

На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный — ноль). Цвет изменяется от аргумента и угла согласно карте.

Тригонометрические функции в комплексной плоскости

Complex sin.jpg

Complex cos.jpg

Complex tan.jpg

Complex Cot.jpg

Complex Sec.jpg

Complex Csc.jpg

{displaystyle sin ,z} {displaystyle cos ,z} {displaystyle operatorname {tg} ,z} {displaystyle operatorname {ctg} ,z} {displaystyle sec ,z} {displaystyle operatorname {cosec} ,z}

История названий[править | править код]

Линия синуса (линия AB на рис. 2) у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды данной дуги, поскольку дуга с хордой напоминает лук с тетивой). Затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские математики, переводя индийские книги с санскрита, не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали его арабскими буквами и стали называть линию синуса «джиба» (جيب‎). Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса как «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus — «синус», имеющим то же значение (именно в этом значении оно применяется как анатомический термин синус). Термин «косинус» (лат. cosinus) — это сокращение от лат. complementi sinus — дополнительный синус.

Современные краткие обозначения sin, cos введены Уильямом Отредом и Бонавентурой Кавальери и закреплены в трудах Леонарда Эйлера.

Термины «тангенс» (лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке в его книге «Геометрия круглого» (Geometria rotundi, 1583).

Сам термин тригонометрические функции введён Клюгелем в 1770 году.

Позднее были введены и термины для обратных тригонометрических функций — арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс — с помощью добавления приставки «арк» (от лат. arcus — дуга), — Ж. Лагранжем и др.

См. также[править | править код]

  • Гиперболические функции
  • Интегральный синус
  • Интегральный косинус
  • Интегральный секанс
  • Обратные тригонометрические функции
  • Редко используемые тригонометрические функции
  • Решение треугольников
  • Синус-верзус
  • Сферическая тригонометрия
  • Тригонометрические тождества
  • Тригонометрические функции от матрицы
  • Тригонометрический ряд Фурье
  • Функция Гудермана
  • Четырёхзначные математические таблицы (Таблицы Брадиса)
  • Эллиптические функции

Литература[править | править код]

  • Бермант А. Ф., Люстерник Л. А. Тригонометрия. — М.: Наука, 1967.
  • Тригонометрические функции — статья из Большой советской энциклопедии.  — М.: Советская энциклопедия, 1977. — Т. 26. — С. 204—206.
  • Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
    • Переиздание: М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6 www.alleng.ru/d/math/math42.htm
  • Двайт Г. Б. Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.
  • Кожеуров П. А. Тригонометрия. — М.: Физматгиз, 1963.
  • Маркушевич А. И. Замечательные синусы. — М.: Наука, 1974.
  • Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. — И. М. Виноградов. Тригонометрические функции // Математическая энциклопедия. — М.: Советская энциклопедия. — 1977—1985.
  • Тригонометрические функции // Энциклопедический словарь юного математика / Ред. коллегия, Гнеденко Б. В. (гл. ред.), Савин А. П. и др. — М.: Педагогика, 1985 (1989). — С. 299—301—305. — 352 с., ил. — ISBN 5-7155-0218-7 (С. 342, 343 — таблицы тригонометрических функций 0°-90°, в том числе в радианах)
  • Тригонометрические функции // Справочник по математике (для ср. уч. заведений) / Цыпкин А. Г., под ред. Степанова С. А. — 3-е изд. — М.: Наука, Гл. редакция физ.-мат. литературы, 1983. — С. 240—258. — 480 с.

Ссылки[править | править код]

  • GonioLab — прояснённая единичная окружность, тригонометрические и гиперболические функции (Java Web Start)
  • Weisstein, Eric W. Trigonometric Functions (англ.) на сайте Wolfram MathWorld.
  • Онлайн калькулятор: вычисление значений тригонометрических функций (в том числе нахождение углов треугольника по сторонам)
  • Интерактивная карта значений тригонометрических функций
  • Тригонометрические таблицы (0° — 360°)
  • «Синус и косинус — это проценты» — перевод статьи How To Learn Trigonometry Intuitively | BetterExplained (англ.)

Примечания[править | править код]

  1. Справочник: Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с. Архивная копия от 19 января 2015 на Wayback Machine относит их к специальным функциям.
  2. Знак математический. // Большая советская энциклопедия. 1-е изд. Т. 27. — М., 1933.
  3. Справочник по элементарной математике, 1978, с. 282—284.
  4. Шахмейстер А. Х. Определение основных тригонометрических функций // Тригонометрия : [рус.] : книга / А. Х. Шахмейстер; под ред. Б. Г. Зива. — 3-е изд., стереотипное. — М. : Издательство МЦНМО ; СПб. : «Петроглиф» : «Виктория плюс», 2013. — С. 11, 14, 18, 20. — 752 с. : илл. — (Математика. Элективные курсы). — 1500 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-4439-0050-6. — ISBN 978-5-98712-042-2. — ISBN 978-5-91673-097-5.
  5. Справочник по элементарной математике, 1978, с. 271—272.
  6. Латинско-русский словарь. Дата обращения: 9 апреля 2023.
  7. Ильин В. А., Позняк Э. Г. Основы математического анализа. Ч. 1. — М.: Наука, 1998. — ISBN 5-02-015231-5.
  8. В формулах, содержащих логарифм в правой части равенств, константы интегрирования scriptstyle C, вообще говоря, различны для различных интервалов непрерывности.

Добавить комментарий