Помощь родителям: «целое» и «части».
Тема «Целое и части» — одна из важных в математике 1 классе.
Познакомить с этими понятиями очень легко на самом простом примере: возьмите яблоко.
Что можно рассказать о нем? (На самом деле ответов очень много – это цвет, размер, форма).
Что мы видим теперь? Сколько кусков получилось?
Кусок в математике называется – частью.
Сколько получилось частей? А можно по-другому разрезать?
Что больше: целое или его часть?
Если мы соединим эти части, то получим целое яблоко.
Часть всегда меньше целого, а целое всегда больше части.
Целое равно сумме частей.
Чтобы найти часть, надо из целого вычесть другую часть.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 5 / 5. Количество оценок: 67
ГДЗ учебник по математике 2 класс Петерсон. Часть 2. Урок 28. Решение задач. Номер №9
Как найти целое? Как найти часть? Определи в равенствах части и целое и найди x.
x − a = p
x + b = c
d − x = k
Решение
Чтобы найти целое нужно сложить части.
Чтобы найти часть нужно из целого вычесть другую часть.
x − a = p
x − целое;
a, p − части.
x = a + p
x + b = c
c − целое;
x, b − части.
x = c − b
d − x = k
d − целое;
x, k − части.
x = d − k
Решение уравнений с опорой на отношение «части и целое»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Описание презентации по отдельным слайдам:
Урок математики в 1 классе
УМК «Классическая программа»
Решение уравнений с опорой на отношение «части и целое»
Автор: Шишкалова Нина Петровна
учитель начальных классов
МБОУ «СОШ№6»
Г. Сосновый Бор
Цель:
учить решать уравнения, используя графические модели (схемы) и отношение «части и целое».
Подготовительный этап к восприятию нового материала.
Задание 1. У данных фигур покажите части и целое.
Задание 2. Найдите лишнюю фигуру.
а)
б)
в)
г)
д)
е)
Задание 2. По данной модели составьте из частей целое. Запишите формулу, применяя правило.
А
М
В
К
А = _____________
Если сложить части, то получится целое.
М
В
К
По этой же модели запишите формулы, как из целого найти части.
А
М = ____________
В = _____________
К = _____________
Если из целого вычесть часть, то останется другая часть.
К = А – М – В
Проверьте правильность выполненного вами задания.
А = М + В + К
М = А – В – К
В = А – М – К
Задание 3. (выполняется устно)
— Вычислить целое по его частям.
+
=
5 и 2 4 и 5
3 и 7 8 и 1
6 и 2 9 и 2
— Вычислить часть по целому и другой части.
=
—
8 и 2 5 и 4
7 и 1 6 и 2
7 и 4 3 и 2
Задание 4.
Обозначьте задуманное число буквой Х, У или Z. Запишите предложения формулами.
К задуманному числу прибавили 2 и получили 4.
Из задуманного числа вычли 3 и получили 2.
Из числа 7 вычли задуманное число и получили 6.
Равенства имеют вид: (проверка)
Х + 2 =4 У – 3 = 2 7 – Z = 6
Равенство, в котором есть неизвестная величина, называется уравнением.
Чтобы решить уравнение, нужно определить, что неизвестно — часть или целое. В этом помогут модели и схемы.
Задание 5.
— Обозначьте в каждом уравнении части и целое и найдите неизвестное число.
Х + 2 = 4 У – 3 = 2 7 – Z = 6
Х = У = Z =
Алгоритм.
Определите, частью или целым является неизвестная величина.
Примените правило и выберите действие.
Проверка выполненного задания.
x + 2 = 4 y — 3 = 2
x = 4 — 2 y = 3 + 2
7 — z = 6
z = 7 — 6
Проблемные и практические задачи по теме.
Задание 1.
Найдите и прочитайте те выражения, которые являются уравнениями.
c = a – b 5 = 6 – x
7 + x = 10 6 + 2 = 9
6 = 4 + 2 x – 4 = 3
Задание 2.
Составьте модели к найденным уравнениям и найдите неизвестное число.
Проверка выполненного задания.
7 + x = 10 5 = 6 — x
10
7
X
6
5
X
x – 4 = 3
x
4
3
Задание 3.
Составьте всевозможные уравнения по данной схеме.
x
c
a
Возможные варианты ответов.
x + c = a
a – x = c
c + x = a
a – c = x
Задание 4. Дано уравнение. x = d – a
— Определите, по какой из схем составлено уравнение.
Задание 5.
Решите задачу, используя модели или схему.
Мама испекла 16 пирожков. Когда несколько пирожков съели, их осталось 10. Сколько пирожков съели?
Проверьте схему и объясните свой выбор решения.
?
10
16
16
?
10
Выводы по теме.
Уравнение – это равенство с одним неизвестным.
Если неизвестна часть, то от целого отнимают другую часть.
Если неизвестно целое, то части складывают.
Уравнение – один из способов решения задачи.
Курс повышения квалификации
Охрана труда
- Сейчас обучается 114 человек из 42 регионов
Курс профессиональной переподготовки
Охрана труда
- Сейчас обучается 233 человека из 54 регионов
Курс профессиональной переподготовки
Библиотечно-библиографические и информационные знания в педагогическом процессе
- Сейчас обучается 352 человека из 64 регионов
Ищем педагогов в команду «Инфоурок»
Дистанционные курсы для педагогов
«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»
Свидетельство и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 586 282 материала в базе
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»
Свидетельство и скидка на обучение каждому участнику
Другие материалы
- 27.12.2020
- 1548
- 44
- 27.12.2020
- 1592
- 6
- 27.12.2020
- 574
- 4
- 27.12.2020
- 486
- 0
- 27.12.2020
- 449
- 0
- 27.12.2020
- 356
- 1
- 27.12.2020
- 510
- 3
- 27.12.2020
- 191
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 03.06.2020 618
- PPTX 148 кбайт
- 4 скачивания
- Оцените материал:
Настоящий материал опубликован пользователем Софронова Ольга Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 1 год и 1 месяц
- Подписчики: 0
- Всего просмотров: 24277
- Всего материалов: 234
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В Курганской области дистанционный режим для школьников продлили до конца февраля
Время чтения: 1 минута
Минобрнауки создаст для вузов рекомендации по поддержке молодых семей
Время чтения: 1 минута
Инфоурок стал резидентом Сколково
Время чтения: 2 минуты
В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных
Время чтения: 1 минута
Ленобласть распределит в школы прибывающих из Донбасса детей
Время чтения: 1 минута
В школах Хабаровского края введут уроки спортивной борьбы
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Получите новую специальность с дополнительной скидкой 10%
Цена от 4900 740 руб. Промокод (до 23 февраля): Промокод скопирован в буфер обмена ПП2302 Выбрать курс Все курсы профессиональной переподготовки
источники:
http://reshalka.com/uchebniki/2-klass/matematika/peterson/753
http://infourok.ru/reshenie-uravnenij-s-oporoj-na-otnoshenie-chasti-i-celoe-4730144.html
math4school.ru
Уравнения в целых числах
Немного теории
Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.
Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение
не имеет ненулевых рациональных решений для всех натуральных n > 2.
Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.
В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.
При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:
способ перебора вариантов;
применение алгоритма Евклида;
представление чисел в виде непрерывных (цепных) дробей;
разложения на множители;
решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;
метод бесконечного спуска.
Задачи с решениями
1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.
Запишем уравнение в виде (x – 2y)(x + y) = 7.
Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:
1) x – 2y = 7, x + y = 1;
2) x – 2y = 1, x + y = 7;
3) x – 2y = –7, x + y = –1;
4) x – 2y = –1, x + y = –7.
Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).
Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).
2. Решить в целых числах уравнение:
а) 20х + 12у = 2013;
в) 201х – 1999у = 12.
а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.
Ответ: решений нет.
б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,
Поскольку числа 5 и 7 взаимно простые, то
Значит, общее решение:
х = 1 + 7k, у = 2 – 5k,
где k – произвольное целое число.
Ответ: (1+7k; 2–5k), где k – целое число.
в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:
НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.
Запишем этот процесс в обратном порядке:
1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =
= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =
= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.
Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел
x0 = 1273·12 = 15276, y0 = 128·12 = 1536
является решением уравнения 201х – 1999у = 12.
Общее решение этого уравнения запишется в виде
х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,
или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),
х = 1283 + 1999n, у = 129 + 201n, где n – целое число.
Ответ: (1283+1999n, 129+201n), где n – целое число.
3. Решить в целых числах уравнение:
а) x 3 + y 3 = 3333333;
б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).
а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.
Ответ: целочисленных решений нет.
б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.
Ответ: целочисленных решений нет.
а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;
б) в целых числах уравнение x + y = x 2 – xy + y 2 .
а) Решим данное уравнение как квадратное относительно переменной у. Получим
у = х + 9 или у = 16 – х.
Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).
Так как х, у – простые, то из равенства у = 16 – х имеем
С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).
Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).
б) Рассмотрим данное уравнение как квадратное уравнение относительно x:
x 2 – (y + 1)x + y 2 – y = 0.
Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.
Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).
5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?
Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид
Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:
y = xn = n(2n 2 +1) = 2n 3 +n.
Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).
6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.
Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.
Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.
Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.
Поэтому все числа x, y, z, u чётны. Тогда можно записать, что
и исходное уравнение примет вид
Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x1 2 + y1 2 + z1 2 + u1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x1 2 + y1 2 + z1 2 + u1 2 не делится даже на 4. Значит,
и мы получаем уравнение
Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.
7. Докажите, что уравнение
(х – у) 3 + (y – z) 3 + (z – x) 3 = 30
не имеет решений в целых числах.
Воспользуемся следующим тождеством:
(х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).
Тогда исходное уравнение можно записать в виде
(х – у)(y – z)(z – x) = 10.
Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде
Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.
8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .
если х = 1, то у 2 = 1,
если х = 3, то у 2 = 9.
Этим случаям соответствуют следующие пары чисел:
Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как
5! + 6! + . . . + х! = 10n,
можем записать, что
1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.
Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.
Ответ: (1; 1), (1; –1), (3; 3), (3; –3).
9. Решите следующую систему уравнений в натуральных числах:
a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).
3abc > 0, то a 3 > b 3 + c 3 ;
таким образом имеем
b 2 2 + х = у 4 + у 3 + у 2 + у.
Разложив на множители обе части данного уравнения, получим:
х(х + 1) = у(у + 1)(у 2 + 1),
х(х + 1) = (у 2 + у)(у 2 + 1)
Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:
Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:
Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)
Задачи без решений
1. Решить в целых числах уравнение:
б) х 2 + у 2 = х + у + 2.
2. Решить в целых числах уравнение:
а) х 3 + 21у 2 + 5 = 0;
б) 15х 2 – 7у 2 = 9.
3. Решить в натуральных числах уравнение:
4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение
5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.
Алгебра
План урока:
Целое уравнение и его степень
Ранее мы уже изучали понятие целого выражения. Так называют любое выражение с переменной, в котором могут использоваться любые арифметические операции, а также возведение в степень. Однако есть важное ограничение – в целом выражении переменная НЕ может находиться в знаменателе какой-нибудь дроби или быть частью делителя. Также переменная не может находиться под знаком корня. Для наглядности приведем примеры целых выражений:
(n 3 + 7)/5 (в знаменателе находится только число, без переменной);
А вот примеры нецелых выражений:
Отличительной особенностью целых выражений является то, что в них переменная может принимать любое значение. В нецелых же выражениях возникают ограничения на значения переменной, ведь знаменатель дроби не должен равняться нулю, в выражение под знаком корня не должно быть отрицательным.
Введем понятие целого уравнения.
Приведем примеры целых ур-ний:
0,75х 7 + 0,53х 6 – 45х = 18
Напомним, что в математике существует понятие равносильных уравнений.
Когда мы решаем ур-ния, мы в каждой новой строчке записываем ур-ние, равносильное предыдущему. Для этого используются равносильные преобразования (перенос слагаемых через знак «=» с противоположным знаком, деление обоих частей равенства на одинаковые числа и т. д.).
Можно доказать (мы этого делать не будем), что любое целое ур-ние можно возможно преобразовать так, чтобы получилось иное, равносильное ему ур-ние, где в левой части будет находиться многочлен, а справа – ноль. Для этого надо лишь раскрыть скобки и умножить ур-ние на какое-нибудь число, чтобы избавиться от дробей.
Пример. Преобразуйте целое ур-ние
так, чтобы слева стоял многочлен, а справа – ноль.
Решение. В ур-нии есть дроби со знаменателями 5 и 4. Если умножить обе части на 20 (это наименьшее общее кратное чисел 5 и 4), то дроби исчезнут:
Теперь раскроем скобки:
4(5х 3 – 3х 4 + 45х – 27х 2 ) – 40 = 10х 2 + 5х + 35
20х 3 – 12х 4 + 180х – 108х 2 – 40 = 10х 2 + 5х + 35
Осталось перенести все слагаемые влево и привести подобные слагаемые:
20х 3 – 12х 4 + 180х – 108х 2 – 40 – 10х 2 – 5х – 35 = 0
– 12х 4 + 20х 3 – 118х 2 + 175х – 75 = 0
Получили ур-ние в той форме, которую и надо было найти по условию.
Ответ:– 12х 4 + 20х 3 – 118х 2 + 175х – 75 = 0
В математике любой полином можно обозначить как Р(х). Если ур-ние привели к тому виду, когда в одной части многочлен, а в другой ноль, то говорят, что получили ур-ние вида Р(х) = 0.
Получается, что решение целого уравнения всегда можно свести к решению равносильного ему ур-ния Р(х) = 0. Именно поэтому многочлены играют такую большую роль в математике
Напомним, что степенью многочлена называется максимальная степень входящего в его состав одночлена. Это же число является и степенью целого уравнения Р(х) = 0, а также степенью любого равносильного ему целого ур-ния.
Пример. Определите степень ур-ния
(х 3 – 5)(2х + 7) = 2х 4 + 9
Решение. Приведем ур-ние к виду Р(х) = 0. Для этого раскроем скобки:
(х 3 – 5)(2х + 7) = 2х 4 + 9
2х 4 + 7х 3 – 10х – 35 = 2х 4 + 9
Перенесем все слагаемые влево и приведем подобные слагаемые:
2х 4 + 7х 3 – 10х – 35 – 2х 4 – 9 = 0
7х 3 – 10х – 44 = 0
Получили в левой части многочлен 3-ей степени. Следовательно, и исходное ур-ние имело такую же степень
Приведем примеры ур-ний первой степени:
5,4568у + 0,0002145 = 0
Все они являются линейными ур-ниями, метод их решения изучался ранее. Они имеют 1 корень.
Приведем примеры ур-ний второй степени:
6t 2 + 98t – 52 = 0
Это квадратные ур-ния. У них не более двух действительных корней. Для их нахождения в общем случае надо вычислить дискриминант и использовать формулу
Квадратные и линейные ур-ния умели решать ещё в Древнем Вавилоне 4 тысячи лет назад! А вот с ур-ния 3-ей степени (их ещё называют кубическими уравнениями) оказались значительно сложнее. Приведем их примеры:
2х 3 + 4х 2 – 19х + 17 = 0
Лишь в 1545 году итальянец Джералимо Кардано опубликовал книгу, в которой описывался общий алгоритм решения кубических ур-ний. Он достаточно сложный и не входит в школьный курс математики. Его ученик, Лодовико Феррари, предложил метод решения ур-ний четвертой степени. В качестве примера такого ур-ния можно привести:
5х 4 + 6х 3 – 2х 2 – 10х + 1 = 0
Лишь в XIX веке было доказано, что для ур-ний более высоких степеней (5-ой, 6-ой и т. д.) не существует универсальных формул, с помощью которых можно было бы найти их корни.
Отметим, что если степень целого ур-ния равна n, то у него не более n корней (но их число может быть и меньше). Так, количество корней кубического уравнения не превышает трех, а у ур-ния 4-ой степени их не более 4.
Чтобы доказать это утверждение, сначала покажем способ составления уравнения Р(х) = 0, имеющего заранее заданные корни. Пусть требуется составить ур-ние, имеющее корни k1, k2,k3,…kn. Приравняем к нулю следующее произведение скобок:
Составленное ур-ние имеет все требуемые корни и никаких других корней. Действительно, произведение множителей может равняться нулю только в случае, если хотя бы один из множителей нулевой. Поэтому для решения ур-ния
надо каждую скобку приравнять к нулю:
х – k1 = 0 или х – k2 = 0 или х – k3 = 0 или…х – kn = 0
Перенесем второе слагаемое вправо в каждом равенстве и получим:
Чтобы вместо произведения скобок слева стоял многочлен, надо просто раскрыть скобки.
Пример. Составьте уравнение в виде Р(х) = 0, имеющее корни 1, 2, 3 и 4.
Запишем целое ур-ние, имеющее требуемые корни:
(х – 1)(х – 2)(х – 3)(х – 4) = 0
Будем поочередно раскрывать скобки, умножая 1-ую скобку на 2-ую, полученный результат на 3-ю и т.д.:
(х 2 – 3х + 2)(х – 3)(х – 4) = 0
(х 3 – 6х 2 + 11х – 6)(х – 4) = 0
х 4 – 10х 3 + 35х 2 – 50х +24 = 0
Получили ур-ние вида Р(х) = 0. Для проверки вычислений можно подставить в него числа 1, 2, 3 и 4 и убедиться, что они обращают ур-ние в верное равенство.
Ответ: х 4 – 10х 3 + 35х 2 – 50х +24 = 0
Заметим, что в рассмотренном примере, когда мы перемножали многочлены, мы получали новый полином, чья степень увеличивалась на единицу. Мы перемножили 4 скобки (х – k1), а потому получили полином 4 степени. Если бы мы перемножали, скажем, 10 таких скобок, то и многочлен бы получился 10-ой степени. Именно поэтому ур-ние n-ой степени не более n корней.
Действительно, предположим, что какое-то ур-ние n-ой степени имеет хотя бы (n + 1) корень. Обозначим эти корни как k1, k2,k3,…kn, kn+1 и запишем уравнение:
Оно, по определению, равносильно исходному ур-нию, ведь оно имеет тот же набор корней. Слева записаны (n + 1) скобок, поэтому при их раскрытии мы получим полином степени (n + 1). Значит, и исходное ур-ние на самом деле имеет степень n + 1, а не n. Получили противоречие, которое означает, что на самом деле у уравнения n-ой степени не более n корней.
Особо акцентируем внимание на том факте, что если корнями уравнения являются некоторые числа k1, k2,k3,…kn, то этому ур-нию равносильна запись (х – k1)(х – k2)(х – k3)…(х – kn) = 0
Этот факт будет использован далее при решении ур-ний.
Решение уравнений методом подбора корня
Необязательно преобразовывать ур-ние, чтобы найти его корни. Одним из приемов решения целых уравнений является метод подбора корня. Ведь если надо доказать, что какое-то число – это корень ур-ния, достаточно просто подставить это число в ур-ние и получить справедливое равенство!
Пример. Докажите, что корнями ур-ния
х 3 – 2х 2 – х + 2 = 0
являются только числа (– 1), 1 и 2.
Решение. Подставим в ур-ние каждую из предполагаемых корней и получим справедливое равенство. При х = – 1 имеем:
(– 1) 3 – 2(– 1) 2 – (– 1) + 2 = 0
При х = 1 получаем:
1 3 – 2•1 2 – 1 + 2 = 0
Наконец, рассмотрим случай, когда х = 2
2 3 – 2•2 2 – 2 + 2 = 0
Исходное ур-ние имеет 3-ю степень, поэтому у него не более 3 корней. То есть других корней, кроме (– 1), 1 и 2 , у него нет.
Конечно, просто так подобрать корни довольно тяжело. Однако есть некоторые правила, которые помогают в этом. Для начала введем понятие коэффициентов уравнения.
Понятно, что ур-ние Р(х) = 0 в общем виде можно записать так:
Числа а0, а1, а2,…аnи называют коэффициентами уравнений.
Например, для уравнения
5х 4 – 7х 3 + 9х 2 – х + 12 = 0
Если одна из слагаемых «пропущено» в уравнении, то считают, что коэффициент перед ним равен нулю. Например, в ур-нии
нет слагаемого с буквенной частью х 2 . Можно считать, что ур-ние равносильно записи
х 3 + 0х 2 + 2х – 15 = 0
где слагаемое х 2 есть, но перед ним стоит ноль. Тогда коэффициент а1 = 0.
Для обозначения первого коэффициента а0 может использоваться термин старший коэффициент, а для последнего коэффициента аn – термин «свободный член» или «свободный коэффициент».
Изучение коэффициентов ур-ния помогает быстрее подобрать корень. Существует следующая теорема:
Докажем это утверждение. Пусть m – это целый корень уравнения с целыми коэффициентами
Тогда можно подставить туда число m и получить верное равенство:
Поделим обе его части на m и получим
Справа – целое число (ноль), значит, и сумма чисел слева также целая. Все числа а0m n –1 , a1m n –2 , аn–1, очевидно, целые (так как и целыми являются и m, и все коэффициенты). Значит, и число аn/m должно быть целым. Но это возможно лишь в том случае, если m является делителем числа аn.
Из доказанной теоремы следует, что при подборе корней ур-ния достаточно рассматривать только те из них, которые являются делителями свободного члена. При этом следует учитывать и отрицательные делители.
Пример. Найдите целые корни уравнения
2х 4 – х 3 – 9х 2 + 4х + 4 = 0
Решение. Все коэффициенты ур-ния – целые, а потому целый корень должен быть делителем свободного члена, то есть числа 4. Делителями четверки являются 1 и (– 1), 2 и (– 2), 4 и (– 4). Подставляя каждое из этих чисел в ур-ние, получим верные равенства только для чисел 1, 2 и (– 2):
2•1 4 – 1 3 – 9•1 2 + 4•1 + 4 = 2 – 1 – 9 + 4 + 4 = 0
2•2 4 – 2 3 – 9•2 2 + 4•2 + 4 = 32 – 8 – 36 + 8 + 4 = 0
2•(– 2) 4 – (– 2) 3 – 9•(– 2) 2 + 4(– 2) + 4 = 32 + 8 – 36 – 8 + 4 = 0
Таким образом, только эти числа и могут быть целыми корнями ур-ния. Так как мы рассматриваем ур-ние 4 степени, то, возможно, у него помимо 3 целых корней есть ещё один дробный.
Пример. Решите ур-ние
0,5х 3 + 0,5х + 5 = 0
Решение. У ур-ния дробные коэффициенты. Умножим обе части равенства на 2 и получим ур-ние с целыми коэффициентами:
0,5х 3 + 0,5х + 5 = 0
(0,5х 3 + 0,5х + 5)•2 = 0•2
Попытаемся подобрать целый корень ур-ния. Он должен быть делителем свободного члена, то есть десятки. Возможными кандидатами являются числа 1 и (– 1), 2 и (– 2), 5 и (– 5), 10 и (– 10). Подходит только корень х = – 2:
(– 2) 3 + (– 2) + 10 = – 8 – 2 + 10 = 0
Обратим внимание, что в левой части ур-ния стоит сумма функций, возрастающих на всей числовой прямой: у = х 3 и у = х + 10. Значит, и вся левая часть х 3 + х + 10 монотонно возрастает. Это значит, что у ур-ния есть только один корень, и мы его нашли ранее подбором.
Ещё быстрее можно узнать, является ли единица корнем уравнения.
Докажем это. Подставим в ур-ние
значение х = 1. Так как единица в любой степени равна самой единице, то получим:
Получили равенство, в котором слева стоит сумма коэффициентов, в справа – ноль. Если сумма коэффициентов действительно равна нулю, то равенство верное, а, значит, единица является корнем ур-ния.
Пример. Укажите хотя бы 1 корень ур-ния
499х 10 – 9990х 7 + 501х 6 – 10х 5 + 10000х 4 – 1000 = 0
Решение. Заметим, что при сложении коэффициентов ур-ния получается 0:
499 – 9990 + 501 – 10 + 10000 – 1000 = (499 + 501 – 1000) + (10000 – 9990 – 10) = 0 + 0 = 0
Следовательно, единица является его корнем.
Решение уравнений с помощью разложения многочлена на множители
Если в уравнении вида P(x) = 0в левой части удается выполнить разложение многочлена на множители, то дальше каждый из множителей можно отдельно приравнять к нулю.
Пример. Решите ур-ние
Решение. Степень х 4 можно представить как (х 2 ) 2 , а 16 – как 4 2 . Получается, что слева стоит разность квадратов, которую можно разложить на множители по известной формуле:
(х 2 – 4)(х 2 + 4) = 0
Приравняем каждую скобку к нулю и получим два квадратных ур-ния:
х 2 – 4 = 0 или х 2 + 4 = 0
х 2 = 4 или х 2 = – 4
Первое ур-ние имеет два противоположных корня: 2 и (– 2). Второе ур-ние корней не имеет.
Предположим, что у ур-ния 3-ей степени есть 3 корня, и подбором мы нашли один из них. Как найти оставшиеся корни? Здесь помогает процедура, известная как «деление многочленов в столбик». Продемонстрируем ее на примере. Пусть надо решить ур-ние
100х 3 – 210х 2 + 134х – 24 = 0
Можно заметить, сумма всех коэффициентов ур-ния равна нулю:
100 – 210 + 134 – 24 = 0
Следовательно, первый корень – это 1.
Предположим, что у исходного ур-нияР(х) = 0 есть 3 корня, k1, k2и k3. Тогда ему равносильно другое ур-ние
Мы нашли, что первый корень k1 = 1, то есть
Обозначим как P1(x) = 0 ещё одно ур-ние, корнями которого будут только числа k2 и k3. Очевидно, что корнями ур-ния
Будут числа 1, k2 и k3. Его корни совпадают с корнями исходного ур-ния, а потому запишем
(х – 1)•P1(x) = 100х 3 – 210х 2 + 134х – 24
Поделим обе части на (х – 1):
Итак, если «поделить» исходное ур-ние на х – 1, то получим какой-то многочлен Р1(х), причем решением уравнения P1(x) = 0 будут оставшиеся два корня, k2и k3. Деление можно выполнить в столбик. Для этого сначала запишем «делимое» и «делитель», как и при делении чисел:
Смотрим на первое слагаемое делимого. Это 100х 3 . На какой одночлен нужно умножить делитель (х – 1), чтобы получился полином со слагаемым 100х 3 ? Это 100х 2 . Действительно, (х – 1)100х 2 = 100х 3 – 100х 2 . Запишем слагаемое 100х 2 в результат деления, а результат его умножения на делитель, то есть 100х 3 – 100х 2 , вычтем из делимого:
Теперь вычтем из делимого то выражение, которое мы записали под ним. Слагаемые 100х 3 , естественно, сократятся:
(100х 3 – 210х 2 ) – (100х 3 – 100х 2 ) = 100х 3 – 210х 2 – 100х 3 + 100х 2 = – 110х 2
Далее снесем слагаемое 134х вниз:
На какое слагаемое нужно умножить (х – 1), что получился полином со слагаемым (– 110х 2 ). Очевидно, на (– 110х):
(х – 1)(– 110х 2 ) = –110х 2 + 110х
Запишем в поле «ответа» слагаемое (– 110х 2 ), а под делимый многочлен – результат его умножения на (х – 1):
При вычитании из (–110х 2 + 134х) полинома (–110х 2 + 110х) остается 24х. Далее сносим последнее слагаемое делимого многочлена вниз:
Выражение х – 1 нужно умножить на 24, чтобы получить 24х – 24. Запишем в поле «ответа» число 24, а в столбике произведение 24(х –1) = 24х – 24:
В результате в остатке получился ноль. Значит, всё сделано правильно. С помощью деления столбиком мы смогли разложить полином 100х 3 – 210х 2 + 134х – 24 на множители:
100х 3 – 210х 2 + 134х – 24 = (х – 1)(100х 2 – 110х + 24)
Теперь перепишем исходное ур-ние с учетом этого разложения:
100х 3 – 210х 2 + 134х – 24 = 0
(х – 1)(100х 2 – 110х + 24) = 0
Теперь каждую отдельную скобку можно приравнять нулю. Получим ур-ние х – 1 = 0, корень которого, равный единице, мы уже нашли подбором. Приравняв к нулю вторую скобку, получим квадратное ур-ние:
100х 2 – 110х + 24 = 0
D =b 2 – 4ас = (– 110) 2 – 4•100•24 = 12100 – 9600 = 2500
Итак, мы нашли три корня ур-ния: 1; 0,3 и 0,8.
В данном случае мы воспользовались следующим правилом:
Пример. Решите уравнение
2х 3 – 8х 2 + 16 = 0
Решение. Все коэффициенты целые, а потому, если у уравнения есть целый корень, то он должен быть делителем 16. Перечислим эти делители: 1, – 1, 2, – 2, 4, – 4, 8, – 8, 16, – 16. Из всех них подходит только двойка:
2•2 3 – 8•2 2 + 16 = 16 – 32 + 16 = 0
Итак, первый корень равен 2. Это значит, что исходный многочлен можно разложить на множители, один из которых – это (х – 2). Второй множитель найдем делением в столбик. Так как в многочлене 2х 3 – 8х 2 + 16 нет слагаемого с буквенной часть х, то искусственно добавим её:
2х 3 – 8х 2 + 16 = 2х 3 – 8х 2 + 0х + 16
Теперь возможно деление:
Получили, что 2х 3 – 8х 2 + 16 = (х – 2)(2х – 4х – 8)
С учетом этого перепишем исходное ур-ние:
2х 3 – 8х 2 + 16 = 0
(х – 2)(2х – 4х – 8) = 0
х – 2 = 0 или 2х – 4х – 8 = 0
Решим квадратное ур-ние
D =b 2 – 4ас = (– 4) 2 – 4•2•(– 8) = 16 + 64 = 80
В 8 классе мы узнали, что если у квадратного ур-ния ах 2 + bx + c = 0 есть два корня, то многочлен ах 2 + bx + c можно разложить на множители по формуле
где k1 и k2– корни квадратного ур-ния. Оказывается, такое же действие можно выполнять с многочленами и более высоких степеней. В частности, если у кубического ур-ния есть 3 корня k1, k2 и k3, то его можно разложить на множители по формуле
Пример. Разложите на множители многочлен 2х 3 – 4х 2 – 2х + 4.
Решение. Целые корни этого многочлена (если они есть), должны быть делителем четверки. Из всех таких делителей подходят три: 1, (– 1) и 2:
2•1 3 – 4•1 2 – 2•1 + 4 = 2 – 4 – 2 + 4 = 0
2•(– 1) 3 – 4•(– 1) 2 – 2•(– 1) + 4 = – 2 – 4 + 2 + 4 = 0
2•2 3 – 4•2 2 – 2•2 + 4 = 16 – 16 – 4 + 4 = 0
Значит, многочлен можно разложить на множители:
2х 3 – 4х 2 – 2х + 4 = 2(х + 1)(х – 1)(х – 2)
Возникает вопрос – почему перед скобками нужна двойка? Попробуем сначала перемножить скобки без ее использования:
(х + 1)(х – 1)(х – 2) = (х 2 – 1)(х – 2) = х 3 – 2х 2 – х + 2
Получили не тот многочлен, который стоит в условии. Однако ур-ние
х 3 – 2х 2 – х + 2 = 0
имеет те же корни (1, 2 и (– 1)), что и ур-ние
2х 3 – 4х 2 – 2х + 4 = 0
Дело в том, что это равносильные ур-ния, причем второе получено умножением первого на два:
2•(х 3 – 2х 2 – х + 2) = 2х 3 – 4х 2 – 2х + 4
Надо понимать, что хотя ур-ния 2х 3 – 4х 2 – 2х + 4 = 0 и х 3 – 2х 2 – х + 2 = 0, по сути, одинаковы, многочлены в их левой части различны. Заметим, что при перемножении скобок (х – k1), (х – k2), (х – k3) и т.д. всегда будет получаться полином, у которого старший коэффициент равен единице. Поэтому, чтобы учесть этот самый коэффициент, надо домножить произведение скобок на него:
2х 3 – 4х 2 – 2х + 4= 2•(х 3 – 2х 2 – х + 2) = 2(х + 1)(х – 1)(х – 2)
Ответ: 2(х + 1)(х – 1)(х – 2).
Графический метод решения уравнений
Любое ур-ние с одной переменной можно представить в виде равенства
где у(х) и g(x) – некоторые функции от аргумента х.
Построив графики этих функций, можно примерно найти точки их пересечений. Они и будут соответствовать корням уравнения.
Пример. Решите графически уравнение
Решение. Строить график уравнения х 3 – х 2 – 1 = 0 довольно сложно, поэтому перенесем слагаемое (– х 2 – 1) вправо:
Построим графики у = х 3 и у = х 2 + 1 (второй можно получить переносом параболы у = х 2 на единицу вверх):
Видно, они пересекаются в точке, примерно соответствующей значению х ≈ 1,4. Если построить графики уравнения более точно (с помощью компьютера), то можно найти, что х ≈ 1,46557.
Ответ: х ≈ 1,46557
Конечно, графический метод решения уравнений не является абсолютно точным, однако он помогает быстро найти примерное положение корня. Также с его помощью можно определить количество корней уравнения. В рассмотренном примере был только 1 корень.
Пример. Определите количество корней уравнений
б) х 3 – 2х + 0,5 = 0
Решение. Перенесем два последних слагаемых вправо в каждом ур-нии:
Построим графики функций у = х 3 , у = х + 3 и у = 2х – 0,5:
Видно, что прямая у = х + 3 пересекает график у = х 3 в одной точке, поэтому у первого ур-ния будет 1 решение.Прямая у = 2х – 0,5 пересекает кубическую параболу в трех точках, а потому у второго ур-ния 3 корня.
Ответ: а) один корень; б) три корня.
Решение дробно-рациональных уравнений
До этого мы рассматривали только целые ур-ния, где переменная НЕ находится в знаменателе какого-нибудь выражения. Однако, если в ур-нии есть выр-ние, содержащее переменную в знаменателе, или присутствует деление на выр-ние с переменной, то его называют дробно-рациональным уравнением.
Приведем несколько примеров ур-ний, считающихся дробно-рациональными:
С помощью равносильных преобразований любое дробно-рациональное ур-ние возможно записать в виде отношения двух полиномов:
Дробь равна нулю лишь тогда, когда ее числитель равен нулю, а знаменатель – не равен. Таким образом, нужно сначала решить ур-ние Р(х) = 0 и потом проверить, что полученные корни не обращают полином Q(x) в ноль.
Обычно для решения дробно-рациональных уравнений используют такой алгоритм:
1) Приводят все дроби к единому знаменателю, умножают на него ур-ние и получают целое ур-ние.
2) Решают полученное целое ур-ние.
3) Исключают из числа корней те, которые обращают знаменатель хотя бы одной из дробей в ноль.
Пример. Решите ур-ние
Умножим обе части равенства на знаменатель 1-ой дроби:
2х 2 – 3х – 2 = х 2 (х – 2)
Раскроем скобки и перенесем все слагаемые в одну сторону:
2х 2 – 3х – 2 = х 3 – 2х 2
х 3 – 2х 2 – 2х 2 + 3х + 2 = 0
х 3 – 4х 2 + 3х + 2 = 0
У ур-ния могут быть только те целые корни, которые являются делителями двойки. Из кандидатов 1, – 1, 2 и – 2 подходит только двойка:
2 3 – 4•2 2 + 3•2 + 2 = 8 – 16 + 6 + 2 = 0
Нашли один корень, а потому исходный многочлен можно поделить в столбик на (х – 2):
Получили, что х 3 – 4х 2 + 3х + 2 = (х – 2)(х 2 – 2х – 1)
Тогда ур-ние примет вид:
(х – 2)(х 2 – 2х – 1) = 0
х – 2 = 0 или х 2 – 2х – 1 = 0
Решим квадратное ур-ние:
D =b 2 – 4ас = (– 2) 2 – 4•1•(– 1) = 4 + 4 = 8
Мы нашли все 3 корня кубического ур-ния. Теперь надо проверить, не обращают ли какие-нибудь из них знаменатели дроби в исходном ур-нии
в ноль. Очевидно, что при х = 2 знаменатель (х – 2) превратится в ноль:
Это значит, что этот корень надо исключить из списка решений. Такой корень называют посторонним корнем ур-ния.
Также ясно, что два остальных корня не обращают знаменатель в ноль, а потому они НЕ должны быть исключены из ответа:
Пример. Найдите все корни ур-ния
Решение. Если сразу привести выражение слева к общему знаменателю 4(х 2 + х – 2)(х 2 + х – 20), то получится очень длинное и неудобное выражение. Однако знаменатели довольно схожи, поэтому можно провести замену. Обозначим х 2 + х как у:
Тогда уравнение примет вид
Приведем дроби к общему знаменателю 4(у – 2)(у – 20):
Знаменатель должен равняться нулю:
4(у – 20) + 28(у – 2) + (у – 2)(у – 20) = 0
4у – 80 + 28у – 56 + у 2 – 20у – 2у + 40 = 0
у 2 + 10у – 96 = 0
Решаем квадратное ур-ние:
D =b 2 – 4ас = (10) 2 – 4•1•(– 96) = 100 + 384 = 484
Получили, что у1 = – 16, а у2 = 6. Произведем обратную замену:
х 2 + х = – 16 или х 2 + х = 6
х 2 + х + 16 = 0 или х 2 + х – 6 = 0
Дискриминант 1-ого ур-ния отрицателен:
D =b 2 – 4ас = (1) 2 – 4•1•(16) = 1– 64 = – 63
А потому оно не имеет решений. Решим 2-ое ур-ние:
D = b 2 – 4ас = (1) 2 – 4•1•(– 6) = 1+ 24 = 25
Нашли два корня: 2 и (– 3). Осталось проверить, не обращают ли они знаменатели дробей в ур-нии
в ноль. Подстановкой можно убедиться, что не обращают.
При решении дробно-рациональных ур-ний может использоваться и графический метод.
Пример. Сколько корней имеет уравнение
Решение. Построим графики функций у = х 2 – 4 и у = 2/х:
Видно, что графики пересекаются в 3 точках, поэтому ур-ние имеет 3 корня.
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №9. Решение уравнений в целых числах.
Перечень вопросов, рассматриваемых в теме
- понятие диофантовых уравнений;
- теоремы для решения уравнений в целых числах;
- основные методы решения уравнений в целых числах.
Глоссарий по теме
Диофантовыми уравнениями называются уравнения вида
Неопределенные уравнения – уравнения, содержащие более одного неизвестного. Под одним решением неопределенного уравнения понимается совокупность значений неизвестных, которая обращает данное уравнение в верное равенство.
Теорема 1. Если НОД(а, b) = d, то существуют такие целые числа х и у, что имеет место равенство ах + bу = d.
Теорема 2. Если уравнение ах + bу = 1, если НОД(а, b) = 1, достаточно представить число 1 в виде линейной комбинации чисел а и b.
Теорема 3. Если в уравнении ах + bу = с НОД(а, b) = d>1 и с не делится на d, то уравнение целых решений не имеет.
Теорема 4. Если в уравнении ах + bу = с НОД(а, b) = d>1 и с 1 и с не делится на d, то уравнение целых решений не имеет.
Для доказательства теоремы достаточно предположить противное.
Найти целое решение уравнения 16х – 34у = 7.
(16,34)=2; 7 не делится на 2, уравнение целых решений не имеет.
Теорема 4. Если в уравнении ах + bу = с НОД(а, b) = d>1 и с 2 + 23 = у 2
Перепишем уравнение в виде: у 2 – х 2 = 23, (у – х)(у + х) = 23
Так как х и у – целые числа и 23 – простое число, то возможны случаи:
; ; ; ;
Решая полученные системы, находим:
; ;;;
4. Выражение одной переменной через другую и выделение целой части дроби.
Решить уравнение в целых числах: х 2 + ху – у – 2 = 0.
Выразим из данного уравнения у через х:
Так как х, у – целые числа, то дробь должна быть целым числом.
Это возможно, если х – 1 =
; ;
; ;
5. Методы, основанные на выделении полного квадрата.
Найдите все целочисленные решения уравнения: х 2 – 6ху + 13у 2 = 29.
Преобразуем левую часть уравнения, выделив полные квадраты,
х 2 – 6ху + 13у 2 = (х 2 – 6ху + 9у 2 ) + 4у 2 = (х – 3у) 2 + (2у) 2 = 29, значит (2у) 2 29.
Получаем, что у может быть равен .
1. у = 0, (х – 0) 2 = 29. Не имеет решений в целых числах.
2. у = -1, (х + 3) 2 + 4 =29, (х + 3) 2 = 25, х + 3 = 5 или х + 3 = -5
3. у = 1, (х – 3) 2 +4 =29,
(х – 3) 2 =25, х – 3 = 5 или х – 3 = -5
4. у = -2, (х + 6) 2 + 16 = 29, (х + 6) 2 = 13. Нет решений в целых числах.
5. у=2, (х-6) 2 +16=29, (х-6) 2 =13. Нет решений в целых числах.
Ответ: (2; -1); (-8; -1); (8; 1); (-2; 1).
6. Решение уравнений с двумя переменными как квадратных
относительно одной из переменных.
Решить уравнение в целых числах: 5х 2 +5у 2 +8ху+2у-2х+2=0.
Рассмотрим уравнение как квадратное относительно х:
5х 2 + (8у – 2)х + 5у 2 + 2у + 2 = 0
D = (8у – 2) 2 – 4·5(5у 2 + 2у + 2) = 64у 2 – 32у + 4 = -100у 2 – 40у – 40= = -36(у 2 + 2у + 1) = -36(у + 1) 2
Для того, чтобы уравнение имело решения, необходимо, чтобы D = 0.
-36(у + 1) 2 = 0. Это возможно при у = -1, тогда х = 1.
7. Оценка выражений, входящих в уравнение.
Решить в целых числах уравнение:
(х 2 + 4)(у 2 + 1) = 8ху
Заметим, что если – решение уравнения, то – тоже решение.
И так как х = 0 и у = 0 не являются решением уравнения, то, разделив обе части уравнения на ху, получим:
,
Пусть х > 0, у > 0, тогда, согласно неравенству Коши,
,
тогда их произведение , значит,
Отсюда находим х = 2 и у = 1 – решение, тогда х = -2 и у = -1 – тоже решение.
8.Примеры уравнений второй степени с тремя неизвестными.
Рассмотрим уравнение второй степени с тремя неизвестными: х 2 + у 2 = z 2 .
Геометрически решение этого уравнения в целых числах можно истолковать как нахождение всех пифагоровых треугольников, т.е. прямоугольник треугольников, у которых и катеты х,у и гипотенуза z выражаются целыми числами.
По формуле х = uv, , где u и v – нечетные взаимно простые числа (u > v > 0) можно найти те решения уравнения х 2 + у 2 = z 2 , в которых числа х,у и z не имеют общих делителей (т.е. взаимно простые).
Для начальных значений u и v формулы приводят к следующим часто встречающимся равенствам:
3 2 + 4 2 = 5 2 (u = 1, v = 3), 5 2 + 12 2 = 13 2 (u = 1, v = 5), 15 2 + 8 2 = 17 2 (u = 3, v = 5)
Все остальные целые положительные решения этого уравнения получаются умножением решений, содержащихся в формулах, на произвольный общий множитель а.
Разбор решения заданий тренировочного модуля
№1. Тип задания: выбор элемента из выпадающего списка
Решите уравнение 9х+22у-1=0
Решение: Решим данное уравнение, воспользовавшись теоремой 2:
2. 1 = 9 – 4∙2 = 9 – (22 – 9∙2) ∙2 = 9∙5 + 22∙(-2),
т.е. х0= 5, у0= -2 – решение данного уравнения
№2. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Найдите целое решение уравнения 3х+9у=3
Решение: Решим данное уравнение: 3х+9у=3
Разделим обе части уравнения на 3, получим:
- 3 = 1 ∙ 2 + 1
- 1 = 3 – 1∙2, т.е. х0= 1, у0= 0 – решение данного уравнения
[spoiler title=”источники:”]
http://100urokov.ru/predmety/2-urok-uravneniya-s-odnoj-peremennoj
http://resh.edu.ru/subject/lesson/4728/conspect/
[/spoiler]
Уравнения в целых числах – уравнения с двумя и более неизвестными переменными и целыми коэффициентами. Решениями таких уравнений являются целые числа. Также такие уравнения называются диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который изучал такие уравнения еще до нашей эры.
При решении уравнений в целых и натуральных числах можно выделить следующие способы.
1 способ. Метод перебора вариантов.
Решим уравнение $ (x-2)(y+3)=4 $ в целых числах.
Так как x и у целые числа, совершим перебор вариантов:
$ {x-2=1;; y+3=4rightarrow;x=3;;y=1\ x-2=4;; y+3=1rightarrow;x=6;;y=-2\ x-2=-1;; y+3=-4rightarrow;x=1;;y=-7\ x-2=-4;; y+3=-1rightarrow;x=-2;;y=-4\ x-2=2;; y+3=2rightarrow;x=4;;y=-1\ x-2=-2;; y+3=-2rightarrow;x=0;;y=-5\} $
Ответ: (3; 1), (6; -2), (1; -7), (-2; -4), (4; -1), (0; -5).
Решим уравнение 10х + 10у = 2019 в целых числах.
Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.
Ответ: решений нет.
Пусть нужно решить уравнение в целых числах: $ 5x+4y=22. $
Методом перебора находим решение $ x_1=2;;y_1=3. $
Получаем систему уравнений:
$ {begin{cases}5x=4y=22\5cdot2=4cdot3=22end{cases}\ 5(x-2)=4(y-3)=0\ 5(x-2)=-4(y-3)} $
$ x-2=frac{-4(y-3)}{5} $
Из полученного равенства видно, что число (х – 2) будет целым тогда и только тогда, когда (у – 3) делится на 5, т.е. у – 3 = 5n, где n какое-нибудь целое число.
Имеем:
$ { y=3+5n\ x-2=-4cdotfrac{5n}{5}=-4n\ x=2-4n} $
Тем самым все целые решения исходного уравнения можно записать в таком виде:
$ (2-4n;;3=5n),; где; n in Z. $
Ответ: $ (2-4n;;3=5n),; где; n in Z. $
2 способ. Алгоритм Евклида
Пусть нужно решить уравнение в целых числах: $ 5x+7y=6. $
Сделаем это с помощью Алгоритма Евклида. Ищем НОД чисел 5 и 7 с помощью него:
НОД (5, 7) = НОД (5, 7-5) = НОД (5, 2) = НОД (5 – 2∙2, 2) = НОД (1, 2) = 1
Запишем этот процесс в обратном порядке:
$ 1=2-1=2-(5-2cdot2)=2cdot3-5cdot1=(7-5)cdot3-5cdot1=7cdot3-5cdot4. $
То есть:
$ 1=5cdot(-4)+7cdot3 $
Тогда:
$ { 1cdot6=5cdot(-4)cdot6+7cdot3cdot6\ 6=5cdot(-24)+7cdot18\ 6=5x+7y} $
Тогда $ { x=-24 ;и ; y=18} $ является решением уравнения.
Общее решение записывается в виде:
$ { x=-24+7n; ; y=18+5n,} $ где n – любое целое число.
Выполним проверку:
$ { 5(-24+7n)+7(18+5n)=6\ -120+35n+126+35n=6\ 70n=0} $
$ { n} $ – любое целое.
Верно.
Это не всевозможные способы решения. Зачастую для решения диофантовых уравнений требуются более тонкие рассуждения, связанные с делимостью, перебором остатков, оценками частей уравнения, тождественными преобразованиями и т.п.
Пример.
Решим уравнение:
$ 3^{x}+4^{y}=5^{z} $
Разложить на множители и выразить переменную мы здесь не можем. Воспользуемся методом перебора остатков.
Если левая часть уравнения в целых числах кратна какому-то числу, то и другая обязательно должна быть кратна этому же числу. Отсюда следует, что и остатки от деления обеих частей уравнения на одно и то же число будут давать одинаковые остатки.
Будем делать выводы о делимости одной части уравнения на какое-либо число (или смотреть, какой остаток от деления при этом получается) и проверять, при каких значениях переменных вторая часть уравнения также делится на это число (либо даёт такой же остаток).
Левая часть кратна 5. И остатки от деления на 5 у обеих частей также будут равны.
Про пятёрку уже сказали, что правая часть делится на неё без остатка, значит и левая тоже должна делиться.
Рассмотрим остатки от деления на 4.
Z | $ 5^{z} $ | Остаток при делении на 4 |
---|---|---|
1 | 5 | 1 |
2 | 25 | 1 |
3 | 125 | 1 |
4 | 625 | 1 |
Видим простую закономерность, что 5 в любой степени при делении на 4 будет давать остаток 1.
Теперь левая часть: будет делиться на 4 без остатка.
Рассмотрим остатки от деления на 4 числа $ 3^{x} $
Z | $ 3^{x} $ | Остаток при делении на 4 |
---|---|---|
1 | 3 | 3 |
2 | 9 | 1 |
3 | 27 | 3 |
4 | 81 | 1 |
5 | 243 | 3 |
И так далее. Закономерность: при чётных х остаток 1, при нечётных остаток 3.
Отсюда делаем вывод, что х – число чётное, значит, мы можем представить его как х = 2n.
Теперь рассмотрим остатки при делении обеих частей на 3.
Правая часть:
Z | $ 5^{z} $ | Остаток при делении на 3 |
---|---|---|
1 | 5 | 2 |
2 | 25 | 1 |
3 | 125 | 2 |
4 | 625 | 1 |
И так далее. Видим закономерность, что при чётных z остаток равен 1, при нечетных z остаток равен 2.
Рассмотрим левую часть. Число $ 3^{x} $ даёт остаток 0 при делении на 3.
Рассмотрим остатки от деления на 3 числа $ 4^{y} $
Z | $ 4^{y} $ | Остаток при делении на 3 |
---|---|---|
1 | 4 | 1 |
2 | 16 | 1 |
3 | 64 | 1 |
4 | 256 | 1 |
5 | 1024 | 1 |
Получается, что левая часть при делении на 3 может давать только остаток 1. Значит, и правая тоже. Это происходит при чётных z.
Вернёмся к нашему уравнению $ 3^{x}+4^{y}=5^{z} $
Рассмотрев все остатки от деления, мы делаем выводы, что х и z – чётные числа. Тогда х = 2n, z = 2m, где m, n натуральные. Подставим в уравнение:
$ 3^{2n}+4^{y}=5^{2m} $ , заметим также, что $ 4^{y}=2^{2y} $
Теперь мы можем разложить на множители, используя формулу разности квадратов:
$ 2^{2y}=5^{2m}-3^{2n} $
$ (5^{m}-3^{n})(5^{m}+3^{n})=2^{2y} $ . Получается, что обе скобки должны быть степенями двойки. Мы не можем сделать никаких обоснованных выводов. Наша группировка неудачная. Попробуем иначе:
$ { 5^{2m}-2^{2y}=3^{2n}\ (5^{m}-2^{y})(5^{m}+2^{y})=3^{2n}} $
Теперь у нас обе скобки являются произведением троек. Рассмотрим такую ситуацию,
$ acdot b=3^{2n} $ , это означает, что и а, и b кратны 3. Либо одно из чисел кратно 3, а другое равно 1.
Рассмотрим случай, когда и а, и b кратны трём. Вспомним основные свойства делимости.
Ключевым признаком здесь будет второй: в нашем случае разность a-b также будет делиться на 3.
Рассмотрим разность скобок:
$ 5^{m}+2^{y}-(5^{m}-2^{y})=2cdot 2^{y} $ – это число никогда не будет кратно 3. Значит, в нашем произведении один из множителей равен 1, а другой равен 32n. Так как $ 5^{m}+2^{y}> 1 $ ,
$ 5^{m}-2^{y}=1,5^{m}+2^{y})=3^{2n} $ Итак, мы с вами уже решаем немного другое уравнение, с переменными m и n, которые зависят от х и у. И пришли к выводу, что $ 5^{m}+2^{y}=1 $
m | $ 5^{m} $ | y | $ 2^{y} $ |
---|---|---|---|
0 | 1 | 0 | 1 |
1 | 5 | 1 | 2 |
2 | 25 | 2 | 4 |
3 | 125 | 3 | 8 |
Эта таблица показывает, что $ 5^{m}+2^{y}=1 $ только в одном случае при m = 1, y = 2. При их увеличении разница между и будет всё больше, поэтому это единственное решение.
Тогда z = 2m = 2, x = 2.
Ответ: (2, 2, 2)
План урока:
Целое уравнение и его степень
Решение уравнений методом подбора корня
Решение уравнений с помощью разложения многочлена на множители
Графический метод решения уравнений
Решение дробно-рациональных уравнений
Целое уравнение и его степень
Ранее мы уже изучали понятие целого выражения. Так называют любое выражение с переменной, в котором могут использоваться любые арифметические операции, а также возведение в степень. Однако есть важное ограничение – в целом выражении переменная НЕ может находиться в знаменателе какой-нибудь дроби или быть частью делителя. Также переменная не может находиться под знаком корня. Для наглядности приведем примеры целых выражений:
х – 5;
(а3 + 6а)(а – 5а2);
(n3 + 7)/5 (в знаменателе находится только число, без переменной);
А вот примеры нецелых выражений:
Отличительной особенностью целых выражений является то, что в них переменная может принимать любое значение. В нецелых же выражениях возникают ограничения на значения переменной, ведь знаменатель дроби не должен равняться нулю, в выражение под знаком корня не должно быть отрицательным.
Введем понятие целого уравнения.
Приведем примеры целых ур-ний:
0,75х7 + 0,53х6 – 45х = 18
Напомним, что в математике существует понятие равносильных уравнений.
Когда мы решаем ур-ния, мы в каждой новой строчке записываем ур-ние, равносильное предыдущему. Для этого используются равносильные преобразования (перенос слагаемых через знак «=» с противоположным знаком, деление обоих частей равенства на одинаковые числа и т. д.).
Можно доказать (мы этого делать не будем), что любое целое ур-ние можно возможно преобразовать так, чтобы получилось иное, равносильное ему ур-ние, где в левой части будет находиться многочлен, а справа – ноль. Для этого надо лишь раскрыть скобки и умножить ур-ние на какое-нибудь число, чтобы избавиться от дробей.
Пример. Преобразуйте целое ур-ние
так, чтобы слева стоял многочлен, а справа – ноль.
Решение. В ур-нии есть дроби со знаменателями 5 и 4. Если умножить обе части на 20 (это наименьшее общее кратное чисел 5 и 4), то дроби исчезнут:
Теперь раскроем скобки:
4(5х3 – 3х4 + 45х – 27х2) – 40 = 10х2 + 5х + 35
20х3 – 12х4 + 180х – 108х2 – 40 = 10х2 + 5х + 35
Осталось перенести все слагаемые влево и привести подобные слагаемые:
20х3 – 12х4 + 180х – 108х2 – 40 – 10х2 – 5х – 35 = 0
– 12х4 + 20х3 – 118х2 + 175х – 75 = 0
Получили ур-ние в той форме, которую и надо было найти по условию.
Ответ:– 12х4 + 20х3 – 118х2 + 175х – 75 = 0
В математике любой полином можно обозначить как Р(х). Если ур-ние привели к тому виду, когда в одной части многочлен, а в другой ноль, то говорят, что получили ур-ние вида Р(х) = 0.
Получается, что решение целого уравнения всегда можно свести к решению равносильного ему ур-ния Р(х) = 0. Именно поэтому многочлены играют такую большую роль в математике
Напомним, что степенью многочлена называется максимальная степень входящего в его состав одночлена. Это же число является и степенью целого уравнения Р(х) = 0, а также степенью любого равносильного ему целого ур-ния.
Пример. Определите степень ур-ния
(х3 – 5)(2х + 7) = 2х4 + 9
Решение. Приведем ур-ние к виду Р(х) = 0. Для этого раскроем скобки:
(х3 – 5)(2х + 7) = 2х4 + 9
2х4 + 7х3 – 10х – 35 = 2х4 + 9
Перенесем все слагаемые влево и приведем подобные слагаемые:
2х4 + 7х3 – 10х – 35 – 2х4 – 9 = 0
7х3 – 10х – 44 = 0
Получили в левой части многочлен 3-ей степени. Следовательно, и исходное ур-ние имело такую же степень
Ответ: 3
Приведем примеры ур-ний первой степени:
5х + 8 = 0
9z– 6 = 0
5,4568у + 0,0002145 = 0
Все они являются линейными ур-ниями, метод их решения изучался ранее. Они имеют 1 корень.
Приведем примеры ур-ний второй степени:
6t2 + 98t – 52 = 0
54у + 23у = 0
12x2– 65 = 0
Это квадратные ур-ния. У них не более двух действительных корней. Для их нахождения в общем случае надо вычислить дискриминант и использовать формулу
Квадратные и линейные ур-ния умели решать ещё в Древнем Вавилоне 4 тысячи лет назад! А вот с ур-ния 3-ей степени (их ещё называют кубическими уравнениями) оказались значительно сложнее. Приведем их примеры:
2х3 + 4х2 – 19х + 17 = 0
у3 – 5у + 7 = 0
Лишь в 1545 году итальянец Джералимо Кардано опубликовал книгу, в которой описывался общий алгоритм решения кубических ур-ний. Он достаточно сложный и не входит в школьный курс математики. Его ученик, Лодовико Феррари, предложил метод решения ур-ний четвертой степени. В качестве примера такого ур-ния можно привести:
5х4 + 6х3 – 2х2 – 10х + 1 = 0
Лишь в XIX веке было доказано, что для ур-ний более высоких степеней (5-ой, 6-ой и т. д.) не существует универсальных формул, с помощью которых можно было бы найти их корни.
Отметим, что если степень целого ур-ния равна n, то у него не более n корней (но их число может быть и меньше). Так, количество корней кубического уравнения не превышает трех, а у ур-ния 4-ой степени их не более 4.
Чтобы доказать это утверждение, сначала покажем способ составления уравнения Р(х) = 0, имеющего заранее заданные корни. Пусть требуется составить ур-ние, имеющее корни k1, k2,k3,…kn. Приравняем к нулю следующее произведение скобок:
(х – k1)(х – k2)(х – k3)…(х – kn) = 0
Составленное ур-ние имеет все требуемые корни и никаких других корней. Действительно, произведение множителей может равняться нулю только в случае, если хотя бы один из множителей нулевой. Поэтому для решения ур-ния
(х – k1)(х – k2)(х – k3)…(х – kn) = 0
надо каждую скобку приравнять к нулю:
х – k1 = 0 или х – k2 = 0 или х – k3 = 0 или…х – kn = 0
Перенесем второе слагаемое вправо в каждом равенстве и получим:
х = k1 или х = k2 или х = k3 или…х = kn
Чтобы вместо произведения скобок слева стоял многочлен, надо просто раскрыть скобки.
Пример. Составьте уравнение в виде Р(х) = 0, имеющее корни 1, 2, 3 и 4.
Запишем целое ур-ние, имеющее требуемые корни:
(х – 1)(х – 2)(х – 3)(х – 4) = 0
Будем поочередно раскрывать скобки, умножая 1-ую скобку на 2-ую, полученный результат на 3-ю и т.д.:
(х2 – 3х + 2)(х – 3)(х – 4) = 0
(х3 – 6х2 + 11х – 6)(х – 4) = 0
х4 – 10х3 + 35х2 – 50х +24 = 0
Получили ур-ние вида Р(х) = 0. Для проверки вычислений можно подставить в него числа 1, 2, 3 и 4 и убедиться, что они обращают ур-ние в верное равенство.
Ответ: х4 – 10х3 + 35х2 – 50х +24 = 0
Заметим, что в рассмотренном примере, когда мы перемножали многочлены, мы получали новый полином, чья степень увеличивалась на единицу. Мы перемножили 4 скобки (х – k1), а потому получили полином 4 степени. Если бы мы перемножали, скажем, 10 таких скобок, то и многочлен бы получился 10-ой степени. Именно поэтому ур-ние n-ой степени не более n корней.
Действительно, предположим, что какое-то ур-ние n-ой степени имеет хотя бы (n + 1) корень. Обозначим эти корни как k1, k2,k3,…kn, kn+1 и запишем уравнение:
(х – k1)(х – k2)(х – k3)…(х – kn)(х – kn+1) = 0
Оно, по определению, равносильно исходному ур-нию, ведь оно имеет тот же набор корней. Слева записаны (n + 1) скобок, поэтому при их раскрытии мы получим полином степени (n + 1). Значит, и исходное ур-ние на самом деле имеет степень n + 1, а не n. Получили противоречие, которое означает, что на самом деле у уравнения n-ой степени не более n корней.
Особо акцентируем внимание на том факте, что если корнями уравнения являются некоторые числа k1, k2,k3,…kn, то этому ур-нию равносильна запись (х – k1)(х – k2)(х – k3)…(х – kn) = 0
Этот факт будет использован далее при решении ур-ний.
Решение уравнений методом подбора корня
Необязательно преобразовывать ур-ние, чтобы найти его корни. Одним из приемов решения целых уравнений является метод подбора корня. Ведь если надо доказать, что какое-то число – это корень ур-ния, достаточно просто подставить это число в ур-ние и получить справедливое равенство!
Пример. Докажите, что корнями ур-ния
х3 – 2х2 – х + 2 = 0
являются только числа (– 1), 1 и 2.
Решение. Подставим в ур-ние каждую из предполагаемых корней и получим справедливое равенство. При х = – 1 имеем:
(– 1)3 – 2(– 1)2 – (– 1) + 2 = 0
–1 – 2 + 1 + 2 = 0
0 = 0
При х = 1 получаем:
13 – 2•12 – 1 + 2 = 0
1 – 2 – 1 + 2 = 0
0 = 0
Наконец, рассмотрим случай, когда х = 2
23 – 2•22 – 2 + 2 = 0
8 – 8 – 2 + 2 = 0
0 = 0
Исходное ур-ние имеет 3-ю степень, поэтому у него не более 3 корней. То есть других корней, кроме (– 1), 1 и 2 , у него нет.
Конечно, просто так подобрать корни довольно тяжело. Однако есть некоторые правила, которые помогают в этом. Для начала введем понятие коэффициентов уравнения.
Понятно, что ур-ние Р(х) = 0 в общем виде можно записать так:
а0xn + a1xn–1 + … + аn–1х + аn = 0
Числа а0, а1, а2,…аnи называют коэффициентами уравнений.
Например, для уравнения
5х4 – 7х3 + 9х2 – х + 12 = 0
коэффициенты равны
а0 = 5
а1 = – 7
а2 = 9
а3 = – 1
а4 = + 12
Если одна из слагаемых «пропущено» в уравнении, то считают, что коэффициент перед ним равен нулю. Например, в ур-нии
х3 + 2х – 15 = 0
нет слагаемого с буквенной частью х2. Можно считать, что ур-ние равносильно записи
х3 + 0х2 + 2х – 15 = 0
где слагаемое х2 есть, но перед ним стоит ноль. Тогда коэффициент а1 = 0.
Для обозначения первого коэффициента а0 может использоваться термин старший коэффициент, а для последнего коэффициента аn – термин «свободный член» или «свободный коэффициент».
Изучение коэффициентов ур-ния помогает быстрее подобрать корень. Существует следующая теорема:
Докажем это утверждение. Пусть m – это целый корень уравнения с целыми коэффициентами
а0xn + a1xn–1 + … + аn–1х + аn = 0
Тогда можно подставить туда число m и получить верное равенство:
а0mn + a1mn–1 + … + аn–1m + аn = 0
Поделим обе его части на m и получим
а0mn–1 + a1mn–2 + … + аn–1 + аn/m = 0
Справа – целое число (ноль), значит, и сумма чисел слева также целая. Все числа а0mn–1, a1mn–2, аn–1, очевидно, целые (так как и целыми являются и m, и все коэффициенты). Значит, и число аn/m должно быть целым. Но это возможно лишь в том случае, если m является делителем числа аn.
Из доказанной теоремы следует, что при подборе корней ур-ния достаточно рассматривать только те из них, которые являются делителями свободного члена. При этом следует учитывать и отрицательные делители.
Пример. Найдите целые корни уравнения
2х4 – х3 – 9х2 + 4х + 4 = 0
Решение. Все коэффициенты ур-ния – целые, а потому целый корень должен быть делителем свободного члена, то есть числа 4. Делителями четверки являются 1 и (– 1), 2 и (– 2), 4 и (– 4). Подставляя каждое из этих чисел в ур-ние, получим верные равенства только для чисел 1, 2 и (– 2):
2•14 – 13 – 9•12 + 4•1 + 4 = 2 – 1 – 9 + 4 + 4 = 0
2•24 – 23 – 9•22 + 4•2 + 4 = 32 – 8 – 36 + 8 + 4 = 0
2•(– 2)4 – (– 2)3 – 9•(– 2)2 + 4(– 2) + 4 = 32 + 8 – 36 – 8 + 4 = 0
Таким образом, только эти числа и могут быть целыми корнями ур-ния. Так как мы рассматриваем ур-ние 4 степени, то, возможно, у него помимо 3 целых корней есть ещё один дробный.
Ответ: 1; 2; (– 2).
Пример. Решите ур-ние
0,5х3 + 0,5х + 5 = 0
Решение. У ур-ния дробные коэффициенты. Умножим обе части равенства на 2 и получим ур-ние с целыми коэффициентами:
0,5х3 + 0,5х + 5 = 0
(0,5х3 + 0,5х + 5)•2 = 0•2
х3 + х + 10 = 0
Попытаемся подобрать целый корень ур-ния. Он должен быть делителем свободного члена, то есть десятки. Возможными кандидатами являются числа 1 и (– 1), 2 и (– 2), 5 и (– 5), 10 и (– 10). Подходит только корень х = – 2:
(– 2)3 + (– 2) + 10 = – 8 – 2 + 10 = 0
Обратим внимание, что в левой части ур-ния стоит сумма функций, возрастающих на всей числовой прямой: у = х3 и у = х + 10. Значит, и вся левая часть х3 + х + 10 монотонно возрастает. Это значит, что у ур-ния есть только один корень, и мы его нашли ранее подбором.
Ответ: – 2
Ещё быстрее можно узнать, является ли единица корнем уравнения.
Докажем это. Подставим в ур-ние
а0xn + a1xn–1 + … + аn–1х + аn = 0
значение х = 1. Так как единица в любой степени равна самой единице, то получим:
а01n + a11n–1 + … + аn–11 + аn = 0
а0 + a1 + … + аn–1 + аn = 0
Получили равенство, в котором слева стоит сумма коэффициентов, в справа – ноль. Если сумма коэффициентов действительно равна нулю, то равенство верное, а, значит, единица является корнем ур-ния.
Пример. Укажите хотя бы 1 корень ур-ния
499х10 – 9990х7 + 501х6 – 10х5 + 10000х4 – 1000 = 0
Решение. Заметим, что при сложении коэффициентов ур-ния получается 0:
499 – 9990 + 501 – 10 + 10000 – 1000 = (499 + 501 – 1000) + (10000 – 9990 – 10) = 0 + 0 = 0
Следовательно, единица является его корнем.
Ответ: 1.
Решение уравнений с помощью разложения многочлена на множители
Если в уравнении вида P(x) = 0в левой части удается выполнить разложение многочлена на множители, то дальше каждый из множителей можно отдельно приравнять к нулю.
Пример. Решите ур-ние
х4 – 16 = 0
Решение. Степень х4 можно представить как (х2)2, а 16 – как 42. Получается, что слева стоит разность квадратов, которую можно разложить на множители по известной формуле:
х4 – 16 = 0
(х2 – 4)(х2 + 4) = 0
Приравняем каждую скобку к нулю и получим два квадратных ур-ния:
х2 – 4 = 0 или х2 + 4 = 0
х2 = 4 или х2 = – 4
Первое ур-ние имеет два противоположных корня: 2 и (– 2). Второе ур-ние корней не имеет.
Ответ: 2 и (– 2).
Предположим, что у ур-ния 3-ей степени есть 3 корня, и подбором мы нашли один из них. Как найти оставшиеся корни? Здесь помогает процедура, известная как «деление многочленов в столбик». Продемонстрируем ее на примере. Пусть надо решить ур-ние
100х3 – 210х2 + 134х – 24 = 0
Можно заметить, сумма всех коэффициентов ур-ния равна нулю:
100 – 210 + 134 – 24 = 0
Следовательно, первый корень – это 1.
Предположим, что у исходного ур-нияР(х) = 0 есть 3 корня, k1, k2и k3. Тогда ему равносильно другое ур-ние
(х – k1)(х – k2)(х – k3) = 0
Мы нашли, что первый корень k1 = 1, то есть
(х – 1)(х – k2)(х – k3) = 0
Обозначим как P1(x) = 0 ещё одно ур-ние, корнями которого будут только числа k2 и k3. Очевидно, что корнями ур-ния
(х – 1)•P1(x) = 0
Будут числа 1, k2 и k3. Его корни совпадают с корнями исходного ур-ния, а потому запишем
(х – 1)•P1(x) = 100х3 – 210х2 + 134х – 24
Поделим обе части на (х – 1):
Итак, если «поделить» исходное ур-ние на х – 1, то получим какой-то многочлен Р1(х), причем решением уравнения P1(x) = 0 будут оставшиеся два корня, k2и k3. Деление можно выполнить в столбик. Для этого сначала запишем «делимое» и «делитель», как и при делении чисел:
Смотрим на первое слагаемое делимого. Это 100х3. На какой одночлен нужно умножить делитель (х – 1), чтобы получился полином со слагаемым 100х3? Это 100х2. Действительно, (х – 1)100х2 = 100х3 – 100х2. Запишем слагаемое 100х2 в результат деления, а результат его умножения на делитель, то есть 100х3 – 100х2, вычтем из делимого:
Теперь вычтем из делимого то выражение, которое мы записали под ним. Слагаемые 100х3, естественно, сократятся:
(100х3 – 210х2) – (100х3 – 100х2) = 100х3 – 210х2 – 100х3 + 100х2 = – 110х2
Далее снесем слагаемое 134х вниз:
На какое слагаемое нужно умножить (х – 1), что получился полином со слагаемым (– 110х2). Очевидно, на (– 110х):
(х – 1)(– 110х2) = –110х2 + 110х
Запишем в поле «ответа» слагаемое (– 110х2), а под делимый многочлен – результат его умножения на (х – 1):
При вычитании из (–110х2 + 134х) полинома (–110х2 + 110х) остается 24х. Далее сносим последнее слагаемое делимого многочлена вниз:
Выражение х – 1 нужно умножить на 24, чтобы получить 24х – 24. Запишем в поле «ответа» число 24, а в столбике произведение 24(х –1) = 24х – 24:
В результате в остатке получился ноль. Значит, всё сделано правильно. С помощью деления столбиком мы смогли разложить полином 100х3 – 210х2 + 134х – 24 на множители:
100х3 – 210х2 + 134х – 24 = (х – 1)(100х2 – 110х + 24)
Теперь перепишем исходное ур-ние с учетом этого разложения:
100х3 – 210х2 + 134х – 24 = 0
(х – 1)(100х2 – 110х + 24) = 0
Теперь каждую отдельную скобку можно приравнять нулю. Получим ур-ние х – 1 = 0, корень которого, равный единице, мы уже нашли подбором. Приравняв к нулю вторую скобку, получим квадратное ур-ние:
100х2 – 110х + 24 = 0
D =b2 – 4ас = (– 110)2 – 4•100•24 = 12100 – 9600 = 2500
Итак, мы нашли три корня ур-ния: 1; 0,3 и 0,8.
В данном случае мы воспользовались следующим правилом:
Пример. Решите уравнение
2х3 – 8х2 + 16 = 0
Решение. Все коэффициенты целые, а потому, если у уравнения есть целый корень, то он должен быть делителем 16. Перечислим эти делители: 1, – 1, 2, – 2, 4, – 4, 8, – 8, 16, – 16. Из всех них подходит только двойка:
2•23 – 8•22 + 16 = 16 – 32 + 16 = 0
Итак, первый корень равен 2. Это значит, что исходный многочлен можно разложить на множители, один из которых – это (х – 2). Второй множитель найдем делением в столбик. Так как в многочлене 2х3 – 8х2 + 16 нет слагаемого с буквенной часть х, то искусственно добавим её:
2х3 – 8х2 + 16 = 2х3 – 8х2 + 0х + 16
Теперь возможно деление:
Получили, что 2х3 – 8х2 + 16 = (х – 2)(2х – 4х – 8)
С учетом этого перепишем исходное ур-ние:
2х3 – 8х2 + 16 = 0
(х – 2)(2х – 4х – 8) = 0
х – 2 = 0 или 2х – 4х – 8 = 0
Решим квадратное ур-ние
D =b2 – 4ас = (– 4)2 – 4•2•(– 8) = 16 + 64 = 80
В 8 классе мы узнали, что если у квадратного ур-ния ах2 + bx + c = 0 есть два корня, то многочлен ах2 + bx + c можно разложить на множители по формуле
ах2 + bx + c = а(х – k1)(х – k2)
где k1 и k2– корни квадратного ур-ния. Оказывается, такое же действие можно выполнять с многочленами и более высоких степеней. В частности, если у кубического ур-ния есть 3 корня k1, k2 и k3, то его можно разложить на множители по формуле
ах3 +bx2 + cx + d = a(х – k1)(х – k2)(х – k3)
Пример. Разложите на множители многочлен 2х3 – 4х2 – 2х + 4.
Решение. Целые корни этого многочлена (если они есть), должны быть делителем четверки. Из всех таких делителей подходят три: 1, (– 1) и 2:
2•13 – 4•12 – 2•1 + 4 = 2 – 4 – 2 + 4 = 0
2•(– 1)3 – 4•(– 1)2 – 2•(– 1) + 4 = – 2 – 4 + 2 + 4 = 0
2•23 – 4•22 – 2•2 + 4 = 16 – 16 – 4 + 4 = 0
Значит, многочлен можно разложить на множители:
2х3 – 4х2 – 2х + 4 = 2(х + 1)(х – 1)(х – 2)
Возникает вопрос – почему перед скобками нужна двойка? Попробуем сначала перемножить скобки без ее использования:
(х + 1)(х – 1)(х – 2) = (х2 – 1)(х – 2) = х3 – 2х2 – х + 2
Получили не тот многочлен, который стоит в условии. Однако ур-ние
х3 – 2х2 – х + 2 = 0
имеет те же корни (1, 2 и (– 1)), что и ур-ние
2х3 – 4х2 – 2х + 4 = 0
Дело в том, что это равносильные ур-ния, причем второе получено умножением первого на два:
2•(х3 – 2х2 – х + 2) = 2х3 – 4х2 – 2х + 4
Надо понимать, что хотя ур-ния 2х3 – 4х2 – 2х + 4 = 0 и х3 – 2х2 – х + 2 = 0, по сути, одинаковы, многочлены в их левой части различны. Заметим, что при перемножении скобок (х – k1), (х – k2), (х – k3) и т.д. всегда будет получаться полином, у которого старший коэффициент равен единице. Поэтому, чтобы учесть этот самый коэффициент, надо домножить произведение скобок на него:
2х3 – 4х2 – 2х + 4= 2•(х3 – 2х2 – х + 2) = 2(х + 1)(х – 1)(х – 2)
Ответ: 2(х + 1)(х – 1)(х – 2).
Графический метод решения уравнений
Любое ур-ние с одной переменной можно представить в виде равенства
у(х) = g(x)
где у(х) и g(x) – некоторые функции от аргумента х.
Построив графики этих функций, можно примерно найти точки их пересечений. Они и будут соответствовать корням уравнения.
Пример. Решите графически уравнение
х3 – х2 – 1 = 0
Решение. Строить график уравнения х3 – х2 – 1 = 0 довольно сложно, поэтому перенесем слагаемое (– х2 – 1) вправо:
х3 – х2 – 1 = 0
х3 = х2 + 1
Построим графики у = х3 и у = х2 + 1 (второй можно получить переносом параболы у = х2 на единицу вверх):
Видно, они пересекаются в точке, примерно соответствующей значению х ≈ 1,4. Если построить графики уравнения более точно (с помощью компьютера), то можно найти, что х ≈ 1,46557.
Ответ: х ≈ 1,46557
Конечно, графический метод решения уравнений не является абсолютно точным, однако он помогает быстро найти примерное положение корня. Также с его помощью можно определить количество корней уравнения. В рассмотренном примере был только 1 корень.
Пример. Определите количество корней уравнений
а)х3 – х – 3 = 0
б) х3 – 2х + 0,5 = 0
Решение. Перенесем два последних слагаемых вправо в каждом ур-нии:
а) х3 = х + 3
б) х3 = 2х – 0,5
Построим графики функций у = х3, у = х + 3 и у = 2х – 0,5:
Видно, что прямая у = х + 3 пересекает график у = х3 в одной точке, поэтому у первого ур-ния будет 1 решение.Прямая у = 2х – 0,5 пересекает кубическую параболу в трех точках, а потому у второго ур-ния 3 корня.
Ответ: а) один корень; б) три корня.
Решение дробно-рациональных уравнений
До этого мы рассматривали только целые ур-ния, где переменная НЕ находится в знаменателе какого-нибудь выражения. Однако, если в ур-нии есть выр-ние, содержащее переменную в знаменателе, или присутствует деление на выр-ние с переменной, то его называют дробно-рациональным уравнением.
Приведем несколько примеров ур-ний, считающихся дробно-рациональными:
С помощью равносильных преобразований любое дробно-рациональное ур-ние возможно записать в виде отношения двух полиномов:
Дробь равна нулю лишь тогда, когда ее числитель равен нулю, а знаменатель – не равен. Таким образом, нужно сначала решить ур-ние Р(х) = 0 и потом проверить, что полученные корни не обращают полином Q(x) в ноль.
Обычно для решения дробно-рациональных уравнений используют такой алгоритм:
1) Приводят все дроби к единому знаменателю, умножают на него ур-ние и получают целое ур-ние.
2) Решают полученное целое ур-ние.
3) Исключают из числа корней те, которые обращают знаменатель хотя бы одной из дробей в ноль.
Пример. Решите ур-ние
Решение.
Умножим обе части равенства на знаменатель 1-ой дроби:
2х2 – 3х – 2 = х2(х – 2)
Раскроем скобки и перенесем все слагаемые в одну сторону:
2х2 – 3х – 2 = х3– 2х2
х3 – 2х2 – 2х2 + 3х + 2 = 0
х3 – 4х2 + 3х + 2 = 0
У ур-ния могут быть только те целые корни, которые являются делителями двойки. Из кандидатов 1, – 1, 2 и – 2 подходит только двойка:
23 – 4•22 + 3•2 + 2 = 8 – 16 + 6 + 2 = 0
Нашли один корень, а потому исходный многочлен можно поделить в столбик на (х – 2):
Получили, что х3 – 4х2 + 3х + 2 = (х – 2)(х2 – 2х – 1)
Тогда ур-ние примет вид:
(х – 2)(х2 – 2х – 1) = 0
х – 2 = 0 или х2 – 2х – 1 = 0
Решим квадратное ур-ние:
D =b2 – 4ас = (– 2)2 – 4•1•(– 1) = 4 + 4 = 8
Мы нашли все 3 корня кубического ур-ния. Теперь надо проверить, не обращают ли какие-нибудь из них знаменатели дроби в исходном ур-нии
в ноль. Очевидно, что при х = 2 знаменатель (х – 2) превратится в ноль:
х – 2 = 2 – 2 = 0
Это значит, что этот корень надо исключить из списка решений. Такой корень называют посторонним корнем ур-ния.
Также ясно, что два остальных корня не обращают знаменатель в ноль, а потому они НЕ должны быть исключены из ответа:
Пример. Найдите все корни ур-ния
Решение. Если сразу привести выражение слева к общему знаменателю 4(х2 + х – 2)(х2 + х – 20), то получится очень длинное и неудобное выражение. Однако знаменатели довольно схожи, поэтому можно провести замену. Обозначим х2 + х как у:
у = х2 + х
Тогда уравнение примет вид
Приведем дроби к общему знаменателю 4(у – 2)(у – 20):
Знаменатель должен равняться нулю:
4(у – 20) + 28(у – 2) + (у – 2)(у – 20) = 0
4у – 80 + 28у – 56 + у2 – 20у – 2у + 40 = 0
у2 + 10у – 96 = 0
Решаем квадратное ур-ние:
D =b2 – 4ас = (10)2 – 4•1•(– 96) = 100 + 384 = 484
Получили, что у1 = – 16, а у2 = 6. Произведем обратную замену:
у = х2 + х
х2 + х = – 16 или х2 + х = 6
х2 + х + 16 = 0 или х2 + х – 6 = 0
Дискриминант 1-ого ур-ния отрицателен:
D =b2 – 4ас = (1)2 – 4•1•(16) = 1– 64 = – 63
А потому оно не имеет решений. Решим 2-ое ур-ние:
D = b2 – 4ас = (1)2 – 4•1•(– 6) = 1+ 24 = 25
Нашли два корня: 2 и (– 3). Осталось проверить, не обращают ли они знаменатели дробей в ур-нии
в ноль. Подстановкой можно убедиться, что не обращают.
Ответ: – 3 и 2.
При решении дробно-рациональных ур-ний может использоваться и графический метод.
Пример. Сколько корней имеет уравнение
Решение. Построим графики функций у = х2 – 4 и у = 2/х:
Видно, что графики пересекаются в 3 точках, поэтому ур-ние имеет 3 корня.
Ответ: 3 корня.
СПОСОБЫ РЕШЕНИЙ УРАВНЕНИЙ В ЦЕЛЫХ ЧИСЛАХ
- Авторы
- Руководители
- Файлы работы
- Наградные документы
Свиридова А.В. 1
1МБОУ СОШ “Аннинский Лицей”
Дрёмова О.Н. 1
1МБОУ СОШ “Аннинский Лицей”
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке “Файлы работы” в формате PDF
Введение.
Объект исследования.
Исследования касаются одного из наиболее интересных разделов теории чисел – решения уравнений в целых числах.
Предмет исследования.
Решение в целых числах алгебраических уравнений с целыми коэффициентами более чем с одним неизвестным представляет собой одну из труднейших и древнейших математических задач и не достаточно глубоко представлена в школьном курсе математики. В своей работе я представлю достаточно полный анализ уравнений в целых числах, классификацию данных уравнений по способам их решения, описание алгоритмов их решения, а также практические примеры применения каждого способа для решения уравнений в целых числах.
Цель.
Познакомиться со способами решения уравнений в целых числах.
Задачи:
Изучить учебную и справочную литературу;
Собрать теоретический материал по способам решения уравнений;
Разобрать алгоритмы решения уравнений данного вида;
Описать способы решения;
Рассмотреть примеры решения уравнений с применением данных способов.
Гипотеза:
Столкнувшись с уравнениями в целых числах в олимпиадных заданиях, я предположила, что трудности в их решении обусловлены тем, что далеко не все способы их решения мне известны.
Актуальность:
Решая примерные варианты заданий ЕГЭ, я заметила, что часто встречаются задания на решение уравнений первой и второй степени в целых числах. Кроме того олимпиадные задания различных уровней также содержат уравнения в целых числах или задачи, которые решаются с применением умений решать уравнения в целых числах. Важность знания способов решения уравнений в целых числах и определяет актуальность моих исследований.
Методы исследования
Теоретический анализ и обобщение сведений научной литературы об уравнениях в целых числах.
Классификация уравнений в целых числах по методам их решения.
Анализ и обобщение методов решения уравнений в целых числах.
Результаты исследования
В работе описаны способы решений уравнений, рассмотрен теоретический материал теоремы Ферма, теорема Пифагора, алгоритма Евклида, представлены примеры решений задач и уравнений различных уровней сложности.
2.История уравнений в целых числах
Диофант – ученый – алгебраист Древней Греции, по некоторым данным он жил до 364 года н. э. Он специализировался на решении задач в целых числах. Отсюда и пошло название Диофантовы уравнения. Наиболее известной, решенной Диофантом, является задача «о разложении на два квадрата». Ее эквивалентом является известная всем теорема Пифагора. Жизнь и деятельность Диофанта протекала в Александрии, он собирал и решал известные и придумывал новые задачи. Позднее он объединил их в большом труде под названием «Арифметика». Из тринадцати книг, входивших в состав «Арифметики», только шесть сохранились до Средних веков и стали источником вдохновения для математиков эпохи Возрождения.«Арифметика» Диофанта — это сборник задач, каждая включает в себя решение и необходимое пояснение. В собрание входят разнообразные задачи, а их решение часто в высшей степени остроумно. Диофанта интересуют только положительные целые и рациональные решения. Иррациональные решения он называет «невозможными» и тщательно подбирает коэффициенты так, чтобы получились искомые положительные, рациональные решения.
Для решения уравнений в целых числах применяется теорема Ферма. История доказательства которой достаточно интересная. Над полным доказательством Великой теоремы работало немало выдающихся математиков, и эти усилия привели к получению многих результатов современной теории чисел. Считается, что теорема стоит на первом месте по количеству неверных доказательств.
Замечательный французский математик Пьер Ферма высказал утверждение, что уравнение при целом n ≥ 3 не имеет решений в целых положительных числах x, y, z ( xyz = 0 исключается положительностью x, y, z.Для случая n = 3 эту теорему в X веке пытался доказать среднеазиатский математик ал-Ходжанди, но его доказательство не сохранилось. Несколько позже сам Ферма опубликовал доказательство частного случая для n = 4.
Эйлер в 1770 доказал теорему для случая n = 3, Дирихле и Лежандр в 1825 — для n = 5,Ламе — для n = 7. Куммер показал, что теорема верна для всех простых n, меньших 100, за возможным исключением 37, 59, 67.
В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла, доказанной Фальтингсом в 1983 году, следует, что уравнение
при n > 3 может иметь лишь конечное число взаимно простых решений.
Последний, но самый важный, шаг в доказательстве теоремы был сделан в сентябре 1994 года Уайлсом. Его 130-страничное доказательство было опубликовано в журнале «AnnalsofMathematics». Доказательство основано на предположении немецкого математика Герхарда Фрая о том, что Великая теорема Ферма является следствием гипотезы Таниямы — Симуры (это предположение было доказано Кеном Рибетом при участии Ж.‑П.Серра. ).Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после 7 лет напряжённой работы), но в нём вскоре обнаружился серьёзный пробел; с помощью Ричарда Лоуренса Тейлора пробел удалось достаточно быстро ликвидировать. В 1995 году был опубликован завершающий вариант. 15 марта 2016 года Эндрю Уайлз получает премию Абеля. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью».
3.Линейные уравнения в целых числах
Линейные уравнения – самые простые из всех диофантовых уравнений .
Уравнение вида ах=b, где a и b – некоторые числа, а х- неизвестная переменная, называется линейным уравнением с одной неизвестной. Здесь требуется найти только целые решения уравнения. Можно заметить, что если а ≠ 0, то целочисленное решение уравнение будет иметь только в том случае, когда b нацело делится на а и это решение х= b/ф. Если же а=0, то целочисленное решение уравнение будет иметь тогда, когда b=0 и в этом случае х любое число.
Примеры:
4х=12
т.к. 12 нацело делится на 4, то
х=12/4
х=3
0х=0
Т.к. а=о и b=0, то х любое число
10х=7
Т.к. 7 нацело не делится на 10, то решений нет.
4. Способ перебора вариантов.
В способе перебора вариантов необходимо учитывать признаки делимости чисел, рассмотреть все возможные варианты равенства конечного перебора. Этот способ можно применить решая данные задачи:
№1 Найти множество всех пар натуральных чисел, которые являются решением уравнения 49x+69y=602
Решение:
49x+69y=602
Выражаем из уравнения х =,
Т.к. x и y натуральные числа, то х = ≥ 1, умножаем все уравнение на 49, чтобы избавиться от знаменателя:
602-51y ≥ 49,
Переносим 602 в левую сторону:
51y ≤ 553, выражаем y, y= 10
1 ≤ y ≤ 10
Полный перебор вариантов показывает, что натуральными решениями уравнения являются x=5, y=7.
Ответ:(5,7).-
№2 Решить задачу
Из цифр 2, 4, 7 следует составить трёхзначное число, в котором ни одна цифра не может повторяться более двух раз.
Решение.
Найдем количество всех трехзначных чисел, которые начинаются с цифры 2: (224, 242, 227, 272, 247, 274, 244, 277) – их 8.
Аналогично находим все трехзначные цифры начинающиеся с цифр 4 и 7: (442, 424, 422, 447, 474, 427, 472, 477).
(772, 774, 727, 747, 722, 744, 724, 742) – их тоже по 8 чисел. Следует всего 24 числа.
Ответ: 24 числа.
5. Цепная дробь и алгоритм Евклида
Цепной дробью называется выражение обыкновенной дроби в виде
где q1 – целое число, а q2, … ,qn – натуральные числа. Такое выражение называется цепной (конечной непрерывной) дробью. Различают конечные и бесконечные цепные дроби.
Для рациональных чисел цепная дробь имеет конечный вид. Кроме того, последовательность ai— это ровно та последовательность частных, которая получается при применении алгоритма Евклида к числителю и знаменателю дроби.
Решая уравнения цепной дробью, я составила общий алгоритм действий для данного способа решения уравнений в целых числах.
Алгоритм
1) Составить отношение коэффициентов при неизвестных в виде дроби
2) Преобразовать выражение в неправильную дробь
3) Выделить целую часть неправильной дроби
4) Правильную дробь заменить равной ей дробью
5) Проделать 3,4 с полученной в знаменателе неправильной дробью
6) Повторять 5 до конечного результата
7) У полученного выражения отбросить последнее звено цепной дроби, превратить получающуюся при этом новую цепную дробь в простую и вычесть ее из исходной дробь.
Пример №1 Решить в целых числах уравнение 127x- 52y+ 1 = 0
Решение:
Преобразуем отношение коэффициентов при неизвестных.
Прежде всего, выделим целую часть неправильной дроби ; = 2 +
Правильную дробь заменим равной ей дробью .
Откуда = 2+
Проделаем такие же преобразования с полученной в знаменателе неправильной дробью.
Теперь исходная дробь примет вид: .Повторяя те же рассуждения для дроби получим Выделяя целую часть неправильной дроби, придем к окончательному результату:
Мы получили выражение, которое называется конечной цепной или непрерывной дробью. Отбросив последнее звено этой цепной дроби – одну пятую, превратим получающуюся при этом новую цепную дробь в простую и вычтем ее из исходной дроби :
2+;
Приведем полученное выражение к общему знаменателю и отбросим его.
Откуда 127∙9–52∙22+1=0. Из сопоставления полученного равенства с уравнением 127x- 52y+1 = 0 следует, что тогда x= 9, y= 22 – решение исходного уравнения, и согласно теореме все его решения будут содержаться в прогрессиях x= 9+ 52t, y= 22+ 127t, где t=( 0; ±1; ±2…..).Полученный результат наводит на мысль о том, что и в общем случае для нахождения решения уравнения ax+by+c=0 надо разложить отношение коэффициентов при неизвестных в цепную дробь, отбросить ее последнее звено и проделать выкладки, подобные тем, которые были приведены выше.
Для доказательства этого предположения будут нужны некоторые свойства цепных дробей.
Рассмотрим несократимую дробь . Обозначим через q1 частное и через r2 остаток от деления a на b. Тогда получим:
Пусть, далее, q2 – частное и r3 – остаток от деления b на r2.
Тогда b=q2r2+r3,
Точно так же
r2=q3r3+r4, ;
r3=q4r4+r5,;
………………………………..
Величины q1, q2,… называются неполными частными. Приведенный выше процесс образования неполных частных называется алгоритмом Евклида. Остатки от деления r2, r3,…удовлетворяют неравенствам
т.е. образуют ряд убывающих неотрицательных чисел.
Пример№2 Решить уравнение170х+190у=3000 в целых числах
После сокращения на 10 уравнение выглядит так,
17х+19у=300.
Для нахождения частного решения воспользуемся разложением дроби в цепную дробь
Свернув предпоследнюю подходящую к ней дробь в обыкновенную
Частное решение данного уравнения имеет вид
Х0= (-1)4300∙9=2700, y0=(-1)5300∙8=-2400,
а общее задается формулой
х=2700-19k, y= -2400+17k.
откуда получаем условие на параметр k
Т.е. k=142, x=2, y=14. .
6. Метод разложения на множители
Метод перебора вариантов неудобный способ, так как бывают случаи когда найти перебором всецелые решения, невозможно, так как таких решений бесконечное множество. Метод разложения на множители очень интересный прием и встречается он как и в элементарной математике так и в высшей.
Суть состоит в тождественном преобразовании. Смысл любого тождественного преобразования – это запись выражения в другом виде с сохранением его сути. Рассмотрим примеры применения данного метода.
№1 Решить уравнение в целых числах y3 – x3 = 91.
Решение:
Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:
(y – x)(y2 + xy + x2) = 91
Выписываем все делители числа 91: ± 1; ± 7; ± 13; ± 91
Замечаем, что для любых целых x и y число
y2 + yx + x2 ≥ y2 – 2|y||x| + x2 = (|y| – |x|)2 ≥ 0,
следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда исходное уравнение равносильно совокупности систем уравнений:
; ; ;
Решив системы, отбираем те корни, которые являются целыми числами.
Получаем решения исходного уравнения: (5; 6), (-6; -5); (-3; 4),(-4;3).
Ответ: (5; 6); (-6; -5); (-3; 4); (-4;3).
№2 Найти все пары натуральных чисел, удовлетворяющих уравнению х2 –у2= 69
Решение:
Разложим левую часть уравнения на множители и запишем уравнение в виде
.
Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что х-у > 0, получим две системы уравнений, решив которые мы сможем найти искомые числа:
или
Выразив одну переменную и подставив ее в второе уравнение находим корни уравнений.Первая система имеет решение x=35;y=34 , а вторая система имеет решение x=13, y=10.
Ответ: (35; 34), (13; 10).
№3 Решить уравнение х+у =ху в целых числах:
Решение:
Запишем уравнение в виде
Разложим левую часть уравнения на множители. Получим
Произведение двух целых чисел может равняться 1 только в двух случаях: если оба они равны 1 или -1. Получим две системы:
или
Первая система имеет решение х=2, у=2, а вторая система имеет решение х=0, у=0.Ответ: (2; 2), (0; 0).
№4 Доказать, что уравнение (x – y)3 + (y – z)3 + (z – x)3 = 30 не имеет решений в целых числах.
Решение:
Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:
( x – y)(y – z)(z – x) = 10
Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.
7. Метод остатков
Основная задача метода – находить остаток от деления обоих частей уравнения на целое число, на основе полученных результатов. Часто полученная информация уменьшает возможности множеств решений уравнения. Рассмотрим примеры:
№1 Доказать, что уравнение x2 = 3y + 2 не имеет решений в целых числах.
Доказательство.
Рассмотрим случай, когда x, y ∈ N. Рассмотрим остатки от деления обоих частей на 3. Правая часть уравнения дает остаток 2 при делении на 3 при любом значении y. Левая же часть, которая является квадратом натурального числа, при делении на 3 всегда дает остаток 0 или 1. Исходя из этого получаем, что решения данного уравнения в натуральных числах нет.
Рассмотрим случай, когда одно из чисел равно 0. Тогда очевидно, решений в целых числах нет.
Случай, когда y – целое отрицательное не имеет решений, т.к. правая часть будет отрицательна, а левая – положительна.
Случай, когда x – целое отрицательное, также не имеет решений, т.к. попадает под один из рассмотренных ранее случаев ввиду того, что (-x)2 = (x)2.
Получается, что указанное уравнение не имеет решений в целых числах, что и требовалось доказать.
№2 Решите в целых числах 3х= 1 + y2 .
Не сложно заметить, что (0; 0) — решение данного уравнения. Остаётся доказать, что других целых корней уравнение не имеет.
Рассмотрим случаи:
1) Если x∈N, y∈N, то З делится на три без остатка, а 1 + y2при делении на 3 дает
остаток либо 1, либо 2. Следовательно, равенство при натуральных
значениях х, у невозможно.
2) Если х— целое отрицательное число,y∈Z , тогда 0< 3х< 1, а 1 + y2 ≥ 0 и
равенство также невозможно. Следовательно, (0; 0) — единственное
решение.
Ответ: (0; 0).
№3 Решить уравнение 2х2 -2ху+9х+у=2 в целых числах:
Выразим из уравнения то неизвестное, которое входит в него только в первой степени, то есть переменную у:
2х2 +9х-2=2ху-у, откуда
У =
Выделим у дроби целую часть с помощью правила деления многочлена на многочлен «углом». Получим:
Очевидно, разность 2х-1 может принимать только значения -3, -1, 1 и 3.
Осталось перебрать эти четыре случая, в результате чего получаем решения: (1;9), (2;8), (0;2), (-1;3)
Ответ: (1;9), (2;8), (0;2), (-1;3)
8.Пример решения уравнений с двумя переменными в целых числах как квадратных относительно одной из переменных
№1 Решить в целых числах уравнение 5х2+5у2 + 8ху+2у-2х +2=0
Данное уравнение можно решить методом разложения на множители, однако этот способ применительно к данному уравнению достаточно трудоёмкий. Рассмотрим более рациональный способ.
Запишем уравнение в виде квадратного относительно переменной х:
5x2+(8y-2)x+5y2+2y+2=0
Находим его корни.
Х1,2=
Данное уравнение имеет решение тогда и только тогда, когда дискриминант
этого уравнения равен нулю, т.е. – 9(у+1)2 =0, отсюда у= – 1.
Если у= -1,то х= 1.
Ответ: (1; — 1).
9.Пример решения задач с помощью уравнений в целых числах.
№ 1. Решить в натуральных числах уравнение: где n>m
Решение:
Выразим переменную n через переменную m:
Найдем делители числа 625: это 1; 5; 25; 125; 625
1) если m-25 =1, то m=26, n=25+625=650
2) m-25 =5, то m=30, n=150
3) m-25 =25, то m=50, n=50
4) m-25 =125, то m=150, n=30
5) m-25 =625, то m=650, n=26
Ответ: m=150, n=30
m=650, n=26
№ 2. Решить уравнение в натуральных числах: mn +25 = 4m
Решение: mn +25 = 4m
1) выразим переменную 4m через n:
4m – mn =25
m(4-n) =25
m =
2) найдем натуральные делители числа 25: это 1; 5; 25
если 4-n =1, то n=3, m=25
4-n=5, то n=-1, m=5; 4-n =25, то n=-21, m=1 (посторонние корни)
Ответ: (25;3)
Помимо заданий решить уравнение в целых числах, встречаются задания на доказательство того факта, что уравнение не имеет целых корней.
При решении таких задач, необходимо помнить следующие свойства делимости:
1) Если n Z; n делится на 2, то n = 2k, k ∈ Z.
2) Если n ∈ Z; n не делится на 2, то n = 2k+1, k ∈ Z.
3) Если n ∈ Z; n делится на 3, то n = 3k, k ∈ Z.
4) Если n ∈ Z; n не делится на 3, то n = 3k±1, k ∈ Z.
5) Если n ∈ Z; n не делится на 4, то n = 4k+1; n = 4k+2; n = 4k+3. k ∈ Z.
6) Если n ∈ Z; n(n+1) делится на 2, то n (n+1)(n+2) делится на 2;3;6.
7) n; n+1 – взаимно простые.
№3 Доказать, что уравнение x2– 3у = 17 не имеет целых решений.
Решение:
Доказательство:
x2– 3у = 17
Пусть x; y – решения уравнения
x2= 3у – 17
x2 = 3(у+6)-1 Т.к. y ∈ Z то y+6 ∈ Z , значит 3(y+6) делится на 3, следовательно, 3(y+6)-1 не делится на 3, следовательно, x2 не делится на 3, следовательно, x не делится на 3, значит x = 3k±1, k ∈ Z.
Подставим это в исходное уравнение.
.
Получили противоречие. Значит у уравнения нет целых решений, что и требовалось доказать.
10.Формула Пика
Формула Пика была открыта австрийским математиком Георгом Пиком в 1899 году. Формула связанна с уравнениями в целых числах тем, что из многоугольников берут только целые узлы, как и целые числа в уравнениях.
При помощи этой формулы можно находить площадь фигуры построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник).
В этой формуле будем находить целые точки внутри многоугольника и на его границе.
В задачах, которые будут на ЕГЭ есть целая группа заданий, в которых дан многоугольник построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки это один квадратный сантиметр.
Пример№1
М – количество узлов на границе треугольника (на сторонах и вершинах)
N – количество узлов внутри треугольника.
*Под «узлами» имеется ввиду пересечение линий. Найдём площадь треугольника:
Отметим узлы:
M = 15 (обозначены красным)
N = 34 (обозначены синим)
Пример №2
Найдём площадь многоугольника: Отметим узлы:
M = 14 (обозначены красным)
N = 43 (обозначены синим)
12.Метод спуска
Один из методов решений уравнений в целых числах – метод спуска – опирается на теорему Ферма.
Методом спуска называется метод, который заключается в построении одного решения бесчисленной последовательности решений с неограниченно убывающим положительным z.
Алгоритм этого метода рассмотрим на примере решения конкретного уравнения.
Пример 1. Решить уравнение в целых числах 5x + 8y = 39.
1) Выберем неизвестное, имеющее наименьший коэффициент (в нашем случае это х), и выразим его через другое неизвестное:
2) Выделим целую часть: Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 – 3y без остатка делится на 5.
3) Введем дополнительную целочисленную переменную z следующим образом: 4 –3y = 5z. В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами.
4) Решаем его уже относительно переменной y, рассуждая точно также как в п.1, 2: Выделяя целую часть, получим:
5) Рассуждая аналогично предыдущему, вводим новую переменную u: 3u = 1 – 2z.
6) Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z: . Требуя, чтобы было целым, получим: 1 – u = 2v, откуда u = 1 – 2v. Дробей больше нет, спуск закончен (процесс продолжаем до тез пор, пока в выражении для очередной переменной не останется дробей).
7) Теперь необходимо «подняться вверх». Выразим через переменную v сначала z, потом y и затем x:
8) Формулы x = 3+8v и y = 3 – 5v, где v – произвольное целое число, представляют общее решение исходного уравнения в целых числах.
Таким образом, метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.
12.Заключение
В результате исследования подтвердилась гипотеза о том, что трудности при решении уравнений в целых числах обусловлены тем, что далеко не все способы их решения были мне известны. В ходе исследований мне удалось отыскать и описать малоизвестные способы решения уравнений в целых числах, проиллюстрировать их примерами. Результаты моих исследований могут быть полезны всем ученикам, интересующимся математикой.
13.Библиография
Книжные ресурсы:
1. Н. Я. Виленкин и др., Алгебра и математический анализ/10класс, 11 класс// М., «Просвещение», 1998 год;
2. А. Ф. Иванов и др., Математика. Учебно-тренировочные материалы для подготовки к экзамену// Воронеж, ГОУВПО ВГТУ, 2007 год
3. А. О. Гельфонд, Математика, теория чисел// Решение уравнений в целых числах// Книжный дом «ЛИБРОКОМ»
Ресурсы сети интернет:
4. Демонстрационные варианты контрольных измерительных материалов единого государственного экзамена по математике http://fipi.ru/
5. Примеры решений уравнений в целых числахhttp://reshuege.ru
6. Примеры решений уравнений в целых числахhttp://mat-ege.ru
7.История Диофантовых уравнений http://www.goldenmuseum.com/1612Hilbert_rus.html
8. История Диофанта http://nenuda.ru/%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F-%D1%81-%D0%B4%D0%B2%D1%83%D0%BC%D1%8F-%D0%BD%D0%B5%D0%B8%D0%B7%D0%B2%D0%B5%D1%81%D1%82%D0%BD%D1%8B%D0%BC%D0%B8-%D0%B2-%D1%86%D0%B5%D0%BB%D1%8B%D1%85-%D1%87%D0%B8%D1%81%D0%BB%D0%B0%D1%85.htm
9.История Диофантовых уравненийhttp://dok.opredelim.com/docs/index-1732.html
10. История Диофанта http://www.studfiles.ru/preview/4518769/
11. http://pandia.ru/text/78/004/3180.php
Просмотров работы: 26485