Как найти центр дуги на прямой

Как определить радиус дуги или сегмента круга и найти центр

Иногда, при выполнении особо заковыристых работ по отделке приходится решать не совсем простые задачи. Например, имеется часть окружности, говоря по научному – дуга и для этой дуги нужно определить радиус и найти центр окружности.

Сделать это можно двумя методами. Первый метод основан на расчетах, а второй – прикладной. Сначала рассмотрим первый метод, его достоинства и недостатки, а затем второй.

Первый метод определения радиуса дуги или сегмента круга

Изначально это выглядит так:

Рисунок 463.1. а) имеющаяся дуга, б) определение длины хорды сегмента и высоты.

Таким образом, когда имеется дуга, мы можем соединить ее концы и получим хорду длиной L. Посредине хорды мы можем провести линию, перпендикулярную хорде и таким образом получим высоту сегмента H. Теперь, зная длину хорды и высоту сегмента, мы можем сначала определить центральный угол α, т.е. угол между радиусами, проведенными из начала и конца сегмента (на рисунке 463.1 не показаны), а затем и радиус окружности.

Решение подобной задачи достаточно подробно рассматривалось в статье “Расчет арочной перемычки”, поэтому здесь лишь приведу основные формулы:

Как видим, с точки зрения математики никаких проблем с определением радиуса окружности нет. Данный метод позволяет определить значение радиуса дуги с любой возможной точностью. Это главное достоинство данного метода.

А теперь поговорим о недостатках.

Проблема данного метода даже не в том, что требуется помнить формулы из школьного курса геометрии, успешно забытые много лет назад – для того, чтобы напомнить формулы – есть интернет. А вот калькулятор с функцией arctg, arcsin и проч. есть далеко не у каждого пользователя. И хотя эту проблему также успешно позволяет решить интернет, но при этом не следует забывать, что мы решаем достаточно прикладную задачу. Т.е. далеко не всегда нужно определить радиус окружности с точностью до 0.0001 мм, точность 1 мм может быть вполне приемлема.

Кроме того, для того, чтобы найти центр окружности, нужно продлить высоту сегмента и отложить на этой прямой расстояние, равное радиусу. Так как на практике мы имеем дело с не идеальными измерительными приборами, к этому следует прибавить возможную погрешность при разметке, то получается, что чем меньше высота сегмента по отношению к длине хорды, тем больше может набежать погрешность при определении центра дуги.

Опять же не следует забывать о том, что мы рассматриваем не идеальный случай, т.е. это мы так сходу назвали кривую дугой. В действительности это может быть кривая, описываемая достаточно сложной математической зависимостью. А потому найденный таким образом радиус и центр окружности могут и не совпадать с фактическим центром.

В связи с этим я хочу предложить еще один способ определения радиуса окружности, которым сам часто пользуюсь, потому что этим способом определить радиус окружности намного быстрее и проще, хотя точность при этом значительно меньше.

Второй метод определения радиуса дуги (метод последовательных приближений)

Итак продолжим рассмотрение имеющейся ситуации.

Так как нам все равно необходимо найти центр окружности, то для начала мы из точек, соответствующих началу и концу дуги, проведем как минимум две дуги произвольного радиуса. Через пересечение этих дуг будет проходить прямая, на которой и находится центр искомой окружности.

Теперь нужно соединить пересечение дуг с серединой хорды. Впрочем, если мы из указанных точек проведем не по одной дуге, а по две, то данная прямая будет проходить через пересечение этих дуг и тогда искать середину хорды вовсе не обязательно.

Ну а дальше все просто: измеряем расстояние от пересечения дуг до начала (или конца) рассматриваемой дуги, а затем расстояние от пересечения дуг до точки, соответствующей высоте сегмента.

Если расстояние от пересечения дуг до начала или конца рассматриваемой дуги больше, чем расстояние от пересечения дуг до точки, соответствующей высоте сегмента, то значит центр рассматриваемой дуги находится ниже на прямой, проведенной через пересечение дуг и середину хорды. Если меньше – то искомый центр дуги выше на прямой.

Исходя из этого на прямой принимается следующая точка, предположительно соответствующая центру дуги, и от нее производятся те же измерения. Затем принимается следующая точка и измерения повторяются. С каждой новой точкой разница измерений будет все меньше.

Вот собственно и все. Не смотря на столь пространное и мудреное описание, для определения радиуса дуги таким способом с точностью до 1 мм достаточно 1-2 минут.

Теоретически это выглядит примерно так:

Рисунок 463.2. Определение центра дуги методом последовательных приближений.

А на практике примерно так:

Фотография 463.1. Разметка заготовки сложной формы с разными радиусами.

Тут только добавлю, что иногда приходится находить и чертить несколько радиусов, потому на фотографии так много всего и намешано.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье “Записаться на прием к доктору”

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины – номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Категории:

  • Расчет конструкций . Основы прикладной геометрии

Оценка пользователей:
8.5 (голосов: 2)

Переходов на сайт:
31889

Комментарии:

R = H/(1 – cos(a/2))
Радиус прямо пропорционален H.
Как так?

Я достаточно подробно ответил на ваш вопрос в статье “Расчет арочной перемычки”, где вы задали подобный вопрос.

Если угол не нужен для дальнейших расчетов, радиус находится проще – без тригонометрических функций и даже можно без калькулятора – на бумажке. R = L^2/(8*H) + H/2

Сначала термины:
Отрезок, соединяющий концы дуги называется хордой (a), а высота сегмента (перпендикуляр из середины хорды) — стрелкой (h).
Теорема Пифагора: Квадрат гипотенузы равен сумме квадратов катетов. То есть R^2=(R-h)^2+(a/2)^2.
А что касается нахождения центра, то перпендикуляры к серединам хорд пересекаются в центре!

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье “Записаться на прием к доктору” (ссылка в шапке сайта).

Определение центра окружности и центра дуги

Определение центра окружности (рис. 28).

  • 1) Провести в окружности две непараллельные хорды АВ и CD.
  • 2) К середине хорды А В восстановить перпендикуляр (см. деление отрезка на две равные части при помощи циркуля).
  • 3) Выполнить аналогичное построение для хорды ВС.

Пересечение перпендикуляров является центром окружности.

Определение центра дуги окружности (рис. 29).

  • 1) Назначить на дуге три произвольных точки А, В и С.
  • 2) Соединить точки прямыми.
  • 3) Через середины полученных хорд АВ и ВС провести перпендикуляры.

Точка О пересечения перпендикуляров является центром дуги.

Сопряжения

Сопряжением называется плавный переход от одной линии к другой.

Из всего многообразия сопряжений различных линий выделяют основные виды сопряжений:

  • • сопряжение прямой линии с дугой окружности;
  • • сопряжение двух различно расположенных прямых линий с помощью дуги окружности;
  • • сопряжение дуг двух окружностей с помощью прямой линии;
  • • сопряжение дуг двух окружностей с помощью третьей.

Дуги окружностей, с помощью которых выполняется сопряжение, называют дугами сопряжения. Для построения дуги сопряжения необходимо на чертеже выявить:

  • • центр дуги сопряжения;
  • • радиус этой дуги;
  • • точки сопряжения, в которых дуга сопряжения переходит в сопрягаемые линии.

Задаваясь одним из этих параметров, остальные можно определить графически.

При сопряжении прямой линии с дугой окружности прямая линия является касательной к окружности. В этом случае центр дуги окружности О и точка сопряжения К лежат на перпендикуляре к сопрягаемой прямой (рис. 30).

При сопряжении дуг двух окружностей точка сопряжения К должна лежать на линии, соединяющей центры сопрягаемых дуг (рис. 31).

Сопряжение пересекающихся прямых линий с помощью дуги заданного радиуса.

Сопряжение двух взаимно перпендикулярных прямых а и b дугой окружности заданного радиуса R (рис. 32, а).

  • 1) Из точки пересечения прямых как из центра провести дугу окружности радиусом R до пересечения с прямыми в точках А и В (рис. 32, б).
  • 2) Из полученных точек/1 и В как из центров тем же радиусом провести дуги окружностей до взаимного пересечения в точке О (рис. 32, в).

3) Из точки О радиусом R провести дугу сопряжения (рис. 32, г). Точки А и В являются точками сопряжения.

Сопряжение двух пересекающихся прямых а и b под произвольным углом дугой заданного радиуса R (рис. 33, 34).

Центр сопряжения О должен лежать на расстоянии R от заданных прямых. Для его определения необходимо:

  • 1) Из произвольных точек на заданных прямых провести дуги радиусом R.
  • 2) Построить линии, касательные к дугам. Точка О пересечения этих линий является центром сопряжения (рис. 33, а).
  • 3) Из точки О опустить перпендикуляры на заданные прямые.

Точки И и i? являются точками сопряжения (рис. 33,6).

4) Из точки О как из центра провести дугу радиуса R. Эта дуга является дугой сопряжения.

На рисунке 34 сопряжение прямых линий выполнено аналогично.

Сопряжение параллельных прямых дугой окружности. Если на одной из прямых а и b задана точка сопряжения А (рис. 35, а), сопряжение выполняют следующим образом.

  • 1) Из точки А опустить перпендикуляр на прямую b (рис. 35, б).
  • 2) Разделить отрезок АВ пополам (рис. 35, в).
  • 3) Из точки О как из центра провести дугу сопряжения радиусом ОА (рис. 35, г).

Сопряжение дуги окружности радиуса R и прямой а дугой заданного радиуса Rj (рис. 36).

Для выполнения этого сопряжения сначала необходимо определить множество центров дуг радиуса Rx.

1) На расстоянии Rx от прямой а провести параллельную ей прямую т. Прямая т является множеством центров дуг радиуса Rx.

2) Из центра О провести дугу концентрической окружности радиусом (R + R). Точка Ох пересечения дуги с прямой т будет центром дуги сопряжения.

Точка сопряжения С получена на перпендикуляре, опущенном из точки 0 на прямую а, а точка В является точкой пересечения окружности с прямой, соединяющей точки О и Ох.

Сопряжение дуг двух окружностей с помощью прямой линии. Это сопряжение сводится к построению внешней (рис. 37) или внутренней (рис. 38) касательной к данным окружностям.

Построение внешней касательной, сопрягающей две окружности радиусов R и R (рис. 37, а).

  • 1) Соединить центры окружностей.
  • 2) Отрезок 00 разделить точкой О2 пополам.
  • 3) Из точки О провести окружность радиусом (RRx), равным разности радиусов заданных окружностей (рис. 31,6).
  • 4) На построенной окружности сделать засечки радиусом R2 = 020. Точки обозначены Е и D (рис. 37, в).
  • 5) Продлить отрезки ОЕ и OD до пересечения с окружностью радиуса R. Полученные точки С и В являются точками сопряжения (рис. 37, г).
  • 6) Соединить точки Ей D с центром Ох.
  • 1) Из точек С и В параллельно отрезкам ОхЕ и OxD провести отрезки, сопрягающие две окружности.

Точки сопряжения на окружности радиуса R можно получить, опустив перпендикуляры из точки Ох к отрезкам ОхЕ и OxD.

Построение внутренних касательных, сопрягающих две окружности радиусов R и R (рис. 38, а).

  • 1) Из середины отрезка ООх — точки 02 проводят дугу радиусом R2 = 020 (рис. 38, б).
  • 2) Из центра О проводят дугу радиусом (R + R), равным сумме радиусов заданных окружностей. В пересечении этих окружностей отмечают точки Е и D.
  • 3) Точки Е п D соединить с точкой О (рис. 38, в). Точки С и В пересечения прямых ОЕ и OD с окружностью являются точками сопряжения.
  • 4) Точки Е и D соединить с точкой О у.
  • 5) Через точки С и В провести прямые линии параллельно отрезкам ЕО и DO у.

Прямые ССХ и ВВх являются касательными, сопрягающими заданные окружности. Точки сопряжения Су и В у лежат на пересечении перпендикуляров, проведенных из центра О, к прямым ССу и В By.

Построение сопряжения двух дуг окружностей. Сопряжение двух дуг окружностей может быть внешнее (рис. 39, а) и внутреннее (рис. 39, б). Точка сопряжения А лежит на прямой, соединяющей центры окружностей.

Расстояние между центрами при внешнем сопряжении равно сумме радиусов окружностей (R + Ry), а при внутреннем сопряжении — разности этих радиусов (R — Ry). В точке сопряжения А окружности имеют общую касательную t.

Построение сопряжения двух дуг окружностей дугой заданного радиуса.

Такой вид сопряжения может быть внешним, внутренним и смешанным.

Построение внешнего сопряжения двух дуг окружностей радиусов R и Ry с помощью дуги радиуса R2 (рис. 40, а). При внешнем сопряжении дуги находятся с внешней стороны дуги сопряжения, т.е. точки сопряжения представляют собой точки перегиба.

  • 1) Из центра О радиусом (R + R2), а из центра Ох радиусом (Rx + R2) проводят дуги до пересечения в точке 02 (рис. 40, б). Точка 02 является центром дуги сопряжения.
  • 2) Соединить точку 02 с центрами дуг О и Ох. Точки В и С, лежащие на линиях 020 и 020х, являются точками сопряжения (рис. 40, в).
  • 3) Из точки 02 как из центра провести дугу сопряжения радиусом R2 (рис. 40, в).

Построение внутреннего сопряжения двух дуг окружностей радиусов R и Rx при помощи дуги радиуса R2 (рис. 41, а). При внутреннем сопряжении сопрягаемые дуги находятся внутри дуги сопряжения, т.е. дуга сопряжения и сопрягаемые дуги находятся по одну сторону касательных, проведенных через точки сопряжения. Точки сопряжения в этом случае представляют собой точки самоприкосновения.

Порядок построения следующий (рис. 41,5).

  • 1) Из центра О провести дугу радиусом (Л2 – Л), а из центра Ох дугу радиусом, равным (R2 — R<). В пересечении этих дуг получают точку 02 центр дуги сопряжения.
  • 2) Соединить точку 02 с центрами дуг О и О^. Точки В иВ, лежащие на прямых 020 и 020х, являются точками сопряжения.
  • 3) Из точки 02 как из центра провести дугу сопряжения радиусом R2.

Построение смешанного сопряжения двух дуг окружностей радиусов Ru RC помощью дуги радиуса R2 (рис. 42, а). При смешанном сопряжении двух данных дуг окружностей третьей дугой одна сопрягаемая дуга находится внутри дуги сопряжения, а другая — вне ее, т.е. одна точка сопряжения является точкой самоприкосновения, а вторая — точкой перегиба.

Построение смешанного сопряжения аналогично построению внешнего и внутреннего сопряжений. При этом возможны два варианта.

1) Дуга сопряжения с дугой радиуса R имеет внутреннее сопряжение, а с дугой радиуса — внешнее (рис. 42, б).

При таком сопряжении из центра О необходимо провести дугу радиусом (R2R), а из центра Ох радиусом (R2 + Ri). Пересечение проведенных дуг определяет центр дуги сопряжения — точку О2

В этом случае точка В — точка самоприкосновения, а точка Вх точка перегиба.

2) Дуга сопряжения с дугой радиуса R имеет внешнее сопряжение, а с дугой радиуса Ru внутреннее (рис. 42, в).

В этом случае из центра О необходимо провести дугу радиусом (/?2 + R), а из центра 0 — радиусом (R2R). Точка В стала точкой перегиба, а точка Вь точкой самоприкосновения.

На рисунке 43 показан случай смешанного сопряжения двух дуг окружностей третьей дугой заданного радиуса R2, когда расстояние а между центрами дуг меньше суммы их радиусов (R + R <).Построения ясны из чертежа.

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

[spoiler title=”источники:”]

http://bstudy.net/787728/tehnika/opredelenie_tsentra_okruzhnosti_tsentra_dugi

Геометрия. Урок 5. Окружность

[/spoiler]

Содержание:

Окружность:

Определение: Кривой второго порядка называется линия, описываемая уравнением Окружность - определение и вычисление с примерами решения

Замечание: Если коэффициенты Окружность - определение и вычисление с примерами решения

При определенных значениях параметров, входящих в это уравнение, оно дает канонические у равнения окружности, эллипса (не путать с овалом), гиперболы и параболы. Рассмотрим эти кривые второго порядка в указанной последовательности.

Определение: Окружностью называется геометрическое место точек равноудаленных от выделенной точки Окружность - определение и вычисление с примерами решения называемой центром окружности, на расстояние R, которое называется радиусом окружности.

Получим уравнение окружности (Рис. 27). Пусть точка М(х;у) лежит на окружности:

Окружность - определение и вычисление с примерами решения

Рис. 27. Вывод уравнения окружности.

Из рисунка видно, что по теореме Пифагора Окружность - определение и вычисление с примерами решения которое определяет уравнение окружности (Рис. 28): Окружность - определение и вычисление с примерами решения

Рис. 28. Окружность. Окружность - определение и вычисление с примерами решения

Если Окружность - определение и вычисление с примерами решения то уравнение принимает вид Окружность - определение и вычисление с примерами решения который называется каноническим уравнением окружности.

Пример:

Составить уравнение окружности, центр которой совпадает с точкой М (2; 1), прямая линия Окружность - определение и вычисление с примерами решения является касательной к окружности.

Окружность - определение и вычисление с примерами решения

Решение:

Радиус окружности равен расстоянию от центра окружности точки М (2; 1) до прямой l, т.е.

Окружность - определение и вычисление с примерами решения

В уравнении окружности Окружность - определение и вычисление с примерами решения таким образом оно имеет вид: Окружность - определение и вычисление с примерами решения

Пример:

Составить уравнение окружности, касающейся двух параллельных прямых Окружность - определение и вычисление с примерами решения причем одной из них в т. А (1; 2).

Окружность - определение и вычисление с примерами решения

Решение:

Прежде всего определим, на какой из прямых Окружность - определение и вычисление с примерами решения или Окружность - определение и вычисление с примерами решениялежит точка A(1; 2). Для этого подставим ее координаты в уравнения прямых Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения следовательно, точка A(1; 2) принадлежит линии Окружность - определение и вычисление с примерами решения(в сокращенной форме это предложение пишут так: Окружность - определение и вычисление с примерами решения где значок Окружность - определение и вычисление с примерами решения означает “принадлежит”. Таким образом, диаметр окружности D равен расстоянию от точки A(1; 2) до прямой Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

а радиус окружности Окружность - определение и вычисление с примерами решения Найдём координаты центра окружности точки Окружность - определение и вычисление с примерами решения которая делит отрезок АВ пополам. Вначале составим уравнение прямой (АВ) и вычислим координаты точки Окружность - определение и вычисление с примерами решения перейдем от общего уравнения прямой Окружность - определение и вычисление с примерами решения к уравнению прямой с угловым коэффициентом Окружность - определение и вычисление с примерами решения Так как прямаяОкружность - определение и вычисление с примерами решениято её угловой коэффициент Окружность - определение и вычисление с примерами решения Прямая (АВ) проходит через известную точку A(1;2), следовательно, Окружность - определение и вычисление с примерами решения Отсюда находим Окружность - определение и вычисление с примерами решения Таким образом,уравнение прямой (АВ):Окружность - определение и вычисление с примерами решения

Найдем координаты точки B, которая является пересечением прямых Окружность - определение и вычисление с примерами решения и (АВ), т.е. решим систему линейных алгебраических уравнений, составленную из уравнений прямых Окружность - определение и вычисление с примерами решения и (АВ): (В): Окружность - определение и вычисление с примерами решения Подставим выражение для переменной у из второго у равнения в первое, получим Окружность - определение и вычисление с примерами решения Подставив это значение во второе уравнение системы, найдем Окружность - определение и вычисление с примерами решения т.е. Окружность - определение и вычисление с примерами решения

Для вычисления координат точки О применим формулы деления отрезка пополам (О): Окружность - определение и вычисление с примерами решения в этой формуле Окружность - определение и вычисление с примерами решения (координаты точки О), Окружность - определение и вычисление с примерами решения (координаты точки А), Окружность - определение и вычисление с примерами решения (координаты точки В), следовательно, Окружность - определение и вычисление с примерами решения т.е. координаты точки О Окружность - определение и вычисление с примерами решения

Таким образом, уравнение искомой окружности имеет вид: Окружность - определение и вычисление с примерами решения

Окружность в высшей математике

Рассмотрим уравнение

Окружность - определение и вычисление с примерами решения

которое получается из уравнения (I), если положить Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения.

Если в формулу, выражающую расстояние между двумя точками, подставить Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения, то получим Окружность - определение и вычисление с примерами решения Из уравнения (1) находим, что Окружность - определение и вычисление с примерами решения, т. е. Окружность - определение и вычисление с примерами решения. Это значит, что все точки Окружность - определение и вычисление с примерами решения, координаты которых удовлетворяют уравнению (1), находятся на расстоянии Окружность - определение и вычисление с примерами решения от начала координат. Следовательно, геометрическое место точек, координаты которых удовлетворяют уравнению (1), есть окружность радиуса Окружность - определение и вычисление с примерами решения с центром в начале координат. Аналогично получаем, что уравнение Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения определяет окружность радиуса Окружность - определение и вычисление с примерами решения с центром в точке Окружность - определение и вычисление с примерами решения.

Пример:

Найдем уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом, равным 10.

Решение:

ПолагаяОкружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения получим Окружность - определение и вычисление с примерами решения.

Разрешим это уравнение относительно Окружность - определение и вычисление с примерами решения, будем иметь

Окружность - определение и вычисление с примерами решения

и

Окружность - определение и вычисление с примерами решения

Первое из этих уравнений есть уравнение верхней половины окружности, второе—нижней.

Центральный угол. Градусная мера дуги

Дуга окружности. Если отметить на окружности точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения, то окружность разделится на две дуги: большую дугу (мажорная дуга) и меньшую дугу (минорная дуга). Если точка Окружность - определение и вычисление с примерами решения является какой-либо точкой дуги Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения. Если точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения являются концами диаметра, го каждая дуга является полуокружностью.

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Центральный угол. Угол, вершина которого находится в центре окружности, называется центральным углом. Дугу окружности можно измерять в градусах. Градусная мера дуги равна градусной мере соответствующего центрального угла: Окружность - определение и вычисление с примерами решения

Сумма всех центральных углов окружности, не имеющих общую внутреннюю точку, равна Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Дуги окружности и их величины

Окружность - определение и вычисление с примерами решения

Пример: Окружность - определение и вычисление с примерами решения минорная дуга: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения мажорная дуга: Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Конгруэнтные дуги

В окружности конгруэнтным центральным углам соответствуют конгруэнтные дуги и наоборот.

Если Окружность - определение и вычисление с примерами решения

Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Длина дуги

Какую часть составляет центральный угол от всей окружности, такую же часть длина дуги составляет от длины всей окружности.

Длина дуги в Окружность - определение и вычисление с примерами решения равна Окружность - определение и вычисление с примерами решения части длины окружности.

Длина дуги, соответствующей центральному углу с градусной мерой Окружность - определение и вычисление с примерами решения, составляет Окружность - определение и вычисление с примерами решения части длины окружности: Окружность - определение и вычисление с примерами решения

Длина дуги выражается единицами измерения длины (мм, см, м, и т.д.)

Окружность - определение и вычисление с примерами решения

Пример №1

Длина окружности равна 72 см. Найдите длину дуги, соответствующей центральному углу Окружность - определение и вычисление с примерами решения.

Решение:

Так как центральный угол Окружность - определение и вычисление с примерами решения составляет Окружность - определение и вычисление с примерами решения часть полного угла, то длина искомой дуги: Окружность - определение и вычисление с примерами решения

Пример №2

Найдите длину дуги, соответствующей центральному углу Окружность - определение и вычисление с примерами решения в окружности радиусом 15 см.

Решение: подставляя значения Окружность - определение и вычисление с примерами решения в формулу длины дуги находим: Окружность - определение и вычисление с примерами решения

Окружность и хорда

Теорема о конгруэнтных хордах

Теорема 1. Хорды, стягивающие конгруэнтные дуги окружности, конгруэнтны.

Обратная теорема 1. Дуги, стягиваемые конгруэнтными хордами окружности, конгруэнтны.

1)Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения

2)Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 1:

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема о серединном перпендикуляре хорд

Теорема 2.

Диаметр, перпендикулярный хорде, делит хорду и соответствующую дугу пополам.

Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 2.

Дано: Окружность - определение и вычисление с примерами решения– центральный угол, Окружность - определение и вычисление с примерами решения

Докажите: Окружность - определение и вычисление с примерами решения

Начертите радиусы Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения окружности.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Следствие 1. Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и ее дугу пополам.

Следствие 2. Центр окружности расположен на серединном перпендикуляре хорды. Серединный перпендикуляр хорды проходит через центр окружности.

Пример: Найдите расстояние от центра до хорды длиной 30 единиц в окружности радиусом 17 единиц. Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения. Из Окружность - определение и вычисление с примерами решения по теореме Пифагора имеем: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема о хордах, находящихся на одинаковом расстоянии от центра окружности

Теорема 3.

Конгруэнтные хорды окружности находятся на одинаковом расстоянии от центра окружности.

Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения

Обратная теорема 3. Хорды, находящиеся на одинаковом расстоянии от центра окружности, конгруэнтны.

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 3

Дано: Окружность с центром Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Докажите: Окружность - определение и вычисление с примерами решения

Доказательство (текстовое): Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и стягивающую ее дугу пополам. Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения – серединные перпендикуляры конгруэнтных хорд Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения. Окружность - определение и вычисление с примерами решения, так как они являются половиной конгруэнтных хорд. Начертим радиусы окружности Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения: Окружность - определение и вычисление с примерами решения. Прямоугольные треугольники, Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения конгруэнтны (по катету и гипотенузе). Так как Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения являются соответствующими сторонами данных треугольников, то они конгруэнтны: Окружность - определение и вычисление с примерами решения. Теорема доказана.

Задача. Хорды Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения находятся на одинаковом расстоянии от центра окружности. Окружность - определение и вычисление с примерами решения. Если радиус окружности равен 41 единице, то найдите Окружность - определение и вычисление с примерами решения.

Решение: Так как хорды Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения находятся на одинаковом расстоянии от центра, то они конгруэнтны: Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения Соединим точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения с точкой Окружность - определение и вычисление с примерами решения В прямоугольном треугольнике Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения

Так как Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Угол, вписанный в окружность

Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется углом вписанным в окружность. Дуга, соответствующая углу, вписанному в окружность, называется дугой, на которую опирается этот угол.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения является углом вписанным в окружность с центром Окружность - определение и вычисление с примерами решения, а Окружность - определение и вычисление с примерами решения дуга, на которую опирается этот угол. Ниже показаны три разных угла, вписанных в окружность.

Окружность - определение и вычисление с примерами решения

Угол, вписанный в окружность:

Теорема 1. Градусная мера угла, вписанного в окружность, равна половине градусной меры дуги, на которую он опирается. Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство (текстовое): Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения радиусы окружности и Окружность - определение и вычисление с примерами решения равнобедренный треугольник. Значит, Окружность - определение и вычисление с примерами решения Так как Окружность - определение и вычисление с примерами решения является внешним углом Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения Если примем, что Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения Так как градусные меры центрального угла и опирающейся на него дуги равны, то Окружность - определение и вычисление с примерами решения Следовательно, Окружность - определение и вычисление с примерами решения.

Окружность - определение и вычисление с примерами решения

Следствие 1. Угол, вписанный в окружность, равен половине соответствующего центрального угла.

Следствие 2. Угол, вписанный в окружность и опирающийся на диаметр (полуокружность), является прямым углом.

Окружность - определение и вычисление с примерами решения

Конгруэнтные углы, вписанные в окружность

Следствие 3. Вписанные углы, опирающиеся на одну и ту же дугу, конгруэнтны. Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения.

Следствие 4. Вписанные углы, опирающиеся на конгруэнтные дуги, конгруэнтны. Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения.

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Касательная к окружности

Касательная. Признак касательной

Прямая, имеющая одну общую точку с окружностью, называется касательной. Теорема 1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Окружность - определение и вычисление с примерами решения

Прямая Окружность - определение и вычисление с примерами решения является касательной к окружности. Значит, Окружность - определение и вычисление с примерами решения Обратная теорема (признак касательной): Прямая, проходящая через точку окружности и перпендикулярная радиусу, проведенному в эту точку, является касательной окружности.

Прямая, касающаяся обеих окружностей, называется общей касательной этих окружностей. Окружности, касаясь друг друга изнутри или извне, могут иметь общую касательную в одной точке. Также окружности могут касаться одной касательной в разных точках.

Окружность - определение и вычисление с примерами решения

Две окружности могут иметь несколько общих касательных или вообще не иметь общих касательных.

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 1. Если прямая Окружность - определение и вычисление с примерами решения – касательная к окружности, значит, она имеет единственную общую точку с окружностью. Допустим, что прямая Окружность - определение и вычисление с примерами решения не перпендикулярна радиусу Окружность - определение и вычисление с примерами решения Проведем Окружность - определение и вычисление с примерами решения и на прямой Окружность - определение и вычисление с примерами решения выделим отрезок Окружность - определение и вычисление с примерами решения Тогда Окружность - определение и вычисление с примерами решения так как Окружность - определение и вычисление с примерами решения Значит, точка Окружность - определение и вычисление с примерами решения также находится на окружности. То есть прямая Окружность - определение и вычисление с примерами решения имеет с окружностью две общие точки, что противоречит условию. Значит, Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Свойства касательных, проведенных к окружности из одной точки

Теорема 2. Отрезки касательных к окружности, проведенных из одной точки, конгруэнтны, и центр окружности находится на биссектрисе угла, образованного касательными.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения касательные, проведенные из точки Окружность - определение и вычисление с примерами решения к окружности с центром Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Углы, образованные секущими и касательными

Прямая, имеющая две общие точки с окружностью, называется секущей окружности.

Углы между двумя секущими

Вершина угла находится внутри окружности

Теорема. Если вершина угла, образованного двумя секущими, находится внутри окружности, то градусная мера угла равна полусумме величин дуг на которые опирается этот угол и угол вертикальный данному. Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Углы между касательной и секущей

Вершина угла находится на окружности

Теорема. Если вершина угла, образованного касательной и секущей, находится на окружности, то градусная мера угла равна половине градусной меры дуги, на которую он опирается.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Углы, образованные касательной и секущей

Вершина угла находится вне окружности

Теорема 1.

Градусная мера угла, образованного секущей и касательной, двумя касательными, двумя секущими окружности (если вершина угла находится вне окружности), равна половине разности градусных мер дуг, находящихся между сторонами угла.

Окружность - определение и вычисление с примерами решения

Отрезки секущих и касательных

Длина отрезков, секущих окружность

Теорема 1. При пересечении двух хорд, произведение отрезков одной хорды, полученных точкой пересечения, равно произведению отрезков второй хорды.

Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Теорема 2. Если из точки Окружность - определение и вычисление с примерами решения провести две прямые, пересекающие окружность соответственно в точках Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения то верно равенство Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема 3. Если из точки Окружность - определение и вычисление с примерами решения проведены прямая, которая пересекает окружность в точках Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения и касательная к окружности в точке Окружность - определение и вычисление с примерами решения то верно равенство: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Уравнение окружности

Используя формулу расстояния между двумя точками, можно написать уравнение окружности с радиусом Окружность - определение и вычисление с примерами решения и с центром в начале координат. Расстояние между центром окружности Окружность - определение и вычисление с примерами решения и ее любой точкой Окружность - определение и вычисление с примерами решения равно радиусу Окружность - определение и вычисление с примерами решения окружности.

Окружность - определение и вычисление с примерами решения Расстояние между двумя точками

Окружность - определение и вычисление с примерами решения Упрощение

Окружность - определение и вычисление с примерами решения Возведение обеих частей в квадрат

Окружность - определение и вычисление с примерами решения

Уравнение окружности с центром в начале координат и радиусом Окружность - определение и вычисление с примерами решения: Окружность - определение и вычисление с примерами решения

Например, уравнение окружности с центром в начале координат Окружность - определение и вычисление с примерами решения и радиусом 2 имеет вид: Окружность - определение и вычисление с примерами решения

По формуле расстояния между центром окружности Окружность - определение и вычисление с примерами решения и точки Окружность - определение и вычисление с примерами решения на окружности радиуса Окружность - определение и вычисление с примерами решения имеем Окружность - определение и вычисление с примерами решенияВозведя в квадрат обе части, получаем уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Например, уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом 4 имеет вид: Окружность - определение и вычисление с примерами решения

Пример №3

Постройте на координатной плоскости окружность, заданную уравнением Окружность - определение и вычисление с примерами решения

Решение: Напишем уравнение в виде Окружность - определение и вычисление с примерами решения Как видно, Окружность - определение и вычисление с примерами решения

Отметим 4 точки, находящиеся на расстоянии 5 единиц от начала координат. Например, Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения Проведем окружность через эти точки.

Окружность - определение и вычисление с примерами решения

Пример №4

Точка Окружность - определение и вычисление с примерами решения находится на окружности, центром которой является начало координат. Напишите уравнение этой окружности.

Решение: Записав координаты точки Окружность - определение и вычисление с примерами решения в уравнении Окружность - определение и вычисление с примерами решения, получим: Окружность - определение и вычисление с примерами решения Уравнение этой окружности: Окружность - определение и вычисление с примерами решения

Пример №5

Найдем центр и радиус окружности, заданной уравнением Окружность - определение и вычисление с примерами решения

Решение: Окружность - определение и вычисление с примерами решения

Центр окружности точка Окружность - определение и вычисление с примерами решения Радиус Окружность - определение и вычисление с примерами решения

Пример №6

Мобильные телефоны работают с помощью передачи сигналов посредством спутников из одной передающей станции в другую. Компания мобильного оператора старается расположить передающую станцию так, чтобы обслуживать больше пользователей. Представим, что три больших города находятся в точках Окружность - определение и вычисление с примерами решения На координатной плоскости 1 единица равна расстоянию в 100 км. Передающая станция должна быть расположена в точке, находящейся на одинаковом расстоянии от этих городов. Напишите координаты этой точки и уравнение соответствующей окружности.

Решение: Сначала соединим эти точки и найдем точку пересечения серединных перпендикуляров сторон полученного треугольника. Эта точка Окружность - определение и вычисление с примерами решения Эта точка, являясь центром окружности, показывает месторасположение станции. Расстояние между центром и любой из заданных точек является радиусом окружности, Окружность - определение и вычисление с примерами решения

Уравнение окружности: Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Заметка. Определив линейные уравнения, соответствующие серединным перпендикулярам, можно найти координаты центра окружности решением системы уравнений.

Координаты точек, находящихся на окружности, и тригонометрические отношения

Если точка Окружность - определение и вычисление с примерами решения при повороте радиуса Окружность - определение и вычисление с примерами решения вокруг точки Окружность - определение и вычисление с примерами решения против движения часовой стрелки на угол Окружность - определение и вычисление с примерами решения преобразуется в точку Окружность - определение и вычисление с примерами решения то Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Для координат точки Окружность - определение и вычисление с примерами решения соответствующей углу поворота Окружность - определение и вычисление с примерами решения на окружности, верны формулы Окружность - определение и вычисление с примерами решения В этих формулах Окружность - определение и вычисление с примерами решения – угол, отсчитываемый от положительной оси Окружность - определение и вычисление с примерами решенияпротив движения часовой стрелки. Если точка Окружность - определение и вычисление с примерами решения не находится на оси ординат, то Окружность - определение и вычисление с примерами решения.

Синусы смежных углов равны, а косинусы взаимно противоположны.

Окружность - определение и вычисление с примерами решения

Из этих формул при Окружность - определение и вычисление с примерами решения почленным делением получаем:

Окружность - определение и вычисление с примерами решения

С помощью формул, приведенных выше, вычисление синуса, косинуса, тангенса для тупого угла можно свести к вычислению синуса, косинуса, тангенса острого угла, соответственно.

Сектор и сегмент

Сектор часть круга, ограниченная центральным углом, образованным двумя радиусами и соответствующей этому углу дугой. Площадь сектора, соответствующего центральному углу, составляет ту часть площади круга, которую составляет центральный угол от полного угла.

Окружность - определение и вычисление с примерами решения

Например, часть круга, соответствующая центральному углу Окружность - определение и вычисление с примерами решения, составляет Окружность - определение и вычисление с примерами решения часть всего круга. Так как площадь круга Окружность - определение и вычисление с примерами решения, то площадь этого сектора будет Окружность - определение и вычисление с примерами решения Сегмент часть круга, ограниченная хордой и соответствующей дугой.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Площадь сектора

Площадь сектора: Окружность - определение и вычисление с примерами решения

Площадь сегмента: Окружность - определение и вычисление с примерами решения

Указание: При нахождении площади сегмента, соответствующего большей дуге, к площади соответствующего сектора прибавляется площадь Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

  • Эллипс
  • Гипербола
  • Парабола
  • Многогранник
  • Сфера в геометрии
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники

Особенности построения

Подробности
Категория: Инженерная графика

НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ

ДЕЛЕНИЕ ОТРЕЗКОВ ПРЯМЫХ НА РАВНЫЕ ЧАСТИ

Из многочисленных построений здесь рассматрива­ются только те, которые часто встречаются при вы­полнении чертежей.

Деление отрезка прямой на две и четыре равные части выполняется в следующей последовательности.

Из концов отрезка А В циркулем проводят две дуги окружности радиусом R, несколько большим поло­вины данного отрезка, до взаимного пересечения в точках n и m  (рис. 43, а). Точки тип соединяют пря­мой, которая пересекает отрезок АВ в точке С. Точка С делит отрезок А В на две равные части. Проделав подобное построение для отрезка АС, находим его середину — точку D. Повторив построение для отрезка СВ, разделим отрезок на четыре равные части.

Рис. 43 Деление отрезка прямой на две и четыре равные части

При вычерчивании детали, показанной на рис. 43, б, применяется способ деления отрезка на четыре части.

Деление отрезка прямой на любое число равных частей. Пусть отрезок А В требуется разделить на И равных частей. Для этого из любого конца данного отрезка, например из точки В (рис. 44, проводят под произвольным острым углом вспомогательную прямую линию ВС, на которой от точки В измеритель­ным циркулем откладывают 11 равных отрезков произвольной величины. Крайнюю точку 11 последней отложенной части соединяют с точкой А прямой Затем с помощью линейки и угольника проводят ряд прямых, параллельных прямой которые и разделяют отрезок А В на 11 равных частей.

Рис. 44 Деление отрезка прямой на любое число равных частей.

На рис. 44, б показана деталь, при изготовлении которой необходимо разместить 10 центров отверстий; отверстия равномерно расположены на длине L. В этом случае применяется описанный выше способ деления отрезка прямой на равные части.

ПОСТРОЕНИЕ И ИЗМЕРЕНИЕ УГЛОВ ТРАНСПОРТИРОМ

Транспортир — это прибор для измерения и построе­ния углов. Это полукруг с разбивкой на градусы, сое­диненный с опорной планкой.

Рис. 45 Транспортир

Для измерения угла транспортир прикладывают опорной планкой к одной из сторон данного угла (рис. 45, а) так, чтобы вершина угла (точка А) совпадала с точкой О на транспортире. Величину угла САВ в гра­дусах определяют по шкале транспортира.

Для построения угла заданной величины (в градусах) со стороной А В и вершиной в точке к приклады­вают транспортир так, чтобы его центр (точка О) сов­пал с точкой А прямой АВ, затем у деления шкалы транспортира, соответствующего заданному числу градусов (например, 55°), наносят точку n. Транспортир убирают и проводят через точку n отрезок АС — полу­чают заданный угол САВ (рис. 45, б).

Рис. 46 Построение углов при помощи угольников и рейсшины

Углы можно строить при помощи угольников с углами 45, 30 и 60° и линейки или рейсшины. На рис. 46 показано, как при различных положениях угольников на рейсшине можно строить углы 60 (120), 30 (150), 45° (135°) и другие при использовании одновременно двух угольников.. 

ПОСТРОЕНИЕ И ДЕЛЕНИЕ УГЛОВ

Деление угла на две и четыре равные части. Из вер­шины угла провести произвольным радиусом дугу до пересечения со сторонами угла в точках (рис. 47, а). Из полученных точек проводят две дуги радиусом R, несколько большим половины длины дуги n и к, до взаимного пересечения в точке m.   Вершину угла соединяют с точкой т прямой, которая делит угол ВАС пополам. Эта прямая называется биссектрисой угла ВАС. Повторяя это построение с полученными углами В Ат и nАС угол ВАС можно разделить на четыре равные части и т. д.

Рис. 47 Деление угла на две и четыре равные части.

Деление прямого угла на три равные части. Из вер­шины А прямого угла (рис. 47, б) произвольным ради­усом R описывают дугу окружности до пересечения ее со сторонами прямого угла в точках a и b из которых проводят дуги окружности того же радиуса R до пересечения с дугой ab в точках m и n. Точки m и n соединяют с вершиной угла А прямыми и получают стороны Аm и Аn углов В Аm и nА С,равных 1/3 прямого угла, т. е. 30°. Если каждый из этих углов разделить пополам, то пря­мой угол будет разделен на шесть равных частей, ка­ждый из углов будет равняться 15°. Прямой угол АВС можно разделить на три равные части угольником с углами 30 и 60° (рис. 48, а). При выполнении чертежей нередко требуется разделить прямой угол на две рав­ные части. Это можно выполнять угольником с углом 45° (рис. 48,     б).

Рис. 48

Построение угла, равного данному. Пусть задан угол ВАС. Требуется построить такой же угол. Через произвольную точку А1 проводим прямую А1С1. Из точки А описываем дугу произвольным радиусом R, которая пересечет угол ВАС в точках (рис. 49,а). Из точки A 1 проводим дугу тем же радиусом и полу­чаем точку m1. Из точки A1 проводим дугу радиусом R1 равным отрезку mn, до пересечения с ранее прове­денной дугой радиуса R в точке n1 (рис. 49, б). Точку n1 соединяем с точкой А1 и получаем угол B1A1C1 вели­чина которого равна заданному углу ВАС.

Применение вышеизложенного построения угла по заданному показано на рис. 49, в и г. На рис. 49, в  изоб­ражена деталь, чертеж которой надо вычертить, а на рис. 49, г  показан этот чертеж, при выполнении кото­рого использован способ построения угла по заданно­му.

Рис. 49 Построение угла, равного данному.

СПОСОБЫ ПОСТРОЕНИЯ МНОГОУГОЛЬНИКОВ

Способ триангуляции. Построение многоугольников этим способом основано на последовательном построе­нии ряда треугольников, примыкающих сторонами друг к другу. Этот способ будет применяться в дальней­шем при построении разверток поверхностей геоме­трических тел.

Рассмотрим пример такого построения. На рис. 50, а показана пластина с пятиугольным отверстием. Изме­ряя длины сторон пятиугольника, можно построить на чертеже контурное очертание многоугольного отвер­стия.

Рис. 50 Способ триангуляции и построение многоугольника методом прямоугольных координат

Треугольники в рассматриваемом многоугольнике можно получить, проведя диагонали 14  (рис. 50, а). Последовательность построения многоугольника на чертеже в данном примере следующая.

На детали произвольно выбираем базовую линию (например, А В), на которую из точек 7 и 2 опускаем перпендикуляр, и получаем точки E и G. На чертеже наносим базовую линию A1B1 на которой откладываем отрезок E1G1 равный отрезку EG. Из точек и G, восставляем перпендикуляры, на которых отклады­ваем взятые с детали отрезки и G1 (рис. 50, б). Получим точки 11и21. Из точек как из центров, циркулем описываем две дуги радиусами, равными отрезками 13  и 23, взятых с детали. Точка пересечения дуг является вершиной 31 искомого треугольника 112131. Таким же способом из точек 71 и 31 описываем две дуги радиусами, равными отрезкам 34 и 14, нахо­дим вершину 41. Затем из точек 41 и 11, как из центров, описываем две дуги радиусами, равными отрезкам 45  и 15, определяем последнюю вершину пятиугольника 51(рис. 50, б).

Построение многоугольника методом прямоугольных координат показано на рис. 50, в. В этом случае из вер­шин многоугольника 12345 (рис. 50, а) опускаем пер­пендикуляры на линию АВ, получаем точки GDEFG. Расстояние между этими точками откладываем на пря­мой A1B1(pиc. 50, в). Из полученных точек C1D1E1F1G1восставляем перпендикуляры, на которых отклады­ваем отрезки С5 D4, E1, F3, G2. Искомые точки 71, 21, 31, 41, 51на чертеже соединяют и получают чертеж многоугольника.

ОПРЕДЕЛЕНИЕ ЦЕНТРА ДУГИ ОКРУЖНОСТИ

Многие детали машин и приборов имеют контур очертания, состоящий из прямых линий, лекальных кривых и дуг окружностей. При вычерчивании деталей часто приходится определять величину радиусов дуг окружностей контурных очертаний детали и находить положение центров этих дуг. На рис. 51, а показана деталь (кронштейн), левая часть ребра которой выполнена по дуге окружности.

Рис. 51 Определение центра дуги окружности

Чтобы найти положение центра и величину радиуса данной дуги, предварительно делают отпечаток дуги на бумаге. При помощи циркуля и линейки можно определить центр и размер радиуса дуги окружности, для этого на отпечатке дуги намечают три произ­вольно расположенные на ней точки А, В и С (рис. 51, б) и проводят хорды АВ и ВС. При помощи циркуля и линейки проводят перпендикуляры через середины хорд         А В и ВС. Точка пересечения перпендикуляров

(точка О) является искомым центром дуги детали, а расстояние от точки О до любой точки дуги будет раз­мером радиуса.

ДЕЛЕНИЕ ОКРУЖНОСТИ НА РАВНЫЕ ЧАСТИ

Некоторые детали машин и приборов имеют эле­менты, равномерно расположенные по окружности, например, детали на рис. 52—59. При выполнении чер­тежей подобных деталей необходимо знать правила деления окружности на равное количество частей.

Деление окружности на четыре и восемь равных частей. На рис. 52, а показана крышка, в которой име­ется восемь отверстий, равномерно расположенных по окружности. При построении чертежа контура крышки (рис. 52 г) необходимо разделить окружность на восемь равных частей. Это можно сделать с помощью угольника с углами 45° (рис. 52, в), гипоте­нуза угольника должна проходить через центр окруж­ности, или построением.

Рис. 52 Деление окружности на четыре и восемь равных частей.

Два взаимно перпендикулярных диаметра окружно­сти делят ее на четыре равные части (точки 7, 3, 5, 7 на рис. 52, б). Чтобы разделить окружность на восемь равных частей, применяют известный прием деления прямого угла с помощью циркуля на две равные части. Получают точки 2, 4, 6, 8.

Деление окружности на три, шесть и двенадцать рав­ных частей. Во фланце (рис. 53, а) имеется три отвер­стия, равномерно расположенных по окружности. При выполнении чертежа контура фланца (рис. 53, г) нужно разделить окружность на три равные части.

Для нахождения точек, делящих окружность радиуса R на три равные части, достаточно из любой точки окружности, например точки А, провести дугу ради­усом R. Пересечения дуги с окружностью дают две искомые точки 2 и 3; третья точка деления будет нахо­диться на пересечении оси окружности, проведенной из точки Л, с окружностью (рис. 53, б).

Рис. 53 Деление окружности на три части

Разделить окружность на три равные части можно также угольником с углами 30 и 60° (рис. 53, в), гипотенуза угольника должна проходить через центр окруж­ности.

На рис. 54, б показано деление окружности цирку­лем на шесть равных частей. В этом случае выполня­ется то же построение, что на рис. 53, б но дугу описы­вают не один, а два раза, из точек и радиусом R , равным радиусу окружности.

Разделить окружность на шесть равных частей можно и угольником с углами 30 и 60° (рис. 54, в). На рис. 54, а показана крышка, при выполнении чертежа которой необходимо выполнить деление окружности на шесть частей.

Рис. 54 Деление окружности на шесть равных частей

Чтобы выполнить чертеж детали (рис. 55, а), кото­рая имеет 12 отверстий, равномерно расположенных по окружностям, нужно разделить осевую окружность на 12 равных частей (рис. 55, г).

При делении окружности на 12 равных частей с помощью циркуля можно использовать тот же прием, что и при делении окружности на шесть равных частей (рис. 54, б),но дуги радиусом R описывать четыре раза из точек 1, 7, 4и 10 (рис. 55, б).

Используя угольник с углами 30 и 60° с последующим поворотом его на 180°, делят окружность на 12 равных частей (рис. 55, в).

Рис. 55 Деление окружности на 12 равных частей

Деление окружности на пять, десять и семь равных частей. В плашке (рис. 56, а) имеется пять отверстий, равномерно расположенных по окружности. Выпол­няя чертеж плашки (рис. 56, в), необходимо разделить окружность на пять равных частей. Через намеченный центр О (рис. 56, б)

Рис. 56 Деление окружности на пять равных частей

при помощи рейсшины и уголь­ника проводят осевые линии и из точки О циркулем описывают окружность заданного диаметра. Из точки А радиусом R, равным радиусу данной окружности, проводят дугу, которая пересечет окружность в точке n. Из точки n опускают перпендикуляр на горизон­тальную осевую линию, получают точку С. Из точки С радиусом R1 равным расстоянию от точки С до точки 1, проводят дугу, которая пересечет горизонтальную осевую линию в точке т. Из точки 1 радиусом R , рав­ным расстоянию от точки 1 до точки m, проводят дугу, пересекающую окружность в точке 2. Дуга 12 является 1/5 длины окружности. Точки 3,4 и 5 находят, отклады­вая циркулем отрезки, равные m1.

Деталь «звездочка» (рис. 57, а) имеет 10 одинаковых элементов, равномерно расположенных по окружно­сти. Чтобы выполнить чертеж звездочки (рис. 57, я), следует окружность разделить на 10 равных частей. В этом случае следует применить то же построение, что и при делении окружности на пять частей (см. рис. 56, б). Отрезок п1 будет равняться хорде, которая делит окружность на 10 равных частей.

Рис. 57 Деление окружности на десять равных частей

На рис. 58, а изображен шкив, а на рис. 58, в — чер­теж шкива, где окружность разделена на семь равных частей.

Деление окружности на семь равных частей пока­зано на рис. 58, б. Из точки А проводится вспомога­тельная дуга радиусом R, равным радиусу данной окружности, которая пересечет окружность в точке . Из точки n опускают перпендикуляр на горизонталь­ную осевую линию. Из точки 1 радиусом, равным отрезку , делают по окружности семь засечек и полу­чают семь искомых точек.

Рис. 58 Деление окружности на семь равных частей

Деление окружности на любое число равных частей. С достаточной точностью можно делить окружность на любое число равных частей, пользуясь таблицей коэффициентов для подсчета длины хорды (табл. 9).

Зная, на какое число (n) следует разделить окруж­ность, находят по таблице коэффициент . При умно­жении коэффициента k на диаметр окружности D получают длину хорды l, которую циркулем отклады­вают на окружности n раз.

При построении чертежа кольца (рис. 59, а) необхо­димо окружность диаметра D=142 мм разделить на 32 равные части. Количеству частей окружности n=32 соответствует коэффициент k=0,098. Подсчитав длину хорды l=Dk=142×0,098= 13,9 мм, ее циркулем откла­дывают на окружности 32 раза (рис. 59, б и в).

Таблица 9 Коэффициенты для подсчета хорды

СОПРЯЖЕНИЕ ЛИНИЙ

При вычерчивании деталей машин и приборов, кон­туры очертаний которых состоят из прямых линий и дуг окружностей с плавными переходами от одной линии в другую, часто применяют сопряжения. Сопря­жением называется плавный переход одной линии в другую. На рис. 60 показаны примеры применения сопряжений.

Рис. 60

Контур  рычага (рис. 60а) состоит из отдельных линий, плавно переходящих одна в другую, например, в точках А, А1 виден плавный переход от дуги окруж­ности к прямой линии, а в точках В, В1 — от дуги одной окружности к дуге другой окружности (рис. 60, б). На рис. 60, в изображен двурогий крюк. На чертеже кон­тура крюка (рис. 60, г) в точке А виден плавный пере­ход от дуги окружности D=200 к прямой линии, а в точке В — от дуги окружности радиуса R460 к дуге ра­диуса R260.

Для точного и правильного выполнения чертежей необходимо уметь выполнять построения сопряжений, которые основаны на двух положениях.

  1. Для сопряжения прямой линии и дуги необходимо, чтобы центр окружности, которой принадлежит дуга, лежал на перпендикуляре к прямой, восставленном из точки сопряжения (рис. 61, а).
  2. Для сопряжения двух дуг необходимо, чтобы центры окружностей, которым принадлежат дуги, ле­жали на прямой, проходящей через точку сопряжения (рис. 61, 6).

Рис. 61

СОПРЯЖЕНИЕ ДВУХ СТОРОН УГЛА ДУГОЙ ОКРУЖНОСТИ ЗАДАННОГО РАДИУСА

При выполнении чертежей деталей, показанных на рис. 62, б, г, е, выполняют построение сопряжения двух сторон угла дугой окружности заданного радиуса. На рис. 62, а выполнено построение сопряжения сто­рон острого угла дугой, на рис. 62, в — тупого угла, на рис. 62, д — прямого.

Сопряжение двух сторон угла (острого или тупого) дугой заданного радиуса R выполняют следующим образом (рис. 62, а и в).

Параллельно сторонам угла на расстоянии, равном радиусу дуги R, проводят две вспомогательные прямые линии. Точка пересечения этих прямых (точка О) будет центром дуги радиуса Я, т. е. центром сопряже­ния. Из центра О описывают дугу, плавно переходя­щую в прямые — стороны угла. Дугу заканчивают в точках сопряжения n и n1 которые являются Основаниями перпендикуляров, опущенных из центра О на сто­роны угла.

Рис. 62

При построении сопряжения сторон прямого угла центр дуги сопряжения проще находить с помощью циркуля (рис. 62, д). Из вершины угла А проводят дугу радиусом R, равным радиусу сопряжения. На сторонах угла получают точки сопряжения n и n1 . Из этих точек, как из центров, проводят дуги радиусом R до взаим­ного пересечения в точке О, являющейся центром со­пряжения. Из центра О описывают дугу сопряжения.

СОПРЯЖЕНИЕ ПРЯМОЙ С ДУГОЙ ОКРУЖНОСТИ

Сопряжение прямой с дугой окружности может быть выполнено при помощи дуги с внутренним касанием (рис. 63, в) и дуги с внешним касанием (рис. 63, а).

На рис. 63, а показано сопряжение дуги окружности радиусом R и прямой линии А В дугой окружности радиуса r с внешним касанием. Для построения такого сопряжения проводят окружность радиуса R и прямую АВ. Параллельно заданной прямой на расстоянии, рав­ном радиусу r (радиус сопрягающей дуги), проводят прямую ab. Из центра О проводят дугу окружности

Рис. 63

радиусом, равным сумме радиусов и r, до пересече­ния ее с прямой ab в точке О1 Точка О1 является цент­ром дуги сопряжения.

Точку сопряжения с находят на пересечении прямой 00 1 с дугой окружности радиуса R. Точка сопряжения C1 является основанием перпендикуляра, опущенного из центра О1 на данную прямую При помощи ана­логичных построений могут быть найдены точки 02,

c2, c3.

На рис. 63, б показан кронштейн, при вычерчивании контура которого необходимо выполнить построения, описанные выше.

На рис. 63, в выполнено сопряжение дуги радиуса R с прямой А В дугой радиуса r с внутренним касанием. Центр дуги сопряжения О1 находится на пересечении вспомогательной прямой, проведенной параллельно данной прямой на расстоянии r, с дугой вспомогатель­ной окружности, описанной из центра О радиусом, рав­ным разности Rr. Точка сопряжения является основанием перпендикуляра, опущенного из точки О1 на данную прямую. Точку сопряжения с находят на пересечении прямой ОО1 с сопрягаемой дугой. Такое сопряжение выполняют, например, при вычерчивании контура маховика, показанного на рис. 63, г.

СОПРЯЖЕНИЕ ДУГИ С ДУГОЙ

Сопряжение двух дуг окружностей может быть вну­тренним, внешним и смешанным.

При внутреннем сопряжении центры O и O1 сопря­гаемых дуг находятся внутри сопрягающей дуги ради­уса R (рис. 64, б).

При внешнем сопряжении центры и сопрягае­мых дуг радиусов R1 и R2 находятся вне сопрягающей дуги радиуса R (рис. 64, в).

При смешанном сопряжении центр О, одной из сопрягаемых дуг лежит внутри сопрягающей дуги

Рис. 64

радиуса R, а центр О другой сопрягаемой дуги вне ее (рис. 65, а).

На рис. 64, а показана деталь (серьга), при вычерчи­вании которой необходимо построение внутреннего и внешнего сопряжения.

Построение внутреннего сопряжения.

Задано:

а)      радиусы сопрягаемых окружностей R1 и R2

б)      расстояния l1 и l2 между центрами этих дуг;

в)      радиус  R  сопрягающей дуги.

Требуется:

а)      определить положение центра 02 сопрягающей дуги;

б)      найти точки сопряжения  s1 и s

в)      провести дугу сопряжения.

Построение сопряжения показано на рис. 64, б. По заданным расстояниям между центрами 11 и l2 на чер­теже намечают центры О и O1 из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О1 про­водят вспомогательную дугу окружности радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R2, а из центра О — радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R1 Вспомогательные дуги пересекутся в точке 02 которая и будет искомым центром сопрягающей дуги.

Для нахождения точек сопряжения точку 02 соеди­няют с точками О и О1 прямыми линиями. Точки пере­сечения продолжения прямых 020 и 020  с сопрягае­мыми дугами являются искомыми точками сопряжения (точки S и s1).

Радиусом R из центра Ог проводят сопрягающую дугу между точками сопряжения s и s1

Построение внешнего сопряжения.

Задано:

а)      радиусы R1и R2 сопрягаемых дуг окружностей;

б)      расстояния и l2 между центрами этих дуг;

в)      радиус R сопрягающей дуги.

Рис. 65

Требуется:

а)      определить положение центра 02 сопрягающей дуги;

б)      найти точки сопряжения и s1;

в)      провести дугу сопряжения.

Построение внешнего сопряжения показано на рис. 64, в. По заданным расстояниям между центрами l1 и l2 на чертеже находят точки О и О1 из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1, и сопряга­ющей         R, а из центра О1 — радиусом, равным сумме

радиусов сопрягаемой дуги R2 и сопрягающей R. Вспо­могательные дуги пересекутся в точке O2, которая будет искомым центром сопрягающей дуги Для нахождения точек сопряжения центры дуг сое-

Рис. 66

диняют прямыми линиями 002 и 0102. Эти две пря­мые пересекают сопрягаемые дуги в точках сопряже­ния S  и s1

Из центра 02 радиусом R проводят сопрягающую ду­гу, ограничивая ее точками сопряжения и

Построение смешанного сопряжения. Пример сме­шанного сопряжения приведен на рис. 65, и где изображены кронштейн и его чертеж.

Задано:

а) радиусы Rx и R2 сопрягаемых дуг окружностей;

б)      расстояния l1 и l2 между центрами этих дуг;

в)      радиус R сопрягающей дуги.

Требуется:

а)      определить положение центра 02 сопрягающей дуги;

б)      найти точки сопряжения s и s1

в)      провести дугу сопряжения.

По заданным расстояниям между центрами l1 и l2 на чертеже намечают центры 0 и 01, из которых описы­вают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра 01 — радиусом, равным разности радиусов R и R2. Вспомогательные дуги пересекутся в точке 02, которая будет искомым центром сопряга­ющей дуги.

Соединив точки О и 02 прямой, получают точку сопряжения соединив точки О1 и 02, находят точку сопряжения s. Из центра 02 проводят дугу сопряжения от s до s1

При вычерчивании контура детали необходимо разо­браться, где имеются плавные переходы, и предста­вить себе, где надо выполнить те или иные виды сопря­жения.

Для приобретения навыков построения сопряжения выполняют упражнения по вычерчиванию контуров сложных деталей. Перед упражнением необходимо просмотреть задание, наметить порядок построения сопряжений и только после этого приступить к выпол­нению построений.

На рис. 66, а изображена деталь (кронштейн), а на рис. 66, б, в, г показана последовательность выполне­ния контурного очертания этой детали с построением различных видов сопряжений.

 КОРОБОВЫЕ КРИВЫЕ ЛИНИИ

Контуры таких деталей, как фланец и кулачок, могут ограничиваться коробовыми кривыми. Коробо­вые кривые состоят из сопрягающихся дуг окружно­стей различных диаметров. К таким кривым относятся овалы, овоиды, завитки.

 ПОСТРОЕНИЕ ОВАЛА И ОВОИДА

Последовательность построения овала по заданному размеру большой оси овала производят следующим образом (рис. 67, а). Ось А В делят на три равные части (A1O, 0102, 02В). Радиусом, равным 0202, из точек деления О1 и 02 проводят окружности, пересекающи­еся в точках      m и n.

Соединив точки п и т с точками и 02, получают прямые nO1 n02, m01 и m02, которые продолжают до пересечения с окружностями. Полученные точки 1, 2, 3 и 4 являются точками сопряжения дуг. Из точек m и n, как из центров, радиусом равным n2 и m3 , про­водят верхнюю дугу 12 и нижнюю дугу 34.

Контур фланца, изображенный на рис. 67, б, имеет форму овала. Построение овала по двум заданным осям АВ и CD приведено на рис. 67, в.

Проводят оси АВ и CD. Из точки их пересечения радиусом ОС (половина малой оси овала) проводят Контуры таких деталей, как фланец и кулачок, могут ограничиваться коробовыми кривыми. Коробо­вые кривые состоят из сопрягающихся дуг окружно­стей различных диаметров. К таким кривым относятся овалы, овоиды, завитки.

Рис. 67

дугу до пересечения с большой осью овала в точке N. Точку А соединяют прямой с точкой С и на ней от точки С откладывают отрезок   , получают точку N1.

В середине отрезка AN1 восставляют перпендикуляр и продолжают его до пересечения с большой и малой осями овала в точках 01 и n. Расстояние 001 отклады­вают по большой оси овала вправо от точки О, а рас­стояние on от точки О откладывают по малой оси овала вверх, получают точки  Точки n и n1, явля­ются центрами верхней дуги 12 и нижней дуги 34 овала, а точки 01 и 02 — центрами дуг 13 и 24. Получают искомый овал.

Овоид в отличие от овала имеет только одну ось сим­метрии. Радиусы R и R1 дуг окружностей, центры кото­рых лежат на оси симметрии овоида, не равны друг другу (рис. 67, д).

Построение овоида по заданной оси АВ выполняется в следующей последовательности (рис. 67, д).

Проводят окружность диаметром, равным оси овоида. Из точек А и В через точку (точка пересе­чения окружности радиуса R с осью симметрии)

прово­дят прямые. Из точек А и В, как из центров, радиусом R2, равным оси АВ, проводят дуги Аn и      Bm, а из центра

О1радиусом R1 проводят малую дугу овоида nm.

На рис. 67, е показана часть распределительного вала двигателя; профиль кулачков вала имеет форму овоида.

ПОСТРОЕНИЕ ЗАВИТКОВ

Завиток — плоская спиральная кривая, вычерчивае­мая циркулем путем сопряжения дуг окружностей.

Построение завитков выполняют при вычерчива­нии таких деталей, как пружины и спиральные направ­ляющие (рис. 68,а).

Построение завитков выполняется из двух, трех и более центров и зависит от формы и размеров «глаз­ка», который может быть окружностью, правильным треугольником, шестиугольником и т. п. Последова­тельность построения завитка следующая.

Рис. 68 Завиток

Вычерчивается в тонких линиях контур «глазка», например окружность с диаметром 0102 (рис. 68, б). Из точек O1 и 02 как из центров, проводят две сопря­женные между собой полуокружности. Верхняя полу­окружность 021 из центра 01, нижняя полуокружность 12 из центра О2 Получается искомый завиток.

На рис. 68, в «глазок» имеет форму правильного тре­угольника 00102. Стороны треугольника продолжа­ют. Приняв за центры сопряжения вершины треуголь­ника «глазка», проводят в направлении движения часо­вой стрелки ряд сопряженных между собой дуг. Цент­ром первой дуги является точка , центром второй — точка О1.

 ПОСТРОЕНИЕ УКЛОНА И КОНУСНОСТИ

ПОСТРОЕНИЕ И ОБОЗНАЧЕНИЕ УКЛОНА

Уклоном называют величину, характеризующую наклон одной прямой линии к другой прямой. Уклон выражают дробью или в процентах.

Уклон i отрезка ВС относительно отрезка ВА опре­деляют отношением катетов прямоугольного тре­угольника АВС (рис. 69, а), т. е.

Уклон

Для построения прямой ВС (рис. 69, а) с заданной величиной уклона к горизонтальной прямой, например 1:4, необходимо от точки А влево отложить отрезок А В, равный четырем единицам длины, а вверх отрезок АС, равный одной единице длины. Точки С и В соединяют прямой, которая дает направление искомого уклона.

Рис. 69 Уклон

Уклоны применяются при вычерчивании деталей, например, стальных балок и рельсов, изготовляемых на прокатных станах, и некоторых деталей, изготов­ленных литьем (рис. 69, д).

При вычерчивании контура детали с уклоном сна­чала строится линия уклона (рис. 69, в и г), а затем контур.

Если уклон задается в процентах, например, 20% (рис. 69, б), то линия уклона строится так же, как гипо­тенуза прямоугольного треугольника. Длину одного из катетов принимают равной 100%, а другого — 20%. Очевидно, что уклон 20% есть иначе уклон 1:5.

По ГОСТ 2.307—68 перед размерным числом, опре­деляющим уклон, наносят условный знак, острый угол которого должен быть направлен в сторону уклона (рис. 69, в и г).

ПОСТРОЕНИЕ И ОБОЗНАЧЕНИЕ КОНУСНОСТИ

На рис. 70, а даны для примера детали: оправка, ко­нус и сверло, которые имеют конусность.

Рис. 70 Построение конусности

Конусностью называется отношение диаметра осно­вания конуса к его высоте (рис. 70, б), обозначается конусность буквой С. Если конус усеченный (рис. 70, в) с диаметрами оснований D и d и длиной L, то конус­ность определяется по формуле:

Конусность

Например (рис. 70, в), если известны размеры D=30 мм, d= 20 мм и L=70 мм, то

Конусность

Если известны конусность С, диаметр одного из оснований конуса d и длина конуса L, можно опреде­лить второй диаметр конуса. Например, С=1:7,d=20

мм и L=70 мм; D находят по формуле D=CL+d= 1/7x70+20=30 мм (рис. 70, г).

По ГОСТ 2.307—68 перед размерным числом, харак­теризующим конусность, необходимо наносить услов­ный знак конусности, который имеет вид равнобедрен­ного треугольника с вершиной, направленной в сто­рону вершины конуса (рис. 70, в и г).

Обычно на чертеже конуса дается диаметр большего основания конуса, так как при изготовлении коничес­кой детали этот диаметр можно измерить значительно легче и точнее.

Нормальные конусности и углы конусов устанавли­вает ГОСТ 8593—81 (СТ СЭВ 512—77). ГОСТ 25548— 82 (СТ СЭВ 1779—79) устанавливает термины и опре­деления.

ЛЕКАЛЬНЫЕ КРИВЫЕ

ВЫЧЕРЧИВАНИЕ КРИВЫХ ПО ЛЕКАЛУ

При выполнении чертежей часто приходится прибе­гать к вычерчиванию кривых, состоящих из ряда со­пряженных частей, которые невозможно провести циркулем. Такие кривые строят обычно по ряду при­надлежащих им точек, которые затем соединяют плав­ной линией сначала от руки карандашом, а затем обво­дят при помощи лекал (рис. 71).

Рассматриваемые лекальные кривые располагаются в одной плоскости и называются поэтому плоскими.

Рис. 71 Лекало

Пространственные кривые здесь не рассматриваются.

Чтобы начертить плавную лекальную кривую, необ­ходимо иметь набор из нескольких лекал. Выбрав подходящее лекало, надо подогнать кромку части лекала к возможно большему количеству заданных точек кривой. На рис. 71 участок кривой между точ­ками 1—6 уже обведен. Чтобы обвести следующий уча­сток кривой, нужно приложить кромку лекала, напри­мер, к точкам 510, при этом лекало должно касаться части уже обведенной кривой (между точками 5 и 6). Затем обводят кривую между точками и 9, оставляя участок между точками 9 и 10 необведенным, что позволит получить кривую между точками 9 и 72 более плавной.

Ниже рассмотрены способы построения кривых, наиболее часто встречающихся в технике.

КРИВЫЕ КОНИЧЕСКИХ СЕЧЕНИЙ

При сечении прямого кругового конуса плоскостя­ми, различно расположенными по отношению к осям конуса, получаются контуры сечения, образующие эллипс, параболу и гиперболу.

При пересечении плоскостью Pv всех образующих конуса получается эллипс (рис. 72, а и б).

При пересечении конуса плоскостью Pv  параллель­ной одной из образующих конуса (рис. 72, в), полу­чается парабола (рис. 72, г).

При пересечении конуса плоскостью Pv параллель­ной оси конуса, получается гипербола (рис. 72, и Если плоскость Pv параллельна оси конуса и прохо­дит через вершину конуса, в сечении получается тре­угольник.

Рис. 72

Эллипс — замкнутая плоская кривая, сумма рассто­яний каждой точки которой до двух данных точек (фо­кусов), лежащих на большой оси, есть величина посто­янная и равная длине большой оси.

Широко применяемый в технике способ построения эллипса по большой (АВ)и малой (CD) осям представ­лен на рис. 72, б.

Проводят две перпендикулярные осевые линии. Затем от центра О откладывают вверх и вниз по верти­кальной оси отрезки, равные длине малой полуоси, а влево и вправо по горизонтальной оси — отрезки, рав­ные длине большой полуоси.

Из центра О радиусами О А и ОС проводят две кон­центрические окружности и ряд лучей-диаметров. Из точек пересечения лучей с окружностями проводят линии, параллельные осям эллипса, до взаимного пересечения в точках, принадлежащих эллипсу. Полу­ченные точки соединяют от руки и обводят по лекалу.

На рис. 73, а показан резервуар, контурное очерта­ние днища которого имеет форму части эллипса.

Построение очертания днища (половины эллипса) приведено на рис. 73, б. Большой осью эллипса явля­ется диаметр D цилиндрической части резервуара, а малой полуосью эллипса — наибольшее расстояние по вертикали от большой оси до днища.

Рис. 73 Резервуар - Эллипс

Парабола — плоская кривая, каждая точка которой равноудалена от директрисы DD1 прямой, перпендику­лярной к оси симметрии параболы, и от фокуса F — точки, расположенной на оси симметрии параболы (см. рис. 72, г).

Расстояние KF между директрисой и фокусом назы­вается параметром р параболы. Точка О, лежащая на оси симметрии, называется вершиной параболы и делит параметр р пополам.

Для построения параболы по заданной величине параметра р проводят ось симметрии параболы (на рисунке вертикально) и откладывают отрезок KF=p. Через точку К перпендикулярно оси симметрии прово­дят директрису DD1 Отрезок делят пополам и по­лучают вершину О параболы. От вершины О вниз на оси симметрии намечают ряд произвольных точек l— VI с постепенно увеличивающимся расстоянием между ними. Через эти точки проводят вспомогательные пря­мые, перпендикулярные оси симметрии. На вспомогательных прямых из фокуса F делают засечки ради­усом, равным расстоянию от прямой до директрисы. Например, из точки F на вспомогательной прямой.

Рис. 74 Парабола

проходящей через точки делают засечку дугой R1=KV; полученная точка 5 принадлежит параболе.

Если требуется построить параболу по заданной вер­шине О, оси ОС и точке В (рис. 74, а), то строят вспо­могательный прямоугольник ABCO.       Стороны прямо­угольника А В и АО делят на равные части и точки делений нумеруют. Горизонтальный ряд делений сое­диняют лучами с вершиной О, а через точки делений, расположенные на АО, проводят прямые линии, параллельные оси параболы. Точки пересечения гори­зонтальных прямых      11,     2 1,31, с лучами 01, 02, 03, … принадлежат параболе.

В станкостроении и других отраслях машинострое­ния часто применяются детали, контурные очертания которых выполнены по параболе, например, стойка и рукав радиально-сверлильного станка (рис. 74, б).

Построение параболы для контурного очертания рукава радиально-сверлильного станка приведено на рис. 74, в. Данными для построения являются две точки параболы А и В и направление касательных, проходящих через эти точки и пересекающихся в точке С.

Гипербола — плоская кривая, состоящая из двух разомкнутых, симметрично расположенных ветвей (см. рис. 72, е). Разность расстояний от каждой точки гиперболы до двух данных точек (фокусов F и F1) есть величина постоянная и равная расстоянию между вер­шинами гиперболы А и В.

Рассмотрим прием построения гиперболы по задан­ным вершинам А и В и фокусному расстоянию FF1 (рис. 72, е).

Разделив фокусное расстояние пополам, полу­чают точку О, от которой в обе стороны откладывают по половине заданного расстояния между вершинами А и В. Вниз от фокуса  F намечают ряд произвольных точек 1, 2, 3, 4 … с постепенно увеличивающимся рас­стоянием между ними. Из фокуса F описывают дугу вспомогательной окружности радиусом R , равным, например, расстоянию от вершины гиперболы В до точки 3. Из фокуса F1 проводят вторую дугу вспомога­тельной окружности радиусом r, равным расстоянию от вершины А до точки 3. На пересечении этих дуг находят точки С и C1, принадлежащие гиперболе. Таким же способом находят остальные точки гипербо­лы.

Рис. 75 Гипербола

Вторую ветвь гиперболы строят аналогичным обра­зом.

На рис. 75 показана проушина с конической поверх­ностью, срезанной двумя плоскостями, параллель­ными оси конуса, контур среза ограничен гиперболой.

СИНУСОИДА

Синусоида — плоская кривая, изображающая изме­нение синуса в зависимости от изменения угла (рис. 76, a).

Величина L называется длиной волны синусоиды, L=πD.

Для построения синусоиды проводят горизонталь­ную ось и на ней откладывают заданную длину волны А В (рис. 76, а). Отрезок А В делят на несколько рав­ных частей, например, на 12. Слева вычерчивают окружность, радиус которой равен величине амплиту­ды, и делят ее также на 12 равных частей; точки деле­ния нумеруют и через них проводят горизонтальные прямые. Из точек деления отрезка AВ восставляют перпендикуляры к оси синусоиды и на их пересечении с горизонтальными прямыми находят точки синусои­ды.

Рис. 76 Синусоида

Полученные точки синусоиды a1 , a2,a3,… соединяют по лекалу кривой.

При выполнении чертежей деталей или инструмен­тов, поверхности которых очерчены по синусоиде (рис. 76, б и в), величину длины волны обычно выбирают независимо от размера амплитуды г. Напри­мер, при вычерчивании шнека (рис. 76. б) длина волны L меньше размера 2πr. Такая синусоида называется сжатой. Если длина волны больше размера 2πr то синусоида называется вытянутой.

СПИРАЛЬ АРХИМЕДА

Спираль Архимеда — плоская кривая, которую описывает точка, движущаяся равномерно от центра О по равномерно вращающемуся радиусу (рис. 77).

Рис. 77 Спираль Архимеда

Для построения спирали Архимеда задают ее шаг Р, из центра О проводят окружность радиусом, равным шагу Р спирали, и делят шаг и окружность на несколько равных частей (рис. 77, Точки деления нумеруют.

Из центра О проводят радиальные прямые, проходя­щие через точки деления окружности.

Из центра О радиусами 01, 02 и т. д. проводят дуги до пересечения с соответствующими радиальными пря­мыми. Например, дуга радиуса 03 пересекается с пря­мой 031  в точке III. Полученные точки II,…, VIII, принадлежащие спирали Архимеда, соединяют плав­ной кривой по лекалу.

В машиностроении спираль Архимеда применяется, например, для сообщения движения в радиальном направлении кулачкам зажимного патрона токарного станка (рис. 77, а).На тыльной стороне большой кони­ческой шестерни нарезаны канавки по спирали Архи­меда. В канавки входят выступы кулачков, которые также выполнены по спирали. При вращении шестерни кулачки будут перемещаться в радиальном направлении.

ЭВОЛЬВЕНТА

Эвольвента окружности — траектория любой точки прямой линии, перекатываемой без скольжения по окружности.

Рис. 78 Эвольвента

Пусть неподвижный диск диаметром D огибает шнур длиной πВ (рис. 78, а). Один конец шнура закреплен в точке А, а другой при развертывании по направлению стрелок (в натянутом положении) опишет траекторию в виде плоской кривой линии — эвольвенты.

В машиностроении профили зубьев колес и зуборез­ный инструмент — пальцевую фрезу — выполняют по эвольвенте (рис. 78, b).

Для построения эвольвенты заданную окружность диаметра  D делят на несколько равных частей (на рис. 78, в — на 12 частей), которые нумеруют. Из конечной точки (72) проводят касательную к окружности и на ней откладывают отрезок, равный длине окружности πD. Длину окружности делят также на равные части.

Из точек делений окружности 1, 2,3….., 12 проводят

касательные к окружности и на них откладывают отрезки; на первой касательной — отрезок 12 на второй — 12 2′ на третьей — 12 3 и т. д. Соединив точки I—XII по лекалу, получают эвольвенту окруж­ности.

ПD. Длину окружности делят также на равные части. Из точек делений окружности 1, 2, 3,    проводят касательные к окружности и на них откладывают отрезки; на первой касательной — отрезок 12 1′ ,    на второй — 12 2′ ,на третьей — и т. д. Соединив точки I—X11 по лекалу, получают эвольвенту окружности.

ЦИКЛОИДАЛЬНЫЕ КРИВЫЕ

Циклоида — плоская кривая, которую описывает точка А, лежащая на окружности, которая катится без скольжения по прямой CD (рис. 79, а).

Эпициклоида — плоская кривая, которую описывает точка А, лежащая на окружности, которая катится без скольжения, снаружи по направляющей окружности (рис. 79,    б).

Гипоциклоида — плоская кривая, которую описывает точка А, лежащая на окружности, которая катится без скольжения внутри по направляющей окружности (рис. 79, в).

Рис. 79

Построение циклоиды. На направляющей прямой ВС (рис. 79, а) откладывают длину производящей окружности диаметра D, равную nD. Окружность диаметра D и отрезок АA 12 ВС делят на равные части, например, на 12. Из точек делений прямой ВС (1′,2′,3′,…,12′) восставляют перпендикуляры до пересечения с продолжением горизонтальной оси окружности в точках 01 ,02 …, 012, а из точек делений окружности (1, 2, 3, …,12) проводят горизонтальные прямые. Из точек Ov 02, …, Ol2, как из центров, проводят окружности диаметра D, которые пересекаясь с горизонтальными линиями, образуют точки А1 ,A2,A3….,A12 , принадлежащие циклоиде.

Построение эпициклоиды. Производящую окружность диаметра D и направляющую окружность радиуса R проводят так, чтобы они касались (рис. 79, ). Производящую окружность диаметра D делят на 12 равных частей. Из центра 0О радиусом, равным R+0,5D, проводят вспомогательную дугу.

Центральный угол а определяют по формуле

Построение эпициклоиды.

Задачу можно решать многими способами. Например. Рассмотрим векторы образованные центром O(ox,oy) и точками A(ax,ay), B(bx,by). Их сумма по правилу паралеллограмма даст нам направление для биссеткрисы угла
которая образована AOB. Уравнение биссектрисы будет известно.

Решаем пересечение этой прямой с окружностью и получаем искомый центр дуги.

Что в этой задаче плохо. В этой задаче – “ленивый” автор который не удосужился придумать названия для точек и заставил всех придумывать свои нелепые названия или писать словами.

Что еще плохо. В этой задаче на самом деле не одна а две дуги. Но мы каким-то образом должны догадаться что речь идет о малой дуге. Об этом – тоже надо сообщать. Это раздражает.

На будущее – оформляй задачи как в задачнике.

(x – a) ** 2 + (y – b) ** 2 = R ** 2
a, b координаты середины

вычислить можно. но сложная формула. наброски: находим уравнение окружности (как система двух уравнений, радиус знаем). далее соединяем красные точки – хорда, середина хорды – среднее арифметическое координат. далее проводим диаметр перпендикулярно хорде. уравнение этой прямой находим по точке и коэффициенту k. находим точку пересечения этой прямой и окружности.
угол вычислить проще. длина хорды и два радиуса – это равнобедренный треугольник. теорема косинусов

Знаете 2 точки дуги – знаете длину хорды. Дальше надо на листке нарисовать окружность, хорду и серидинный перпендикуляр. Нарисовать несколько прямоугольных треугольников и найти длину куска от центра хорды до искомой середины. Пусть центр O, исходные точки A,B а искомая точка – M. Середина хорды С. OM = R. OС^2+CB^2=R^2, CM = OM-OC.

Итого – длина искомого куска CM = R - sqrt(R^2-|AB|^2/4)

Для нахождения координат M надо взять середину отрезка AB и отложить от нее перпендикулярный AB вектор длины по формуле выше.

A – начало дуги, B – конец дуги, C – искомый центр.
длина AC = длина BC = R (известно);
длину AB вычисляем по теореме Пифагора;
таким образом, имеем длины всех сторон треугольника ABC;
по теореме синусов (и по сумме углов) вычисляем все углы треугольника;
зная угол A, как угол пересечения прямых AB и AC, зная координаты точки A, а также зная уравнение прямой AB, легко построить уравнение прямой AC; остаётся отмерить вектор длиной R вдоль этой прямой, чтобы получить координаты точки C.

Ещё один вариант – после вычисления всех углов перейти в полярную систему координат с центром A, сложить (с учётом знаков) угол A с коэффициентом наклона прямой AB и сразу получить полярные координаты точки C (ведь R известен); затем обратно перейти в декартову систему координат.

Как найти центр любой окружности?
Как найти центр любой окружности?

Уверен, у каждого домашнего мастера был случай, когда ему нужно было сделать разметку какой-нибудь круглой заготовки и найти центр ее основания. Казалось бы, это очень просто сделать, но некоторые мастера долго не могут найти выход в данной ситуации. Сегодня я покажу вам два простых решения, с помощью которых можно быстро и точной найти центр любой окружности.

1. Первый способ подойдет для разметки небольших заготовок. В качестве примера я возьму заглушку от пластиковой трубы диаметром 50 мм.

Заглушка от пластиковой трубы диаметром 50 мм
Заглушка от пластиковой трубы диаметром 50 мм

Для того, чтобы найти центр окружности заглушки, не нужны будут какие-то математические вычисления и сложные манипуляции. Нам понадобятся всего лишь строительный угольник и обычная линейка (или второй угольник), которые есть в любой мастерской.

Строительный угольник и линейка
Строительный угольник и линейка

Складываем вместе угольник и линейку, так чтобы образовался угол в 45 градусов.

Складываем вместе угольник и линейку под углом 45 градусов
Складываем вместе угольник и линейку под углом 45 градусов

Затем, придерживая одной рукой угольник и линейку, прикладываем их к круглой заготовке (заглушке) так, чтобы она вплотную соприкасалась с двумя сторонами угольника.

Прикладываем угольник и линейку к круглой заготовке
Прикладываем угольник и линейку к круглой заготовке

Теперь берем карандаш и чертим на заглушке первую линию, потом немного ее поворачиваем и делаем вторую метку (достаточно провести две линии, но для уверенности можно поставить три метки).

Чертим две линии на заготовке
Чертим две линии на заготовке

Все задача решена! Точка пересечения этих двух линий и будет центром данной окружности. Данный способ один из самых быстрых и простых.

Точка пересечения этих двух линий и будет центром окружности
Точка пересечения этих двух линий и будет центром окружности

2. Второй способ подойдет, если окружность имеет большой диаметр или она расположена на плоскости. Для примера я обвел карандашом крышку от кастрюли. В этом случае тоже все очень просто. Для начала выбираем любую точку на окружности.

Выбираем любую точку на окружности
Выбираем любую точку на окружности

Потом от этой точки чертим две линии до пересечения с окружностью так, чтобы у нас получился прямой угол (90 градусов). Для построения данных линий проще всего воспользоваться угольником (если окружность очень большая, линии можно продлить с помощью линейки).

Откладываем от точки две прямые под углом 90 градусов
Откладываем от точки две прямые под углом 90 градусов

А теперь все очень просто, соединяем точки, в которых пересекаются линии с окружностью и измеряем длину получившегося отрезка. Его середина и будет центром окружности. Уверен, многие помнят это из уроков по геометрии. Середина гипотенузы прямого треугольника вписанного в окружность, является центром этой окружности.

Как найти цент окружности большого диаметра?
Как найти цент окружности большого диаметра?

Добавить комментарий