Как найти центр кривой эллипса

Кривые второго порядка. Эллипс: формулы и задачи

Понятие о кривых второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

,

где A, B, C, D, E, F – числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

,

где a и b (a > b) – длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат – в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат – малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность – частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия – эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось – это a = 5 , меньшая полуось – это b = 4 . Получаем каноническое уравнение эллипса:

.

Точки и , обозначенные зелёным на большей оси, где

,

называются фокусами.

называется эксцентриситетом эллипса.

Отношение b/a характеризует “сплюснутость” эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

– если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

– если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат – каноническое уравнение эллипса:

.

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Решить задачи на эллипс самостоятельно, а затем посмотреть решение

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если – произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами эллипса (на чертеже – красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и – расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:

.

Теперь можем получить и квадрат длины меньшей полуоси:

Уравнение эллипса готово:

Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.

Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:

.

Получили единицу, следовательно, точка находится на эллипсе.

Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e – эксцентриситет и числа “эр” с подстрочными индексами 1 и 2 – искомые расстояния. Получаем:

Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.

,

так как из исходного уравнения эллипса .

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

Эллипс – определение и вычисление с примерами решения

Эллипс:

Определение: Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух выделенных точек

Получим каноническое уравнение эллипса. Выберем декартову систему координат так, чтобы фокусы

Рис. 29. Вывод уравнения эллипса.

Расстояние между фокусами (фокусное расстояние) равно Согласно определению эллипса имеем Из треугольников и по теореме Пифагора найдем

соответственно. Следовательно, согласно определению имеем

Возведем обе части равенства в квадрат, получим

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем не- известные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Уравнение принимает вид Разделив все члены уравнения на получаем каноническое уравнение эллипса: Если то эллипс вытянут вдоль оси Ох, для противоположного неравенствавдоль оси Оу (при этом фокусы тоже расположены на этой оси). Проанализируем полученное уравнение. Если точка М(х; у) принадлежит эллипсу, то ему принадлежат и точки следовательно, эллипс симметричен относительно координатных осей, которые в данном случае будут называться осями симметрии эллипса. Найдем координаты точек пересечения эллипса с декартовыми осями:

  • т.е. точками пересечения эллипса с осью абсцисс будут точки
  • т.е. точками пересечения эллипса с осью ординат будут точки (Рис. 30).

Определение: Найденные точки называются вершинами эллипса.

Рис. 30. Вершины, фокусы и параметры эллипса

Определение: Если то параметр а называется большой, а параметр b – малой полуосями эллипса.

Определение: Эксцентриситетом эллипса называется отношение фокусного рас- стояния к большой полуоси эллипса

Из определения эксцентриситета эллипса следует, что он удовлетворяет двойному неравенству Кроме того, эта характеристика описывает форму эллипса. Для демонстрации этого факта рассмотрим квадрат отношения малой полуоси эллипса к большой полуоси

Если и эллипс вырождается в окружность. Если и эллипс вырождается в отрезок

Пример:

Составить уравнение эллипса, если его большая полуось а = 5, а его эксцентриситет

Решение:

Исходя из понятия эксцентриситета, найдем абсциссу фокуса, т.е. параметр Зная параметр с, можно вычислить малую полуось эллипса Следовательно, каноническое уравнение заданного эллипса имеет вид:

Пример:

Найти площадь треугольника, две вершины которого находятся в фокусах эллипса а третья вершина – в центре окружности

Решение:

Для определения координат фокусов эллипса и центра окружности преобразуем их уравнения к каноническому виду. Эллипс:

Следовательно, большая полуось эллипса а малая полуось Так как то эллипс вытянут вдоль оси ординат Оу. Определим расположение фокусов данного эллипса Итак, Окружность: Выделим полные квадраты по переменным Следовательно, центр окружности находится в точке О(-5; 1).

Построим в декартовой системе координат треугольник Согласно школьной формуле площадь треугольника равна Высота а основание Следовательно, площадь треугольника равна:

Эллипс в высшей математике

где и —заданные положительные числа. Решая его относительно , получим:

Отсюда видно, что уравнение (2) определяет две функции. Пока независимое переменное по абсолютной величине меньше , подкоренное выражение положительно, корень имеет два значения. Каждому значению , удовлетворяющему неравенству соответствуют два значения , равных по абсолютной величине. Значит, геометрическое место точек, определяемое уравнением (2), симметрично относительно оси . Так же можно убедиться в том, что оно симметрично и относительно оси . Поэтому ограничимся рассмотрением только первой четверти.

При , при . Кроме того, заметим, что если увеличивается, то разность уменьшается; стало быть, точка будет перемещаться от точки вправо вниз и попадет в точку . Из соображений симметрии изучаемое геометрическое место точек будет иметь вид, изображенный на рис. 34.

Полученная линия называется эллипсом. Число является длиной отрезка , число —длиной отрезка . Числа и называются полуосями эллипса. Число эксцентриситетом.

Пример:

Найти проекцию окружности на плоскость, не совпадающую с плоскостью окружности.

Решение:

Возьмем две плоскости, пересекающиеся под углом (рис. 35). В каждой из этих плоскостей возьмем систему координат, причем за ось примем прямую пересечения плоскостей, стало быть, ось будет общей для обеих систем. Оси ординат различны, начало координат общее для обеих систем. В плоскости возьмем окружность радиуса с центром в начале координат, ее уравнение .

Пусть точка лежит на этой окружности, тогда ее координаты удовлетворяют уравнению .

Обозначим проекцию точки на плоскость буквой , а координаты ее—через и . Опустим перпендикуляры из и на ось , это будут отрезки и . Треугольник прямоугольный, в нем , ,, следовательно, . Абсциссы точек и равны, т. е. . Подставим в уравнение значение , тогда cos

а это есть уравнение эллипса с полуосями и .

Таким образом, эллипс является проекцией окружности на плоскость, расположенную под углом к плоскости окружности.

Замечание. Окружность можно рассматривать как эллипс с равными полуосями.

Уравнение эллипсоида

Определение: Трехосным эллипсоидом называется поверхность, полученная в результате равномерной деформации (растяжения или сжатия) сферы по трем взаимно перпендикулярным направлениям.

Рассмотрим сферу радиуса R с центром в начале координат:

где Х, У, Z — текущие координаты точки сферы.

Пусть данная сфера подвергнута равномерной деформации в направлении координатных осей с коэффициентами деформации, равными

В результате сфера превратится в эллипсоид, а точка сферы М (X, У, Z) с текущими координатами Х, У, Z перейдет в точку эллипсоидам (х, у, z) с текущими координатами х, у, г, причем

Иными словами, линейные размеры сферы в направлении оси Ох уменьшаются в раз, если , и увеличиваются в раз, если и т. д.

Подставляя эти формулы в уравнение (1), будем иметь

где Уравнение (2) связывает текущие координаты точки М’ эллипсоида и, следовательно, является уравнением трехосного эллипсоида.

Величины называются полуосями эллипсоида; удвоенные величины называются осями эллипсоида и, очевидно, представляют линейные размеры его в направлениях деформации (в данном случае в направлениях осей координат).

Если две полуоси эллипсоида равны между собой, то эллипсоид называется эллипсоидом вращения, так как может быть получен в результате вращения эллипса вокруг одной из его осей. Например, в геодезии считают поверхность земного шара эллипсоидом вращения с полуосями

а = b = 6377 км и с = 6356 км.

Если а = b = с, то эллипсоид превращается в сферу.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Гипербола
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Эллипс

Определение эллипса.

Напомним, что мы назвали эллипсом линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
frac>>+frac>>=1label
$$
при условии (a geq b > 0).

Из уравнения eqref следует, что для всех точек эллипса (|x| leq a) и (|y| leq b). Значит, эллипс лежит в прямоугольнике со сторонами (2a) и (2b).

Точки пересечения эллипса с осями канонической системы координат, имеющие координаты ((a, 0)), ((-a, 0)), ((0, b)) и ((0, -b)), называются вершинами эллипса. Числа (a) и (b) называются соответственно большой и малой полуосями эллипса.

Рис. 8.1. Эллипс

В каноническое уравнение входят только квадраты координат. Поэтому, если координаты ((x, y)) какой-либо точки /(M) ему удовлетворяют, то ему удовлетворяют и координаты ((-x, y)), ((x, -y)) и ((-x, -y)) точек (M_<1>), (M_<2>) и (M_<3>) (рис. 8.1). Следовательно, справедливо следующее утверждение.

Оси канонической системы координат являются осями симметрии эллипса, а начало канонической системы — его центром симметрии.

Внешний вид эллипса проще всего описать сравнением с окружностью радиуса (a) с центром в центре эллипса: (x^<2>+y^<2>=a^<2>). При каждом (x) таком, что (|x| Рис. 8.2. Сжатие окружности к эллипсу. Ординаты всех точек уменьшаются в отношении (b/a).

Фокусы, эксценриситет и директрисы эллипса.

У эллипса есть две замечательные точки, которые называются его фокусами.

Фокусами называются точки (F_<1>) и (F_<2>) с координатами ((c, 0)) и ((-c, 0)) в канонической системе координат (рис. 8.3).

Рис. 8.3. Фокусы эллипса.

Для окружности (c=0), и оба фокуса совпадают с центром. Ниже мы будем предполагать, что эллипс не является окружностью.

Отметим, что (varepsilon Утверждение 2.

Расстояние от произвольной точки (M(x, y)), лежащей на эллипсе, до каждого из фокусов (рис. 8.3) является линейной функцией от ее абсциссы (x):
$$
r_<1>=|F_<1>M|=a-varepsilon x, r_<2>=|F_<2>M|=a+varepsilon x.label
$$

Очевидно, что (r_<1>^<2>=(x-c)^<2>+y^<2>). Подставим сюда выражение для (y^<2>), найденное из уравнения эллипса. Мы получим
$$
r_<1>^<2>=x^<2>-2cx+c^<2>+b^<2>-fracx^<2>>>.nonumber
$$

Учитывая равенство eqref, это можно преобразовать к виду
$$
r_<1>^<2>=a^<2>-2cx+fracx^<2>>>=(a-varepsilon x)^<2>.nonumber
$$
Так как (x leq a) и (varepsilon Утверждение 3.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялась большой оси эллипса (2a).

Необходимость. Если мы сложим равенства eqref почленно, то увидим, что
$$
r_<1>+r_<2>=2a.label
$$
Достаточность. Пусть для точки (M(x, y)) выполнено условие eqref, то есть
$$
sqrt<(x-c)^<2>+y^<2>>=2a-sqrt<(x+c)^<2>+y^<2>>.nonumber
$$
Возведем обе части равенства в квадрат и приведем подобные члены:
$$
xc+a^<2>=asqrt<(x+c)^<2>+y^<2>>.label
$$
Это равенство также возведем в квадрат и приведем подобные члены, используя соотношение eqref. Мы придем к (b^<2>x^<2>+a^<2>y^<2>=a^<2>b^<2>), равносильному уравнению эллипса eqref.

Рис. 8.4. Фокусы и директрисы эллипса.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету эллипса (varepsilon).

Уравнение касательной к эллипсу.

Выведем уравнение касательной к эллипсу, заданному каноническим уравнением. Пусть (M_<0>(x_<0>, y_<0>)) — точка на эллипсе и (y_ <0>neq 0). Через (M_<0>) проходит график некоторой функции (y=f(x)), который целиком лежит на эллипсе. (Для (y_ <0>> 0) это график (f_<1>(x)=bsqrt<1-x^<2>/a^<2>>), для (y_ <0>Утверждение 5.

Касательная к эллипсу в точке (M_<0>(x_<0>, y_<0>)) есть биссектриса угла, смежного с углом между отрезками, соединяющими эту точку с фокусами.

Рис. 8.5.

[spoiler title=”источники:”]

http://www.evkova.org/ellips

http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/ellipse/

[/spoiler]

Эллипс, его фокусы и главные оси

Эллипс как коническое сечение, его фокусы и директрисы, получаемые геометрически с помощью шаров Данделена.

Э́ллипс (др.-греч. ἔλλειψις «опущение; нехватка, недостаток (эксцентриситета до 1)») — замкнутая кривая на плоскости, которая может быть получена как пересечение плоскости и кругового цилиндра или как ортогональная проекция окружности на плоскость.

Окружность является частным случаем эллипса с эксцентриситетом e=0. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой.

Определение[править | править код]

Эллипс — геометрическое место точек M евклидовой плоскости, для которых сумма расстояний до двух данных точек F_{1} и F_{2} (называемых фокусами) постоянна и больше расстояния между фокусами, то есть

{displaystyle |F_{1}M|+|F_{2}M|=2cdot a}, причём {displaystyle |F_{1}F_{2}|<2cdot a.}

Другие определения[править | править код]

Эллипс также можно определить как:

  • фигуру, которую можно получить из окружности, применяя аффинное преобразование
  • ортогональную проекцию окружности на плоскость
  • пересечение плоскости и кругового цилиндра.

Связанные определения[править | править код]

  • Проходящий через фокусы эллипса отрезок AB, концы которого лежат на эллипсе, называется большой осью данного эллипса. Длина большой оси равна 2a в вышеприведённом уравнении.
  • Отрезок CD, перпендикулярный большой оси эллипса, проходящий через центральную точку большой оси, концы которого лежат на эллипсе, называется малой осью эллипса.
  • Точка пересечения большой и малой осей эллипса называется его центром.
  • Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются a и b.
  • Расстояния r_{1} и r_{2} от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке.
  • Расстояние c={frac {|F_{1}F_{2}|}{2}} называется фокальным расстоянием.
  • Величина e={frac {c}{a}}={sqrt {1-{frac {b^{2}}{a^{2}}}}} называется эксцентриситетом.
  • Диаметром эллипса называют произвольную хорду, проходящую через его центр. Сопряжёнными диаметрами эллипса называют пару его диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре.
  • Радиус эллипса в данной точке это отрезок, соединяющий центр эллипса с точкой, а также его длина, которая вычисляется по формуле r={frac {ab}{sqrt {b^{2}cos ^{2}varphi +a^{2}sin ^{2}varphi }}}={frac {b}{sqrt {1-e^{2}cos ^{2}varphi }}}, где varphi  — угол между радиусом и большой полуосью.
  • Фокальным параметром p={frac {b^{2}}{a}} называется половина длины хорды, проходящей через фокус и перпендикулярной большой оси эллипса.
  • Отношение длин малой и большой полуосей называется коэффициентом сжатия эллипса или эллиптичностью: {displaystyle k={frac {b}{a}}}. Величина, равная (1-k)={frac {a-b}{a}}, называется сжатием эллипса. Для окружности коэффициент сжатия равен единице, сжатие — нулю. Коэффициент сжатия и эксцентриситет эллипса связаны соотношением {displaystyle k^{2}=1-e^{2}.}
  • Для каждого из фокусов существует прямая, называемая директрисой, такая, что отношение расстояния от произвольной точки эллипса до его фокуса к расстоянию от этой точки до данной прямой равно эксцентриситету эллипса. Весь эллипс лежит по ту же сторону от такой прямой, что и фокус. Уравнения директрис эллипса в каноническом виде записываются как {displaystyle x=pm {frac {p}{eleft(1-e^{2}right)}}} для фокусов {displaystyle left(pm {frac {pe}{1-e^{2}}},,0right)} соответственно. Расстояние между фокусом и директрисой равно {displaystyle {frac {p}{e}}}.

Соотношения между элементами эллипса[править | править код]

Части эллипса (описание см. в разделе «Связанные определения»)

  • {displaystyle {boldsymbol {a}}} — большая полуось;
  • {displaystyle {boldsymbol {b}}} — малая полуось;
  • {displaystyle {boldsymbol {c}}} — фокальное расстояние (полурасстояние между фокусами);
  • {displaystyle {boldsymbol {p}}} — фокальный параметр;
  • {displaystyle {boldsymbol {r}}_{p}} — перифокусное расстояние (минимальное расстояние от фокуса до точки на эллипсе);
  • {displaystyle {boldsymbol {r}}_{a}} — апофокусное расстояние (максимальное расстояние от фокуса до точки на эллипсе);

{displaystyle a^{2}=b^{2}+c^{2};}

{displaystyle e={frac {c}{a}}={sqrt {1-{frac {b^{2}}{a^{2}}}}};;;(0leqslant e<1);}

{displaystyle p={frac {b^{2}}{a}}.}

{displaystyle {boldsymbol {a}}} {displaystyle {boldsymbol {b}}} {displaystyle {boldsymbol {c}}} {displaystyle {boldsymbol {p}}} {displaystyle {boldsymbol {r_{p}}}} {displaystyle {boldsymbol {r_{a}}}}
{displaystyle {boldsymbol {a}}} — большая полуось {displaystyle {boldsymbol {a}}} {displaystyle a={frac {b}{sqrt {1-e^{2}}}}} {displaystyle a={frac {c}{e}}} {displaystyle a={frac {p}{1-e^{2}}}} {displaystyle a={frac {r_{p}}{1-e}}} {displaystyle a={frac {r_{a}}{1+e}}}
{displaystyle {boldsymbol {b}}} — малая полуось {displaystyle b=a{sqrt {1-e^{2}}}} {displaystyle {boldsymbol {b}}} {displaystyle b={frac {c~{sqrt {1-e^{2}}}}{e}}} {displaystyle b={frac {p}{sqrt {1-e^{2}}}}} {displaystyle b=r_{p}{sqrt {frac {1+e}{1-e}}}} {displaystyle b=r_{a}{sqrt {frac {1-e}{1+e}}}}
{displaystyle {boldsymbol {c}}} — фокальное расстояние {displaystyle c=ae} {displaystyle c={frac {be}{sqrt {1-e^{2}}}}} {displaystyle {boldsymbol {c}}} {displaystyle c={frac {pe}{1-e^{2}}}} {displaystyle c={frac {r_{p}e}{1-e}}} {displaystyle c={frac {r_{a}e}{1+e}}}
{displaystyle {boldsymbol {p}}} — фокальный параметр {displaystyle p=a(1-e^{2})} {displaystyle p=b~{sqrt {1-e^{2}}}} {displaystyle p=c~{frac {1-e^{2}}{e}}} {displaystyle {boldsymbol {p}}} {displaystyle p=r_{p}(1+e)} {displaystyle p=r_{a}(1-e)}
{displaystyle {boldsymbol {r}}_{p}} — перифокусное расстояние {displaystyle r_{p}=a(1-e)} {displaystyle r_{p}=b~{sqrt {frac {1-e}{1+e}}}} {displaystyle r_{p}=c~{frac {1-e}{e}}} {displaystyle r_{p}={frac {p}{1+e}}} {displaystyle {boldsymbol {r}}_{p}} {displaystyle r_{p}=r_{a}{frac {1-e}{1+e}}}
{displaystyle {boldsymbol {r}}_{a}} — апофокусное расстояние {displaystyle r_{a}=a(1+e)} {displaystyle r_{a}=b~{sqrt {frac {1+e}{1-e}}}} {displaystyle r_{a}=c~{frac {1+e}{e}}} {displaystyle r_{a}={frac {p}{1-e}}} {displaystyle r_{a}=r_{p}~{frac {1+e}{1-e}}} {displaystyle {boldsymbol {r}}_{a}}

Координатное представление[править | править код]

Эллипс как кривая второго порядка[править | править код]

Эллипс является центральной невырожденной кривой второго порядка и удовлетворяет общему уравнению вида

{displaystyle a_{11}x^{2}+a_{22}y^{2}+2a_{12}xy+2a_{13}x+2a_{23}y+a_{33}=0}

при инвариантах D>0 и {displaystyle Delta I<0}, где:

Delta ={begin{vmatrix}a_{11}&a_{12}&a_{13}\a_{12}&a_{22}&a_{23}\a_{13}&a_{23}&a_{33}end{vmatrix}},
D={begin{vmatrix}a_{11}&a_{12}\a_{12}&a_{22}end{vmatrix}}=a_{11}a_{22}-a_{12}^{2},
{displaystyle I=operatorname {tr} {begin{pmatrix}a_{11}&a_{12}\a_{12}&a_{22}end{pmatrix}}=a_{11}+a_{22}.}

Соотношения между инвариантами кривой второго порядка и полуосями эллипса (верно только при условии, что центр эллипса совпадает с началом координат и a_{{33}}=-1):

{displaystyle Delta =-{frac {1}{a^{2}}}{frac {1}{b^{2}}},}
{displaystyle D={frac {1}{a^{2}}}{frac {1}{b^{2}}},}
{displaystyle I={frac {1}{a^{2}}}+{frac {1}{b^{2}}}.}

Соотношения

Если переписать общее уравнение в виде

AX^{2}+BXY+CY^{2}+DX+EY+F=0,

то координаты центра эллипса:

h={frac {BE-2CD}{4AC-B^{2}}},k={frac {BD-2AE}{4AC-B^{2}}},

угол вращения определяется из выражения

tg(2Theta )={frac {B}{A-C}}.

Направления векторов осей:

{displaystyle {begin{pmatrix}B&(C-A+{sqrt {(C-A)^{2}+B^{2}}})end{pmatrix}},{begin{pmatrix}B&(C-A-{sqrt {(C-A)^{2}+B^{2}}})end{pmatrix}},}

отсюда

{displaystyle operatorname {tg} Theta ={frac {C-Apm {sqrt {(C-A)^{2}+B^{2}}}}{B}}.}

Длины полуосей определяются выражениями

{displaystyle a={sqrt {frac {2F'({sqrt {(A-C)^{2}+B^{2}}}+A+C)}{4AC-B^{2}}}},}
{displaystyle b={sqrt {{frac {2F'}{{sqrt {(A-C)^{2}+B^{2}}}+A+C}}.}}}

Обратное соотношение — коэффициенты общего уравнения из параметров эллипса — можно получить, подставив в каноническое уравнение (см. раздел ниже) выражение для поворота системы координат на угол Θ и переноса в точку {displaystyle (x_{c},,y_{c})}:

{displaystyle {frac {x'^{2}}{a^{2}}}+{frac {y'^{2}}{b^{2}}}=1,}
{displaystyle x'=(x-x_{c})cos Theta +(y-y_{c})sin Theta ,}
{displaystyle y'=-(x-x_{c})sin Theta +(y-y_{c})cos Theta .}

Выполнив подстановку и раскрыв скобки, получим следующие выражения для коэффициентов общего уравнения:

{displaystyle A=a^{2}sin ^{2}Theta +b^{2}cos ^{2}Theta ,}
{displaystyle B=2(b^{2}-a^{2})sin Theta cos Theta ,}
{displaystyle C=a^{2}cos ^{2}Theta +b^{2}sin ^{2}Theta ,}
{displaystyle D=-2Ax_{c}-By_{c},}
{displaystyle E=-Bx_{c}-2Cy_{c},}
{displaystyle F=Ax_{c}^{2}+Cy_{c}^{2}+Bx_{c}y_{c}-a^{2}b^{2}.}

Если ввести только угол, а центр эллипса оставить в начале координат, то

{displaystyle D=0,}
{displaystyle E=0,}
{displaystyle F=-a^{2}b^{2}.}

Следует заметить, что в уравнении общего вида эллипса, заданного в декартовой системе координат, коэффициенты A,B,C,D,E,F (или, что то же самое, {displaystyle a_{11},2a_{12},a_{22},2a_{13},2a_{23},a_{33}}) являются определёнными с точностью до произвольного постоянного множителя, то есть приведённая выше запись и

{displaystyle AkX^{2}+BkXY+CkY^{2}+DkX+EkY+Fk=0,}

где {displaystyle kneq 0,} являются эквивалентными. Нельзя ожидать, что выражение

1/a^{2}+1/b^{2}=Ak+Ck

будет выполняться при любом k.

Соотношение между инвариантой I и полуосями в общем виде выглядит следующим образом:

{displaystyle {frac {1}{a^{2}}}+{frac {1}{b^{2}}}={frac {A+C}{Fcdot (Acdot h^{2}+Bcdot hcdot k+Ccdot k^{2}-1)}}={frac {I}{F'}},}

где F'=Fcdot (Acdot h^{2}+Bcdot hcdot k+Ccdot k^{2}-1) — коэффициент F при переносе начала координат в центр эллипса, когда уравнение приводится к виду

{displaystyle AX^{2}+BXY+CY^{2}+F'=0.}

Другие инварианты находятся в следующих соотношениях:

{displaystyle -{frac {Delta }{F'^{3}}}={frac {D}{F'^{2}}}={frac {1}{a^{2}}}{frac {1}{b^{2}}}.}

Каноническое уравнение[править | править код]

Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением:

{frac {x^{2}}{a^{2}}}+{frac {y^{2}}{b^{2}}}=1.

Это уравнение называется каноническим уравнением эллипса. Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат[Комм. 1].

Соотношения[править | править код]

Для определённости положим, что 0<bleqslant a.
В этом случае величины a и b — соответственно, большая и малая полуоси эллипса.

Зная полуоси эллипса, можно вычислить:

  • его фокальное расстояние и эксцентриситет {displaystyle left|F_{1}F_{2}right|=2{sqrt {a^{2}-b^{2}}},;;;e={frac {sqrt {a^{2}-b^{2}}}{a}}<1,}
  • координаты фокусов эллипса {displaystyle left(ae,,0right),left(-ae,,0right).}

Эллипс имеет две директрисы, уравнения которых можно записать как

x={frac {a}{e}},;;;x=-{frac {a}{e}}.

Фокальный параметр (то есть половина длины хорды, проходящей через фокус и перпендикулярной оси эллипса) равен

p={frac {b^{2}}{a}}.

Фокальные радиусы, то есть расстояния от фокусов до произвольной точки кривой left(x,,yright):

r_{1}=a+ex,;;;r_{2}=a-ex.

Уравнение диаметра, сопряжённого хордам с угловым коэффициентом k:

y=-{frac {b^{2}}{a^{2}k}}x.

Уравнение касательной к эллипсу в точке (x_{0},y_{0}) имеет вид:

{frac {xx_{0}}{a^{2}}}+{frac {yy_{0}}{b^{2}}}=1.

Условие касания прямой y=mx+k и эллипса {frac {x^{2}}{a^{2}}}+{frac {y^{2}}{b^{2}}}=1 записывается в виде соотношения {displaystyle k^{2}=m^{2}a^{2}+b^{2}.}

Уравнение касательных, проходящих через точку left(x_1, y_1right):

{displaystyle {frac {y-y_{1}}{x-x_{1}}}={frac {-x_{1}y_{1}pm {sqrt {b^{2}x_{1}^{2}+a^{2}y_{1}^{2}-a^{2}b^{2}}}}{a^{2}-x_{1}^{2}}}.}

Уравнение касательных, имеющих данный угловой коэффициент k:

{displaystyle y=kxpm {sqrt {k^{2}a^{2}+b^{2}}},}

точки касания такой прямой эллипса (или что то же самое, точки эллипса, где касательная имеет угол с тангенсом, равным k):

x=mp {frac {ka^{2}}{sqrt {k^{2}a^{2}+b^{2}}}},y=pm {frac {b^{2}}{sqrt {k^{2}a^{2}+b^{2}}}}.

Уравнение нормали в точке left(x_{1},y_{1}right):

{frac {y-y_{1}}{x-x_{1}}}={frac {a^{2}y_{1}}{b^{2}x_{1}}}.

Уравнения в параметрической форме[править | править код]

Геометрическая иллюстрация параметризации эллипса (анимация)

Каноническое уравнение эллипса может быть параметризовано:

{begin{cases}x=a,cos t\y=b,sin tend{cases}};;;0leqslant tleqslant 2pi ,

где t — параметр.

Только в случае окружности (то есть при a=b) параметр t является углом между положительным направлением оси абсцисс и радиус-вектором данной точки.

В полярных координатах[править | править код]

Если принять фокус эллипса за полюс, а большую ось — за полярную ось, то его уравнение в полярных координатах left(rho ,varphi right) будет иметь вид

rho ={frac {p}{1pm ecos varphi }},

где e — эксцентриситет, а p — фокальный параметр.
Знак минус соответствует помещению полюса полярных координат в левый фокус, а знак плюс — в правый.

Вывод уравнения[править | править код]

Пусть r1 и r2 — расстояния до данной точки эллипса от первого и второго фокусов.
Пусть также полюс системы координат находится в первом фокусе, а угол varphi отсчитывается от направления на второй фокус.
Тогда из определения эллипса следует, что

{displaystyle r_{1}+r_{2}=2a}.

Отсюда {displaystyle r_{2}^{2}=left(2a-r_{1}right)^{2}=4a^{2}-4ar_{1}+r_{1}^{2}}.
С другой стороны, из теоремы косинусов

r_{2}^{2}=r_{1}^{2}+4c^{2}-4r_{1}ccos varphi .

Исключая r_{2} из последних двух уравнений, получаем

{displaystyle r_{1}={frac {a^{2}-c^{2}}{a-ccos varphi }}={frac {a(1-c^{2}/a^{2})}{1-c/acos varphi }}.}

Учитывая, что {displaystyle p=a(1-e^{2})} и e=frac{c}{a}, получаем искомое уравнение.

Если принять центр эллипса за полюс, а большую ось — за полярную ось, то его уравнение в полярных координатах left(rho ,varphi right) будет иметь вид

rho ={frac {b}{sqrt {1-e^{2}cos ^{2}varphi }}}={frac {ab}{sqrt {a^{2}sin ^{2}varphi +b^{2}cos ^{2}varphi }}}.

Длина дуги эллипса (

s) в зависимости от его параметра (

θ)

Длина дуги эллипса[править | править код]

Длина дуги плоской линии определяется по формуле:

l=int limits _{t_{1}}^{t_{2}}{sqrt {left({frac {dx}{dt}}right)^{2}+left({frac {dy}{dt}}right)^{2}}},dt.

Воспользовавшись параметрическим представлением эллипса, получаем следующее выражение:

l=int limits _{t_{1}}^{t_{2}}{sqrt {a^{2}sin ^{2}t+b^{2}cos ^{2}t}},dt.

После замены b^{2}=a^{2}left(1-e^{2}right) выражение для длины дуги принимает окончательный вид:

l=aint limits _{t_{1}}^{t_{2}}{sqrt {1-e^{2}cos ^{2}t}},dt,;;;e<1.

Получившийся интеграл принадлежит семейству эллиптических интегралов, которые в элементарных функциях не выражаются, и сводится к эллиптическому интегралу второго рода Eleft(t,eright). В частности, периметр эллипса равен:

{displaystyle L=4aint limits _{0}^{pi /2}{sqrt {1-e^{2}cos ^{2}t}},dt=4aE(e),}

где Eleft(eright) — полный эллиптический интеграл второго рода.

Приближённые формулы для периметра[править | править код]

Lapprox 4{frac {pi ab+(a-b)^{2}}{a+b}}.

Максимальная погрешность этой формулы {displaystyle approx 0{,}63 %} при эксцентриситете эллипса {displaystyle approx 0{,}988} (соотношение осей {displaystyle approx 1/6{,}5}).
Погрешность всегда положительна.

Приблизительно в два раза меньшие погрешности в широком диапазоне эксцентриситетов дает формула:
Lapprox 4cdot left(a^{x}+b^{x}right)^{left(1/xright)}, где x={frac {ln 2}{ln {frac {pi }{2}}}}.
Максимальная погрешность этой формулы {displaystyle approx 0{,}36 %} при эксцентриситете эллипса {displaystyle approx 0{,}980} (соотношение осей {displaystyle approx 1/5})
Погрешность также всегда положительна.

Существенно лучшую точность при {displaystyle 0{,}05<a/b<20} обеспечивает формула Рамануджана:
{displaystyle Lapprox pi left[3(a+b)-{sqrt {(3a+b)(a+3b)}}right].}

При эксцентриситете эллипса {displaystyle approx 0{,}980} (соотношение осей {displaystyle approx 1/5}) погрешность составляет {displaystyle approx 0{,}02 %}.
Погрешность всегда отрицательна.

Ещё точней оказалась вторая формула Рамануджана:
{displaystyle Lapprox pi (a+b)left[1+{frac {3left({frac {a-b}{a+b}}right)^{2}}{10+{sqrt {4-3left({frac {a-b}{a+b}}right)^{2}}}}}right].}

Точные формулы для периметра[править | править код]

Джеймс Айвори[1] и Фридрих Бессель[2] независимо друг от друга получили формулу для периметра эллипса:

{displaystyle L=pi (a+b)left[1+sum limits _{n=1}^{infty }left[{frac {(2n-1)!!}{(2n-1)cdot 2^{n}cdot n!}}left({frac {a-b}{a+b}}right)^{n}right]^{2}right].}

Альтернативная формула

{displaystyle L={frac {2pi aN(1-e^{2})}{M({sqrt {1-e^{2}}})}},}

где M(x) — арифметико-геометрическое среднее 1 и x,
а N(x) — модифицированное арифметико-геометрическое среднее 1 и x, которое было введено С. Ф. Адлаем в статье 2012 года[3].

Площадь эллипса и его сегмента[править | править код]

Площадь эллипса вычисляется по формуле

{displaystyle S=pi ab.}

Площадь сегмента между дугой[en], выпуклой влево, и вертикальной хордой, проходящей через точки left(x,,yright) и {displaystyle left(x,,-yright),} можно определить по формуле[4]:

S={frac {pi ab}{2}}-{frac {b}{a}}left(x,{sqrt {a^{2}-x^{2}}}+a^{2}arcsin {frac {x}{a}}right).

Если эллипс задан уравнением
Ax^{2}+Bxy+Cy^{2}=1, то площадь можно определить по формуле

{displaystyle S={frac {2pi }{sqrt {4AC-B^{2}}}}.}

Другие свойства[править | править код]

  • Оптические
    • Свет от источника, находящегося в одном из фокусов, отражается эллипсом так, что отраженные лучи пересекутся во втором фокусе.
    • Свет от источника, находящегося вне любого из фокусов, отражается эллипсом так, что отраженные лучи ни в каком фокусе не пересекутся.
  • Если F_{1} и F_{2} — фокусы эллипса, то для любой точки X, принадлежащей эллипсу, угол между касательной в этой точке и прямой (F_{1}X) равен углу между этой касательной и прямой (F_{2}X).
  • Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.
    • Эквивалентная формулировка: через середины двух любых параллельных хорд эллипса проходит какой-либо диаметр эллипса. В свою очередь, любой диаметр эллипса всегда проходит через центр эллипса.
  • Эволютой эллипса является астроида, вытянутая вдоль вертикальной оси.
  • Точки пересечения эллипса с осями являются его вершинами.
  • Эксцентриситет эллипса, то есть отношение e={frac {c}{a}}={sqrt {1-{frac {b^{2}}{a^{2}}}}};;;(0leqslant e<1), характеризует вытянутость эллипса. Чем эксцентриситет ближе к нулю, тем эллипс больше напоминает окружность и наоборот, чем эксцентриситет ближе к единице, тем он более вытянут.
    • Если эксцентриситет эллипса равен нулю (что то же самое, что фокальное расстояние равно нулю: F_{1}F_{2}=0), то эллипс вырождается в окружность.
  • Экстремальные свойства[5]
где {displaystyle S(F)} обозначает площадь фигуры F.

  • Более того, равенство достигается в том и только в том случае, если F ограничено эллипсом.
  • Среди всех выпуклых замкнутых кривых, ограничивающих данную площадь, эллипсы и только они имеет максимальную аффинную длину.
  • Если произвольный эллипс вписан в треугольник ABC и имеет фокусы P и Q, тогда для него справедливо соотношение[6]
{frac {{overline {PA}}cdot {overline {QA}}}{{overline {CA}}cdot {overline {AB}}}}+{frac {{overline {PB}}cdot {overline {QB}}}{{overline {AB}}cdot {overline {BC}}}}+{frac {{overline {PC}}cdot {overline {QC}}}{{overline {BC}}cdot {overline {CA}}}}=1.
  • Если лестницу (бесконечно тонкий отрезок прямой) прислонить к вертикальной стенке с горизонтальным полом, и один конец лестницы будет скользить по стенке (всё время касаясь её) а второй конец лестницы будет скользить по полу (всё время касаясь его), тогда любая фиксированная точка лестницы (не на её концах), будет двигаться по дуге некоторого эллипса. Это свойство остаётся верным, если мы возьмём точку не внутри лестницы-отрезка, а на её мыслимом продолжении. Последнее свойство используется в описанном выше[⇦] эллипсографе.
  • Касательная, проходящая через точку (x_{0},y_{0}), принадлежащую эллипсу, имеет следующее уравнение:
{displaystyle {frac {xx_{0}}{a^{2}}}+{frac {yy_{0}}{b^{2}}}=1.}

Построение эллипса[править | править код]

Построение эллипса с помощью иголок, нитки и карандаша

Инструментами для рисования эллипса являются:

  • эллипсограф
  • две иголки, воткнутые в фокусы эллипса и соединённые ниткой длиной 2a, которую оттягивают карандашом. Способ был придуман Джеймсом Максвеллом в возрасте 14 лет и при запросе его отца в Эдинбургское королевское общество оказался ранее неизвестным[7].

При помощи циркуля или циркуля и линейки можно построить любое количество точек, принадлежащих эллипсу, но не весь эллипс целиком.

Эллипсы, связанные с треугольником[править | править код]

  • Эллипс Брокара — эллипс с фокусами в точках Брокара
  • Эллипс Мандарта
  • Эллипс Штейнера

См. также[править | править код]

  • Кривая второго порядка
  • Парабола
  • Каустика
  • Эллипсоид
  • Эллипсограф
  • Гипербола
  • Окружность Аполлония
  • Овал Кассини

Комментарии[править | править код]

  1. Если же в правой части стоит единица со знаком минус, то получившееся уравнение
    {displaystyle {frac {x^{2}}{a^{2}}}+{frac {y^{2}}{b^{2}}}=-1}

    описывает мнимый эллипс, он не имеет точек на вещественной плоскости.

Примечания[править | править код]

  1. Ivory J. A new series for the rectification of the ellipsis (англ.) // Transactions of the Royal Society of Edinburgh. — 1798. — Vol. 4. — P. 177—190. — doi:10.1017/s0080456800030817.
  2. Bessel F. W. Über die Berechnung der geographischen Längen und Breiten aus geodätischen Vermesssungen (нем.) // Astron. Nachr.. — 1825. — Bd. 4. — S. 241—254. — doi:10.1002/asna.18260041601. — Bibcode: 1825AN……4..241B. В англ. переводе: Bessel F. W. The calculation of longitude and latitude from geodesic measurements (1825) (англ.) // Astron. Nachr.. — 2010. — Vol. 331. — P. 852—861. — doi:10.1002/asna.201011352. — arXiv:0908.1824.
  3. Adlaj S. An eloquent formula for the perimeter of an ellipse (англ.) // Notices of the AMS. — 2012. — Vol. 76, iss. 8. — P. 1094—1099. — doi:10.1090/noti879.
  4. Корн, 1978, с. 68.
  5. Фейеш Тот Л. Глава II, §§ 4, 6 // Расположения на плоскости, на сфере и в пространстве. — М.: Физматгиз, 1958. — 364 с.
  6. Allaire P. R., Zhou J., Yao H. Proving a nineteenth century ellipse identity (англ.) // Mathematical Gazette. — 2012. — Vol. 96, no. 535. — P. 161—165.
  7. Карцев В. П. Максвелл. — М.: Молодая гвардия, 1974. (Серия «Жизнь замечательных людей»). С. 26—28.

Литература[править | править код]

  • Корн Г., Корн Т. Свойства окружностей, эллипсов, гипербол и парабол // Справочник по математике. — 4-е издание. — М.: Наука, 1978. — С. 70—73.
  • Селиванов Д. Ф. Эллипс // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • А. В. Акопян, А. А. Заславский. Геометрические свойства кривых второго порядка, — М.: МЦНМО, 2007. — 136 с.
  • И. Бронштейн. Эллипс // Квант, № 9, 1970.
  • А. И. Маркушевич. Замечательные кривые // «Популярные лекции по математике», выпуск 4.

Ссылки[править | править код]

  • S.Sykora, Approximations of Ellipse Perimeters and of the Complete Elliptic Integral E(x). Review of known formulae (англ.)
  • Grard P. Michon. Perimeter of an Ellipse (Final Answers) (англ.), 2000—2005. — 20 c.
  • Видео: Как нарисовать эллипс

Общее уравнение кривой второго порядка. Центр кривой

Определение. Кривой второго порядка называется геометрическое место точек, координаты которых удовлетворяют уравнению

в котором хотя бы один из коэффициентов а11, а12, а22 отличен от нуля. Выражение

Если мы перейдем к новой СК Ox¢y¢, то формулы замены координат будут иметь вид

x = ax¢ + by¢ + b1,

Если мы подставим эти выражения в (8), то снова получим уравнение такого же вида, т.е. содержащее x¢ и y¢ во второй степени. Поэтому наше определение корректно, т.е не зависит от выбора СК. В дальнейшем, СК всегда предполагается декартовой.

Определение. Точка O¢ называется центром кривой второго порядка, если она является ее центром симметрии. Кривая, которая имеет центр, называется центральной.

Предположим, что СК выбрана так, что ее начало находится в центре кривой. Тогда одновременно с точкой M(x, y) кривой будет принадлежать и точка M¢(– x,– y). Подставим ее координаты в (7) и получим

Вычтем из равенства (8) равенство (8¢):

И это должно выполняться для любой точки M(x, y) на кривой. Поэтому а1 = а2 = 0, если начало координат находится в центре. Поэтому, если изначально начало координат не находится в центре O¢, то мы совершим параллельный перенос координатных осей в центр, и уравнение кривой в новой СК O¢х¢у¢ примет вид

т.е. линейная часть уравнения исчезнет. При этом, коэффициенты квадратичной части останутся прежними; это будет установлено в процессе доказательства следующей теоремы.

Теорема 5. Координаты (xo, yo) центра кривой, заданной уравнением (8), находятся из системы линейных уравнений

а11хo + а12 уo + а1 = 0,

Доказательство. Введем новую декартову СК O¢х¢у¢, которая получается из Oху переносом начала в центр O¢(xo, yo) кривой. Тогда формулы замены координат имеют вид:

x = x¢ + хo,

Подставим эти формулы в (7):

После преобразований получаем

где с¢ = j(xo, yo) – значение левой части уравнения (7) в точке O¢. Поскольку в новой СК коэффициенты при x¢ и y¢ должны быть равны нулю, то получаем (10).

Заметим, что уравнение кривой в новой СК можно выписать, не совершая подстановки (11) и преобразований: коэффициенты квадратичной части не изменяются, надо только вычислить с¢.

Обозначим A = – матрица квадратичной части уравнения (8) (она же является матрицей системы линейных уравнений (10)),

d = det A, dx = – , dy = – .

1 случай. d ¹ 0. Тогда по правилу Крамера система (10) имеет единственное решение

а кривая имеет единственный центр. Минусы были поставлены выше потому, что а1 и а2 находятся в (10) не в правой части, а в левой.

2 случай. d = 0, dx¹ 0 и dy¹ 0 (заметим, что в случае d = 0, определители dx и dy будут равны или неравны нулю только одновременно). Тогда ранг расширенной матрицы системы (10) будет равен 2, а rank A=1. Значит, согласно теореме Кронекера-Капелли система (10) не имеет решений, а кривая не имеет центра.

3 случай. d = 0, dx = dy = 0. Тогда оба уравнения в (10) пропорциональны, а значит, эта система имеет бесконечное количество решений, а кривая – бесконечное количество центров.

Упростим еще величину с¢:

В силу (9) выражения в скобках равны нулю, и мы имеем

Подставляя сюда (*) получаем

а11 а12 а1

В скобках как раз стоит разложение D по последней строке или последнему столбцу. Равенство (13) позволяет выписать (9) не находя координат центра кривой. Но, если уже центр найден, то легче вычислить с¢ по формулам (12).

Кривые второго порядка — определение и построение с примерами решения

Содержание:

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде

  1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения
  2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если , то есть (а, b) — решение уравнения F(x,y) = 0.

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

  1. дано уравнение и надо построить фигуру Ф, уравнением которой является ;
  2. дана фигура Ф и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

  1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
  2. Записать в координатах условие, сформулированное в первом пункте.

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между ).

Точки называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с b. В этом случае а называется большой полуосью, a b — малой.

Если а =Ь, то уравнение (7.3) можно переписать в виде:

(7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами будет окружность (4) переводить в эллипс, заданный соотношением

Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым

Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами . Их длины и задаются формулами Прямые называются директрисами эллипса. Директриса называется левой, а — правой. Так как для эллипса и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая — правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между ).

Точки называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов обозначим через а. По условию, а 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А — произвольная точка плоскости с координатами (х, у) и пусть . Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты .

Тогда А расстояние Подставив в формулу r=d, будем иметь. Возведя обе части равенства в квадрат, получим

или

(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.

Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а О. Для этого выделим полный квадрат:

и сделаем параллельный перенос по формулам

В новых координатах преобразуемое уравнение примет вид: где р — положительное число, определяется равенством .

Пример:

Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстоянию, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F — фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условию, запишем это равенство с помощью координат: , или после упрощения . Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

где коэффициенты А, В и С не равны одновременно нулю

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

которое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число — мень-

шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки называют вершинами эллипса, а — его фокусами (рис. 12).

Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности Чем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

— каноническое уравнение эллипса с центром в точке большей полуосью а=3 и меньшей полуосью

Найдем эксцентриситет эллипса:

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.

В новой системе координат координаты вершин и фокусов гиперболы будут следующими:

Переходя к старым координатам, получим:

Построим график эллипса.

Задача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Кривые второго порядка

Кривая второго порядка — это некоторая линия на плоскости, которая в декартовой системе координат задается общим уравнением:

Имеем дело с уравнением второй степени, в котором коэффициенты при старших членах — при вторых степенях одновременно не нули.

или можно встретить следующую форму записи:

К кривым второго порядка относятся окружность, эллипс, гипербола и парабола.

Покажем на примере определение значений коэффициентов.

Рассмотрим кривую второго порядка:

Вычислим определитель из коэффициентов:

Если Δ = 0, кривая второго порядка параболического типа,

если Δ > 0, кривая второго порядка эллиптического типа,

если Δ F1 и F2 — фокусы.

с — фокальное расстояние,

Каноническое уравнение эллипса с центром симметрии в начале координат:

2а — большая ось эллипса, 2b — малая ось эллипса.

а — большая полуось эллипса, b — малая полуось эллипса.

Если a = b, то имеем окружность с радиусов R = a = b:

Если центр эллипса находится не в начале координат, а в некоторой точке C(x0;y0), оси эллипса параллельны осям координат, то каноническое уравнение эллипса имеет вид:

Эксцентриситет — число, равное отношению фокального расстояния к большей полуоси:

Эксцентриситет характеризует отклонение эллипса от окружности, т.е. чем эксцентриситет больше, тем эллипс более сплющен, вытянут.

Гипербола — множество точек на плоскости для каждой из которых абсолютная величина разности расстояний до двух данных точек F1 и F2 есть величина постоянная, меньшая расстояния между этими точками.

с — фокальное расстояние,

Расстояние от центра гиперболы до одного из фокусов называется фокальным расстоянием.

Каноническое уравнение гиперболы с центром симметрии в начале координат:

x — действительная ось, y — мнимая ось.

а — действительная полуось, b — мнимая полуось.

Если центр гиперболы находится в некоторой точке C(x0;y0), оси симметрии параллельны осям координат, то каноническое уравнение имеет вид:

Эксцентриситет гиперболы — число, равное отношению фокусного расстояния к действительной полуоси.

Чем эксцентриситет меньше, тем гипербола более вытянута, сплюшена вдоль оси Ох.

Директриса гиперболы — прямые, параллельные мнимой оси гиперболы и отстоящая от нее на расстоянии a/Ε.

f1 — правая директриса, f2 — левая директриса.

Порядок построения гиперболы :

1. Строим прямоугольник со сторонами 2a и 2b.

2. Провести асимптоты гиперболы — диагонали построенного прямоугольника.

3. Строим гиперболу с вершинами в точках А 1 (-а;0), А 2 (а;0).

Парабола — множество точек на плоскости для каждой из которых расстояние до данной точки F равно расстоянию до данной прямой f.

F — фокус параболы, f — директриса параболы.

источники:

http://www.evkova.org/krivyie-vtorogo-poryadka

http://matecos.ru/mat/matematika/krivye-vtorogo-poryadka.html

Содержание:

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру – значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде Кривые второго порядка - определение и построение с примерами решения

  1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения Кривые второго порядка - определение и построение с примерами решения
  2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

Это определение в более компактной записи выглядит следующим образом. Уравнение Кривые второго порядка - определение и построение с примерами решения называется уравнением фигуры, если Кривые второго порядка - определение и построение с примерами решения, то есть (а, b) – решение уравнения F(x,y) = 0.

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения Кривые второго порядка - определение и построение с примерами решения, т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

  1. дано уравнение Кривые второго порядка - определение и построение с примерами решения и надо построить фигуру Ф, уравнением которой является Кривые второго порядка - определение и построение с примерами решения;
  2. дана фигура Ф и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения Кривые второго порядка - определение и построение с примерами решения и решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

  1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
  2. Записать в координатах условие, сформулированное в первом пункте.

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек Кривые второго порядка - определение и построение с примерами решения, есть величина постоянная (большая, чем расстояние между Кривые второго порядка - определение и построение с примерами решения).

Точки Кривые второго порядка - определение и построение с примерами решения называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с<а. Если это условие не выполнено, то рассматриваемое множество точек либо отрезок прямой, заключенной между фокусами, либо не содержит ни одной точки.

Из определения эллипса вытекает следующий метод его построения: если концы нерастяжимой нити длины 2а закрепить в точках Кривые второго порядка - определение и построение с примерами решения и натянуть нить острием карандаша, то при движении острия будет вычерчиваться эллипс с фокусами Кривые второго порядка - определение и построение с примерами решения и с суммой расстояний от произвольной точки эллипса до фокусов, равной 2 а (Рис. 7.1).

Кривые второго порядка - определение и построение с примерами решения

Составим уравнение эллипса. Для этой цели расположим декартову прямоугольную систему координат таким образом, чтобы ось Ох походила через фокусы Кривые второго порядка - определение и построение с примерами решения положительное направление оси – от Кривые второго порядка - определение и построение с примерами решения, начало координат выберем в середине отрезка Кривые второго порядка - определение и построение с примерами решения. Тогда координаты точек Кривые второго порядка - определение и построение с примерами решения будут соответственно (-с,0) и (с,0).

Пусть М(х,у) – произвольная точка эллипса, тогда: Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Подставляя сюда значения Кривые второго порядка - определение и построение с примерами решенияимеем:

Кривые второго порядка - определение и построение с примерами решения (7.1)

Уравнение (1) и есть уравнение эллипса. Преобразуя, упростим

его:

Кривые второго порядка - определение и построение с примерами решения

Возведя обе части уравнения в квадрат и приведя подобные члены, получим: Кривые второго порядка - определение и построение с примерами решения

Возведем еще раз обе части в квадрат и приведем подобные члены. Получаем Кривые второго порядка - определение и построение с примерами решения или

Кривые второго порядка - определение и построение с примерами решения (7.2)

Положительную величину Кривые второго порядка - определение и построение с примерами решения обозначим черезКривые второго порядка - определение и построение с примерами решения. Тогда уравнение (7.2) примет вид:

Кривые второго порядка - определение и построение с примерами решения (7.3)

Оно называется каноническим уравнение эллипса.

Координаты точек эллипса ограничены неравенствамиКривые второго порядка - определение и построение с примерами решения. Значит, эллипс ограниченная фигура, не выходящая за пределы прямоугольника со сторонами 2а и 2b •

Кривые второго порядка - определение и построение с примерами решения

Заметим, что в уравнение (7.3) входят лишь четные степени х и у. Поэтому, если точка M(х,у) принадлежит эллипсу, то и точки Кривые второго порядка - определение и построение с примерами решения также ему принадлежат. А это означает, что эллипс – линия симметричная относительно координатных осей Ох и Оу.

Поэтому для исследования формы эллипса достаточно рассмотреть его в первой координатной четверти, а в остальных четвертях его строение определяется по симметрии. Для первой четверти, из уравнения (7.3) имеем:

Кривые второго порядка - определение и построение с примерами решения (7.4)

При возрастании x от 0 до а, у монотонно убывает от а до 0. График функции изображен на Рис. 7.4.

Кривые второго порядка - определение и построение с примерами решения Рис. 7.4

Достроив остальные четверти эллипса по симметрии, получим весь эллипс (Рис. 7.5). Кривые второго порядка - определение и построение с примерами решения

Рис. 7.5. Оси симметрии эллипса (оси Ох и Оу) называются просто его осями, а центр симметрии – точка О – центром эллипса. Точки Кривые второго порядка - определение и построение с примерами решения пересечения эллипса с осями координат называются вершинами эллипса. Отрезки Кривые второго порядка - определение и построение с примерами решения, а также их длины а и Ь называются полуосями эллипса. В случае, когда фокусы эллипса находятся на оси Ох (как в нашем случае), из равенства Кривые второго порядка - определение и построение с примерами решения следует, что a>b. В этом случае а называется большой полуосью, a b – малой.

Если а =Ь, то уравнение (7.3) можно переписать в виде:

Кривые второго порядка - определение и построение с примерами решения (7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку Кривые второго порядка - определение и построение с примерами решения координаты которой задаются формулами Кривые второго порядка - определение и построение с примерами решения будет окружность (4) переводить в эллипс, заданный соотношением Кривые второго порядка - определение и построение с примерами решения

Число Кривые второго порядка - определение и построение с примерами решения называется эксцентриситетом эллипса. Эксцентриситет Кривые второго порядка - определение и построение с примерами решения характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении Кривые второго порядка - определение и построение с примерами решения становится более вытянутым

Кривые второго порядка - определение и построение с примерами решения

Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами Кривые второго порядка - определение и построение с примерами решения. Их длины Кривые второго порядка - определение и построение с примерами решения и Кривые второго порядка - определение и построение с примерами решениязадаются формуламиКривые второго порядка - определение и построение с примерами решения Прямые Кривые второго порядка - определение и построение с примерами решения называются директрисами эллипса. Директриса Кривые второго порядка - определение и построение с примерами решения называется левой, а Кривые второго порядка - определение и построение с примерами решения – правой. Так как для эллипса Кривые второго порядка - определение и построение с примерами решенияи, следовательно, левая директриса располагается левее левой вершины эллипса, а правая – правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е. Кривые второго порядка - определение и построение с примерами решения

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек Кривые второго порядка - определение и построение с примерами решения есть величина постоянная (не равная нулю и меньшая, чем расстояние между Кривые второго порядка - определение и построение с примерами решения).

Точки Кривые второго порядка - определение и построение с примерами решения называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов Кривые второго порядка - определение и построение с примерами решения обозначим через а. По условию, а <с.

Выбрав декартову систему координат, как в случае эллипса, и используя определение гиперболы, составляем ее уравнение: Кривые второго порядка - определение и построение с примерами решения (7.6) где ху – координаты произвольной точки гиперболы,Кривые второго порядка - определение и построение с примерами решения

Уравнение (7.6) называется каноническим уравнением гиперболы.

Из уравнения (7.6) видно, что Кривые второго порядка - определение и построение с примерами решения. Это означает, что вся гипербола располагается вне полосы, ограниченной прямыми х = -а и х = а.

Так как в уравнение входят только четные степени x и у, то гипербола симметрична относительно каждой из координатных осей и начала координат. Поэтому достаточно построить эту кривую в первой четверти: в остальных четвертях гипербола строится по симметрии. Из уравнения (7.6) для первой четверти, имеем:

Кривые второго порядка - определение и построение с примерами решения

График этой функции от точки A(а,0) уходит неограниченно вправо и вверх (Рис. 7.7), и как угодно близко подходит к прямой:

Кривые второго порядка - определение и построение с примерами решения

Поэтому говорят, что гипербола асимптоматически приближается к прямой (7.7), и эту прямую называют асимптотой гиперболы. Из симметрии гиперболы следует, что у нее две асимптоты

Кривые второго порядка - определение и построение с примерами решения

Построим гиперболу. Сначала строим, так называемый, основной прямоугольник гиперболы, центр которой совпадает с началом координат, а стороны равны 2а и 2Ь параллельны осям координат. Прямые, на которых расположены диагонали этого прямоугольника, являются асимптотами гиперболы. Сделаем рисунок гиперболы (Рис. 7.8).

Кривые второго порядка - определение и построение с примерами решения

Гипербола состоит из двух отдельных ветвей. Центр симметрии гиперболы называется ее центром, оси симметрии называются осями гиперболы. Точки Кривые второго порядка - определение и построение с примерами решения, пересечения гиперболы с осью Ох называются вершинами гиперболы. Величины а и Ь называются полуосями гиперболы. Если а=Ь, то гипербола называется равносторонней.

Эксцентриситетом гиперболы называется числоКривые второго порядка - определение и построение с примерами решения. Для любой гиперболы Кривые второго порядка - определение и построение с примерами решения. Эксцентриситет характеризует форму гиперболы: чем меньше, тем больше вытягивается гипербола вдоль оси Ох. На рисунке 7.9 изображены гиперболы с различными значениями £.

Кривые второго порядка - определение и построение с примерами решения

Фокальными радиусами точки гиперболы называются отрезки прямых, соединяющие эту точку с фокусамиКривые второго порядка - определение и построение с примерами решения. Их длины Кривые второго порядка - определение и построение с примерами решенияи Кривые второго порядка - определение и построение с примерами решения задаются формулами:

Для правой – ветви Кривые второго порядка - определение и построение с примерами решения,

Для левой – ветви Кривые второго порядка - определение и построение с примерами решения

Прямые Кривые второго порядка - определение и построение с примерами решенияназываются директрисами гиперболы. Как и в случае эллипса, точки гиперболы характеризуются соотношением Кривые второго порядка - определение и построение с примерами решения

Парабола

Параболой называется линия, состоящая из всех точек плоскости, равноудаленных от данной точки F (фокуса) и данной прямой Кривые второго порядка - определение и построение с примерами решения (директрисы).

Для вывода канонического уравнения параболы ось Ох проводят через фокус F перпендикулярно директрисе Кривые второго порядка - определение и построение с примерами решения в направлении от директрисы к фокусу; начало координат берут в середине отрезка между фокусом F и точкой D пересечения оси Ох с директрисой Кривые второго порядка - определение и построение с примерами решения. Если обозначить через р расстояние фокуса от директрисы, то Кривые второго порядка - определение и построение с примерами решения и уравнение директрисы будет иметь видКривые второго порядка - определение и построение с примерами решения

В выбранной системе координат уравнение параболы имеет вид:

Кривые второго порядка - определение и построение с примерами решения (7.8)

Это уравнение называется каноническим уравнением параболы. Из уравнения (7.8) видно, что л: может принимать только неотрицательные значения. Значит, на рисунке вся парабола располагается справа от оси Оу. Так как уравнение (7.8) содержит у только в четной степени, то парабола симметрична относительно оси Ох и поэтому достаточно рассмотреть ее форму в первой четверти. В этой четверти Кривые второго порядка - определение и построение с примерами решения.

При неограниченном возрастании x неограниченно растет и у. Парабола, выходя из начала координат, уходит неограниченно вправо и вверх, четвертой четверти парабола строится по симметрии. Сделаем рисунок параболы (Рис. 7.10). Кривые второго порядка - определение и построение с примерами решения

Ось симметрии параболы называется ее осью. Точка пересечения с ее осью называется вершиной параболы.

Исследование на плоскости уравнения второй степени

Рассмотрим уравнение:

Кривые второго порядка - определение и построение с примерами решения (7.9)

где среди коэффициентов А, В, С есть отличные от нуля, т.е. (7.9) – уравнение второй степени относительно х и у.

Возьмем на плоскости две прямоугольные системы координат: Оху, которую будем называть старой, и новую, полученную из Оху поворотом ее вокруг начала координат на угол Кривые второго порядка - определение и построение с примерами решения

Старые координаты х, у выражаются через новые координаты Кривые второго порядка - определение и построение с примерами решенияпо формулам:

Кривые второго порядка - определение и построение с примерами решения (7.10)

Подставив выражения для х и у в уравнение (8), получим: Кривые второго порядка - определение и построение с примерами решения (7.11)

Это уравнение в системе координат Кривые второго порядка - определение и построение с примерами решения задает ту же линию, что и уравнение (7. 9) в системе Оху.

Если в уравнении (7.9) Кривые второго порядка - определение и построение с примерами решения, то за счет выбора угла а в (7.10) можно добиться того, что В’ = 0. Для этого угол а надо взять таким, чтобы Кривые второго порядка - определение и построение с примерами решения. Поэтому будем считать В’= 0, тогда уравнение (7.11) примет вид:

Кривые второго порядка - определение и построение с примерами решения (7.12)

Преобразуя это уравнение и применяя параллельный перенос координатных осей, придем к уравнению:

Кривые второго порядка - определение и построение с примерами решения (7.13)

В зависимости от знаков коэффициентов уравнения (7.13) рассмотрим следующие случаи:

Рассматривая далее методично все случаи, придем к выводу: уравнение вида (7.9) задает одну из следующих фигур: эллипс, гиперболу, параболу, пару пересекающихся прямых, пару параллельных прямых, прямую, точку или пустое множество.

Кривые второго порядка в высшей математике

Выяснение взаимосвязей между различными показателями экономического характера часто приводит к форме этих связей в виде гиперболы и параболы. В этой лекции приведём краткие сведения обо всех кривых второго порядка.

Окружность

Определение 9.1. Окружностью называется геометрическое место точек, равноудаленных от данной точки – центра окружности.

Если точка Кривые второго порядка - определение и построение с примерами решения – центр (рис.9.1), N(x,y) – произвольная точка окружности и R – её радиус, то согласно определения можно записать

Кривые второго порядка - определение и построение с примерами решения

или

Кривые второго порядка - определение и построение с примерами решения

Найдём условия, при которых общее уравнение второй степени с двумя переменными

Кривые второго порядка - определение и построение с примерами решения

определяет окружность. Раскрыв скобки в (9.1.1), получим

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Сравнивая (9.1.2) и (9.1.3), находим условия А = С, В = О,

Кривые второго порядка - определение и построение с примерами решения, при выполнении которых общее уравнение (9.1.2) определяет окружность.

Эллипс

Определение 9.2. Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, большая, чем расстояние между фокусами.

Пусть на плоскости хОу (рис. 9.2) дан эллипс с фокусами Кривые второго порядка - определение и построение с примерами решения иКривые второго порядка - определение и построение с примерами решения. Пусть начало координат лежит на середине отрезка Кривые второго порядка - определение и построение с примерами решения. Выведем уравнение эллипса.

Если точка А – произвольная точка эллипса с координатами (х, у), то

Кривые второго порядка - определение и построение с примерами решения (9.2.1)

где Кривые второго порядка - определение и построение с примерами решения– постоянная сумма. Так как Кривые второго порядка - определение и построение с примерами решения

расположены симметрично относительно начала координат, то они имеют координаты (с,0) и (-с,0) соответственно. Воспользовавшись формулой для вычисления расстояния между двумя точками, находим Кривые второго порядка - определение и построение с примерами решения. Подставив значения Кривые второго порядка - определение и построение с примерами решения

и Кривые второго порядка - определение и построение с примерами решения в (9.2.1), получаем уравнение Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения

Обе части этого уравнения возведем в квад-Упростив и обозначивКривые второго порядка - определение и построение с примерами решения

получимКривые второго порядка - определение и построение с примерами решения. Разделим обе части уравнения на правую часть

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Уравнение (9.2.2) называется каноническим уравнением эллипса, где а – большая полуось, b – малая полуось.

Это уравнение второго порядка, следовательно, эллипс есть линия второго порядка. Для определения формы эллипса служит его эксцентриситет Кривые второго порядка - определение и построение с примерами решения, т.е. отношение расстояния между фокусами этого эллипса к длине его большей полуоси. Так как сКривые второго порядка - определение и построение с примерами решенияа, то эксцентриситет каждого эллипса меньше единицы. Поскольку

Кривые второго порядка - определение и построение с примерами решения , то подставив значение Кривые второго порядка - определение и построение с примерами решения в равенствоКривые второго порядка - определение и построение с примерами решения, получим Кривые второго порядка - определение и построение с примерами решения

Следовательно, эксцентриситет определяется отношение осей эллипса; а отношение осей определяется эксцентриситетом. Чем ближе эксцентриситет к единице, тем меньше Кривые второго порядка - определение и построение с примерами решения, тем меньше, следовательно, отношение Кривые второго порядка - определение и построение с примерами решения. Это значит, что эллипс вытянут вдоль оси Ох. В случае Ь=а иКривые второго порядка - определение и построение с примерами решения получаем окружность.

Две прямые, перпендикулярные к большей оси эллипса и расположенные симметрично относительно центра на расстоянии Кривые второго порядка - определение и построение с примерами решения от него, называются директрисами эллипса. Уравнения директрис

Кривые второго порядка - определение и построение с примерами решения

Пример:

Исследовать, какая линия определяется уравнениемКривые второго порядка - определение и построение с примерами решения

Решение:

Сгруппируем члены, содержащие одну и туже переменную, получимКривые второго порядка - определение и построение с примерами решения

Из второй скобки вынесем коэффициент при Кривые второго порядка - определение и построение с примерами решения , после чего предыдущее уравнение примет вид

Кривые второго порядка - определение и построение с примерами решения

В каждой из скобок выделим полный квадрат

Кривые второго порядка - определение и построение с примерами решения

или Кривые второго порядка - определение и построение с примерами решения

Произведём замену: Кривые второго порядка - определение и построение с примерами решения. Исследуемое уравнение принимает вид: Кривые второго порядка - определение и построение с примерами решения.

Разделив обе части этого уравнения на Кривые второго порядка - определение и построение с примерами решения, получим канонический вид данного уравнения:Кривые второго порядка - определение и построение с примерами решения

Заданное уравнение определяет эллипс с полуосями Кривые второго порядка - определение и построение с примерами решения, центр которого находится в точке Кривые второго порядка - определение и построение с примерами решения

Выбираем на плоскости произвольным образом прямоугольную систему координат хОу. С помощью параллельного переноса переносим оси координат в новое начало в точку Кривые второго порядка - определение и построение с примерами решения. В новой системе координат строим основной прямоугольник со сторонами Кривые второго порядка - определение и построение с примерами решения, стороны которого параллельны новым осям координат, а центр находится в точке Кривые второго порядка - определение и построение с примерами решения. Вписываем в него эллипс.

Кривые второго порядка - определение и построение с примерами решения

Гипербола

Определение 9.3.1. Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, меньшая, чем расстояние между фокусами и отличная от нуля (указанная разность берется по абсолютному значению). Кривые второго порядка - определение и построение с примерами решения

Пусть М- произвольная точка гиперболы с фокусами Кривые второго порядка - определение и построение с примерами решения (рис. 9.4). Отрезки Кривые второго порядка - определение и построение с примерами решения называются фокальными радиусами точки М и обозначаются Кривые второго порядка - определение и построение с примерами решенияПо определению гиперболы Кривые второго порядка - определение и построение с примерами решения . Так как Кривые второго порядка - определение и построение с примерами решения и т.к. Кривые второго порядка - определение и построение с примерами решения расположены симметрично относительно начала координат, то, применяя формулу для вычисления расстояния между двумя точками, находим Кривые второго порядка - определение и построение с примерами решения . Заменяя Кривые второго порядка - определение и построение с примерами решения в равенстве Кривые второго порядка - определение и построение с примерами решения найденными выражениями, получаем:

Кривые второго порядка - определение и построение с примерами решения.

Возведя в квадрат обе части этого уравнения и обозначая Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения, получим: Кривые второго порядка - определение и построение с примерами решения или, разделив все члены уравнения на правую часть, приводим его к виду:

Кривые второго порядка - определение и построение с примерами решения

Уравнение (9.3.1)- это каноническое уравнение гиперболы, линии второго порядка.

Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником. Его диагонали совпадают с асимптотами гиперболы Кривые второго порядка - определение и построение с примерами решения. Поэтому, если требуется построить гиперболу с полуосями а и b, то следует, прежде всего, построить ее основной прямоугольник, затем асимптоты.

Уравнение видаКривые второго порядка - определение и построение с примерами решения определяет гиперболу, вершины которой расположены на оси Оу (Рис. 9.5).

Кривые второго порядка - определение и построение с примерами решения

Форму гиперболы характеризует её эксцентриситет Кривые второго порядка - определение и построение с примерами решения, т.е. отношение расстояния между фокусами этой гиперболы к расстоянию между её вершинами. Поскольку Кривые второго порядка - определение и построение с примерами решения, то подставив в формулу Кривые второго порядка - определение и построение с примерами решенияполучимКривые второго порядка - определение и построение с примерами решенияоткудаКривые второго порядка - определение и построение с примерами решения. Следовательно, эксцентриситет oредсляется отношением Кривые второго порядка - определение и построение с примерами решения, а отношение Кривые второго порядка - определение и построение с примерами решения– эксцентриситетом. Следовательно, эксцентриситет характеризует форму гиперболы. Чем меньше эксцентриситет, тем меньше отношение Кривые второго порядка - определение и построение с примерами решения, а это значит, что основной прямоугольник вытянут в направлении оси, соединяющей вершины.

Прямые, заданные уравнениями Кривые второго порядка - определение и построение с примерами решения называются директрисами гиперболы.

Пример:

Составить уравнение геометрического места точек, отношение расстояний которых от данной точки А(4, 0) и от данной прямой х=1 равно 2.

Решение:

В системе координат хОу построим точку А(4, 0) и прямую х = 1. Пусть М(х, у) – произвольная точка искомого геометрического места точек. Опустим перпендикуляр MB на данную прямую х = 1 и определим координаты точки В. Так как точка В лежит на заданной прямой, то её абсцисса равна 1. Ордината точки В равна ординате точки М. Следовательно, B(1, у) (рис. 9.6).По условию задачи Кривые второго порядка - определение и построение с примерами решения .Подставив значения расстоянийКривые второго порядка - определение и построение с примерами решения, которые находим по формуле расстояния между двумя точками, получим:

Кривые второго порядка - определение и построение с примерами решения

Возводя в квадрат левую и правую части равенства и последовательно преобразовывая, находим уравнение:

Кривые второго порядка - определение и построение с примерами решения

Полученное уравнение определяет гиперболу, у которой действительная полуось -а = 2, а мнимая Кривые второго порядка - определение и построение с примерами решения.

Определим фокусы гиперболы. Для гиперболы выполняется равенство Кривые второго порядка - определение и построение с примерами решения . Следовательно, Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения – фокусы гиперболы. Как видно, заданная точка

А(4, 0) является правым фокусом гиперболы.

Эксцентриситет полученной гиперболы равен Кривые второго порядка - определение и построение с примерами решения

Подставив значения а и b в уравнения асимптот Кривые второго порядка - определение и построение с примерами решения иКривые второго порядка - определение и построение с примерами решения

у =—получим уравнения асимптот гиперболы:Кривые второго порядка - определение и построение с примерами решенияи Кривые второго порядка - определение и построение с примерами решения.

Для построения гиперболы строим основной прямоугольник с полуосями Кривые второго порядка - определение и построение с примерами решения , затеем асимптоты Кривые второго порядка - определение и построение с примерами решения иКривые второго порядка - определение и построение с примерами решения а далее строим и саму гиперболу (рис.9.6). Кривые второго порядка - определение и построение с примерами решения

  • Заказать решение задач по высшей математике

Парабола

Определение 9.4.1. Параболой называется геометрическое место точек, для каждой из которых, расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой,(директриса не проходит через фокус).

Обозначим фокус параболы – F, расстояние от фокуса до директрисы – р(р > 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А – произвольная точка плоскости с координатами (х, у) и пусть Кривые второго порядка - определение и построение с примерами решения. Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты Кривые второго порядка - определение и построение с примерами решения.

Кривые второго порядка - определение и построение с примерами решения

Тогда Кривые второго порядка - определение и построение с примерами решения А расстояние Кривые второго порядка - определение и построение с примерами решения Подставив в формулу r=d, будем иметьКривые второго порядка - определение и построение с примерами решения. Возведя обе части равенства в квадрат, получимКривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения или

Кривые второго порядка - определение и построение с примерами решения(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения Кривые второго порядка - определение и построение с примерами решениятакже определяют параболы.

Легко показать, что уравнение Кривые второго порядка - определение и построение с примерами решения, определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а Кривые второго порядка - определение и построение с примерами решения О. Для этого выделим полный квадрат:

Кривые второго порядка - определение и построение с примерами решения

и сделаем параллельный перенос по формуламКривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения

В новых координатах преобразуемое уравнение примет вид: Кривые второго порядка - определение и построение с примерами решения где р – положительное число, определяется равенствомКривые второго порядка - определение и построение с примерами решения .

Пример:

Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстояниюКривые второго порядка - определение и построение с примерами решения, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F – фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условиюКривые второго порядка - определение и построение с примерами решения, запишем это равенство с помощью координат: Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения , или после упрощения Кривые второго порядка - определение и построение с примерами решения. Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

Кривые второго порядка - определение и построение с примерами решения

где коэффициенты А, В и С не равны одновременно нулю Кривые второго порядка - определение и построение с примерами решения

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС<0.

Кривая второго порядка принадлежит параболическому типу, если коэффициент В равен нулю: В=0 и только один из коэффициентов А и С не равен нулю: АС=0 и Кривые второго порядка - определение и построение с примерами решения

Рассмотрим канонические (простейшие) уравнения эллипса, гиперболы и параболы.

Эллипсом называется множество всех точек плоскости, для которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная, большая расстояния между фокусами.

Геометрическое свойство точек эллипса выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину, о которой идет речь в определении эллипса, обозначим через 2а: 2а>2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

Кривые второго порядка - определение и построение с примерами решения которое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число Кривые второго порядка - определение и построение с примерами решения– мень-

шей полуосью эллипса, 2а и 2b – соответственно большей и меньшей осями эллипса. Точки Кривые второго порядка - определение и построение с примерами решения называют вершинами эллипса, а Кривые второго порядка - определение и построение с примерами решения – его фокусами (рис. 12).

Кривые второго порядка - определение и построение с примерами решения

Координатные оси являются осями симметрии эллипса, а начало координат – его центром симметрии. Центр симметрии эллипса называется центром эллипса.

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид Кривые второго порядка - определение и построение с примерами решения и определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Кривые второго порядка - определение и построение с примерами решения

Эксцентриситет изменяется от нуля до единицы Кривые второго порядка - определение и построение с примерами решения и характеризует форму эллипса. Для окружности Кривые второго порядка - определение и построение с примерами решения Чем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

Кривые второго порядка - определение и построение с примерами решения

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения – каноническое уравнение эллипса с центром в точкеКривые второго порядка - определение и построение с примерами решения большей полуосью а=3 и меньшей полуосью Кривые второго порядка - определение и построение с примерами решения

Найдем эксцентриситет эллипса:

Кривые второго порядка - определение и построение с примерами решения

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке Кривые второго порядка - определение и построение с примерами решения а оси Кривые второго порядка - определение и построение с примерами решения параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е. Кривые второго порядка - определение и построение с примерами решения

В новой системе координат координаты Кривые второго порядка - определение и построение с примерами решения вершин и фокусов гиперболы будут следующими:

Кривые второго порядка - определение и построение с примерами решения

Переходя к старым координатам, получим:

Кривые второго порядка - определение и построение с примерами решения

Построим график эллипса.

Кривые второго порядка - определение и построение с примерами решения Задача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а<2с. Точка М(х,у) принадлежит гиперболе тогда и только тогда, когда ее координаты удовлетворяют уравнению

Кривые второго порядка - определение и построение с примерами решения которое называют каноническим уравнением гиперболы.

Число а называют действительной полуосью гиперболы, число

Кривые второго порядка - определение и построение с примерами решения – мнимой полуосью гиперболы, 2а и 2b – соответственно действительной и мнимой осями гиперболы. Точки Кривые второго порядка - определение и построение с примерами решения называют вершинами гиперболы, Кривые второго порядка - определение и построение с примерами решения – ее фокусами (рис. 13).Кривые второго порядка - определение и построение с примерами решения

Координатные оси являются осями симметрии гиперболы, а начало координат – ее центром симметрии. Центр симметрии гиперболы называется центром гиперболы.

Точки гиперболы по мере удаления от начала координат неограниченно (асимптотически) приближаются к прямым у=±kх (где Кривые второго порядка - определение и построение с примерами решения), которые называются асимптотами гиперболы.

Эксцентриситетом гиперболы называется отношение фокусного расстояния к длине действительной оси:Кривые второго порядка - определение и построение с примерами решения

Эксцентриситет гиперболы изменяется от единицы до бесконечности Кривые второго порядка - определение и построение с примерами решения и характеризует форму гиперболы. Чем меньше эксцентриситет гиперболы, тем ее ветви более сжаты к оси Ох.

Замечание. Каноническое уравнение Кривые второго порядка - определение и построение с примерами решения определяет сопряженную гиперболу с действительной полуосью b, вершинами в точках Кривые второго порядка - определение и построение с примерами решения и фокусами на оси Оу.

Пример:

Составить каноническое уравнение гиперболы с центром в начале координат, если ее действительная полуось равна трем, а эксцентриситет -четырем третьим.

Решение:

Каноническое уравнение гиперболы имеет вид

Кривые второго порядка - определение и построение с примерами решения По условию задачи нам известно: а=3,Кривые второго порядка - определение и построение с примерами решения Найдем мнимую полуось.

Кривые второго порядка - определение и построение с примерами решения

Следовательно, уравнение искомой гиперболы:

Кривые второго порядка - определение и построение с примерами решения Задача решена.

Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом параболы, и от данной прямой, называемой директрисой и не проходящей через фокус.

Расстояние между фокусом и директрисой обозначим р. Для того чтобы точка М(х,у) принадлежала параболе, необходимо и достаточно, чтобы ее координаты удовлетворяли уравнению Кривые второго порядка - определение и построение с примерами решения которое называется каноническим уравнением параболы.

Точка O(0,0) называется вершиной параболы, число р – параметром параболы, Кривые второго порядка - определение и построение с примерами решения – директрисой пир,болы, а Кривые второго порядка - определение и построение с примерами решения– ее фокусом. Прямая у=0 является осью симметрии параболы, ветви которой направлены вправо. Центра симметрии у параболы нет (рис. 14). Кривые второго порядка - определение и построение с примерами решения

Если поменять ролями оси Ох и Оу, то каноническое уравнение параболы примет вид Кривые второго порядка - определение и построение с примерами решения (уравнение параболы с вертикальной осью, уравнением директрисы Кривые второго порядка - определение и построение с примерами решения фокусом Кривые второго порядка - определение и построение с примерами решения ветви направлены вверх).

Замечание. Канонические уравнения параболы можно рассматривать и в случае, когда ветви направлены влево или вниз:

Пример:

Составить уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и отсекающей на биссектрисе первого координатного угла отрезок длиной Кривые второго порядка - определение и построение с примерами решения

Решение:

Каноническое уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и ветвями, направленными вверх, имеет вид:

Кривые второго порядка - определение и построение с примерами решения

Уравнение биссектрисы первого координатного угла у=х. Найдем точки пересечения параболы с биссектрисой. Для этого решим систему уравнений

Кривые второго порядка - определение и построение с примерами решения

Следовательно, точка М(2р,2р) будет принадлежать параболе. С другой стороны, парабола отсекает на биссектрисе отрезок длиной Кривые второго порядка - определение и построение с примерами решения который является гипотенузой равнобедренного прямоугольного треугольника с катетами 2р. Кривые второго порядка - определение и построение с примерами решения

По теореме Пифагора

Кривые второго порядка - определение и построение с примерами решения

Тогда искомое уравнение параболы

Кривые второго порядка - определение и построение с примерами решения

Уравнение директрисы параболы: у=-1, координаты ее фокуса F(0,1).

Кривые второго порядка - определение и построение с примерами решения

Задача решена.

  • Евклидово пространство
  • Матрица – виды, операции и действия с примерами
  • Линейный оператор – свойства и определение
  • Многочлен – виды, определение с примерами
  • Числовые множества
  • Вектор – определение и основные понятия
  • Прямая – понятие, виды и её свойства
  • Плоскость – определение, виды и правила
Построить такой график можно здесь: https://www.desmos.com/
Построить такой график можно здесь: https://www.desmos.com/

Что мы знаем со школы про эллипс? К сожалению, исходя из своей практики работы с учениками, многие вплоть до 11 класса не сталкиваются с такой замечательной плоской фигурой, впрочем как и с её частным случаем – окружностью. Некоторые знают только примерный вид уравнения…

Кстати, какое оно? Каноническим уравнением эллипса считается следующее уравнение:

Каноническое уравнение эллипса
Каноническое уравнение эллипса

Почему оно именно такое? Что ж, это можно вывести из определения. Поэтому давайте его напишем.

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, большая чем расстояние между фокусами.

Давайте сделаем рисунок и попробуем вывести каноническое уравнение из определения эллипса.

Математика эллипса: всё, что нужно знать

Обозначим фокусы через F₁ и F₂, расстояние между ними через 2c, а сумму расстояний от произвольной точки эллипса M(x; y) до фокусов – через 2a. По определению 2а > 2c, т.е. а > c.

Для вывода уравнения эллипса выберем систему координат OXY так, чтобы фокусы F₁ и F₂ лежали а оси OX, а начало координат совпадало с серединой отрезка F₁F₂. Тогда фокусы будут иметь следующие координаты: F₁(-c; 0) и F₂(+c; 0).

Тогда, согласно определению эллипса, MF₁ + MF₂ = 2a, то есть:

Математика эллипса: всё, что нужно знать

Мы вывели каноническое уравнение эллипса и доказали, что оно эквивалентно начальному уравнению из определения.

Эллипс – кривая второго порядка.

Исследование формы эллипса по его уравнению

Установим форму эллипса, используя его каноническое уравнение.

1. Каноническое уравнение содержит x и y только в четных степенях, поэтому если точка (x; y) принадлежит эллипсу, то ему также принадлежат точки (x; -y), (-x; y), (-x; -y). Отсюда следует, что эллипс симметричен относительно осей координат Ox и Oy, а также точки O(0; 0), которая является центром эллипса.

Математика эллипса: всё, что нужно знать

2. Точки пересечения эллипса с осями координат. Положив y = 0, находим две точки A₁(a; 0) и A₂(-a;0), в которых ось Ox пересекает эллипс. Положив в уравнении x = 0, находим точки пересечения эллипса с осью Oy: B₁(0; b) и B₂(0; -b). Все эти 4 точки называются вершинами эллипса.

Отрезки A₁A₂ и B₁B₂, а также их длины 2a и 2b называются соответственно большой и малой осями эллипса. Числа a и b называются соответственно большой и малой полуосями эллипса.

3. Также из канонического уравнения следует, что каждое слагаемое в левой части не превосходит единицы, т.е. имеют место неравенства

Математика эллипса: всё, что нужно знать

Следовательно, все точки эллипса лежат внутри прямоугольника, образованного прямыми x = ±a и y = ±b.

4. В каноническом уравнении сумма неотрицательных слагаемых (x/a)² и (y/b)² равна единице. Следовательно, при возрастании одного слагаемого другое будет уменьшаться, т.е. если |x| возрастает, то |y| уменьшается и наоборот.

Дополнительные сведения об эллипсе

Форма эллипса зависит от отношения b/a. При a = b = R эллипс превращается в окружность, уравнение эллипса принимает вид x² + y² = R². Однако, в качестве характеристики формы эллипса чаще используется отношение c/a.

Отношение c/a половины расстояния между фокусами к большей полуоси эллипса называется эксцентриситетом эллипса и обозначается буквой «эпсилон» ε:

Математика эллипса: всё, что нужно знать

Из последней строки видно, что чем меньше эксцентриситет эллипса, тем эллипс будет менее сплющенным, то есть больше походить на окружность, быть ближе к ней по форме. Если положить ε = 0, то эллипс превращается в окружность.

Пусть M(x; y) – произвольная точка эллипса с фокусами F₁ и F₂. Длины отрезков F₁M = r₁ и F₂M = r₂ называются фокальными радиусами точки M.
Очевидно, что r₁ + r₂ = 2a.

Тогда имеют место быть формулы: r₁ = a + εx и r₂ = a + εx

Выведем эти формулы

Математика эллипса: всё, что нужно знать
Математика эллипса: всё, что нужно знать

Прямые x = ±a/ε называются директрисами эллипса. Значение директрисы эллипса выявляется следующим утверждением.

Теорема

Если r – расстояние от произвольной точки эллипса до какого-нибудь фокуса, d – расстояние от этой же точки до соответствующей этому фокусу директрисы, то отношение r/d есть величина постоянная, равная эксцентриситету эллипса: r/d = ε.

Из равенства a² – c² = b² следует, что a > b. Если же a < b, то каноническое уравнение (x/a)² + (y/b)² = 1 определяет эллипс, большая ось которого 2b лежит на оси OY, а малая ось 2a – лежит на оси Ox. Фокусы такого эллипса находятся в точках F₁(0; +c) и F₂(0; -c), где c = √(b² – a²).

Площадь фигуры, ограниченной эллипсом

Допустим, что перед нами стоит следующая задача:
Вычислить площадь фигуры, ограниченной эллипсом.

Решение:

Зададим эллипс параметрическими уравнениями:
x = a
cos(t) и y = b sin(t). Кстати, выразив косинус и синус из каждого, а потом возведя в квадрат оба уравнения, сложив их, можно прийти к каноническому уравнению эллипса.

В силу симметричности эллипса относительно начала координат, нам достаточно найти площадь 1/4 части эллипса, а затем умножить результат на 4. Сделаем подходящий рисунок.

Математика эллипса: всё, что нужно знать

Здесь x изменяется от 0 до a, следовательно параметр t изменяется от π/2 до 0. Площадь четверти эллипса будем искать с помощью интегрирования функции, задающей эллипс в первой четверти координат.

Вывод формулы для площади эллипса
Вывод формулы для площади эллипса

Длина дуги эллипса (периметр эллипса)

Вывод длины дуги эллипса через эллиптический интеграл
Вывод длины дуги эллипса через эллиптический интеграл

Ознакомиться с эллиптическими интегралами

Стоит заметить, что для окружности всё получается гораздо проще, и мы легко выводим формулу, знакомую нам со школы C = 2πR.

Вывод длины дуги окружности
Вывод длины дуги окружности

Приближённые формулы для периметра

Математика эллипса: всё, что нужно знать

Точные формулы для периметра

Джеймс Айвори и Фридрих Бессель независимо друг от друга получили формулу для периметра эллипса:

Математика эллипса: всё, что нужно знать

Площадь сегмента эллипса

Площадь сегмента между дугой, выпуклой влево, и вертикальной хордой , проходящей через точки (x; y) и (x; -y) можно определить по формуле:

Математика эллипса: всё, что нужно знать

Если эллипс задан уравнением Ax² + Bxy + Cy² = 1, то площадь можно определить по формуле

Математика эллипса: всё, что нужно знать

Физический смысл фокусов

1. Свет от источника, находящегося в одном из фокусов, отражается эллипсом так, что отраженные лучи пересекутся во втором фокусе.

2. Свет от источника, находящегося вне любого из фокусов, отражается эллипсом так, что отраженные лучи ни в каком фокусе не пересекутся.

3. Если F₁ и F₂ — фокусы эллипса, то для любой точки M, принадлежащей эллипсу, угол между касательной в этой точке и прямой F₁M равен углу между касательно и прямой F₂M.

4. Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.

5. Эволютой эллипса является астроида , вытянутая вдоль вертикальной оси. Эволюта плоской кривой — геометрическое место точек , являющихся центрами кривизны кривой. По отношению к своей эволюте любая кривая является эвольвентой .

6. Среди всех выпуклых замкнутых кривых, ограничивающих данную площадь, эллипсы и только они имеет максимальную аффинную длину .
Аффинная длина — параметр плоской кривой , который сохраняется при эквиаффинных преобразованиях (то есть аффинных преобразованиях , сохраняющих площадь ).

7. Если лестницу (бесконечно тонкий отрезок прямой) прислонить к вертикальной стенке с горизонтальным полом, и один конец лестницы будет скользить по стенке (всё время касаясь её) а второй конец лестницы будет скользить по полу (всё время касаясь его), тогда любая фиксированная точка лестницы (не на её концах), будет двигаться по дуге некоторого эллипса. Это свойство остаётся верным, если мы возьмём точку не внутри лестницы-отрезка, а на её мыслимом продолжении. Последнее свойство используется в описанном выше эллипсографе.

Построение эллипса с помощью иголок, нитки и карандаша.

Построение эллипса с помощью иголок, нитки и карандаша.
Построение эллипса с помощью иголок, нитки и карандаша.

Эллипсы в астрономии. Все планеты и другие небесные тела Солнечной системы движутся вокруг Солнца по эллиптическим орбитам, в одном из фокусов – Солнце. Этот закон был открыт ещё Кеплером. Ближайшую точку к Солнцу Земля проходит 4 января, таким образом, для северного полушария зима чуть теплее, чем для южного. К тому же, из-за такой формы орбиты, зима для северного полушария чуть короче, то есть период между осенним и весенним равноденствием не ровно 1/2 года, а меньше. Действительно, на южном полюсе температуры бывают ниже, чем на северном полюсе.

Физическое свойство фокусировки. Лучи, испущенные из одного фокуса, после отражения соберутся во втором фокусе. Название «фокус» как раз и связано со словом «фокусировка» лучей. Если на орбите Земли расположить зеркала, так чтобы они были повёрнуты ровно по касательной к орбите, то все лучи соберутся во 2 фокусе, то есть из той точки будет видно, что вся орбита светится.

Последнее свойство используется в физике для построение оптических резонаторов в лазерной технике. Лампа накачки размещается вдоль одной из фокальных осей зеркально отражающего эллиптического цилиндра, а лазерный стержень располагается вдоль другой фокальной оси. На второй фокальной оси помещают активную среду. А свойства эллиптической поверхности помогают быть уверенными в том, что вся энергия лампы накачки соберется в области активной среды.

Математика эллипса: всё, что нужно знать

Почитать подробнее здесь

Поместим в одном из фокусов зеркального эллипса лампочку
и проследим за выпущенными из неё лучами света. Отразившись от эллипса, они соберутся в другом фокусе. Причём окажутся там одновременно:

Математика эллипса: всё, что нужно знать

Зрительно напомним геометрическое определение эллипса: эллипс есть множество точек M плоскости, сумма расстояний от которых до данных точек A и B постоянна:

Математика эллипса: всё, что нужно знать

Решим вспомогательную задачу. Даны две точки по одну сторону от прямой. Мы хотим пройти из A в B, набрав по пути воды из реки l.

Математика эллипса: всё, что нужно знать

Мы хотим пройти из A в B, набрав по пути воды из реки l. В какой точке M надо набирать воду, чтобы общий путь имел минимальную длину?

Математика эллипса: всё, что нужно знать

Рассмотрим точку B’, симметричную точке B. Тогда XB = XB’. Длина AX+XB = AX+XB’ минимальна, когда ломаная AXB’ превращается в прямую.

Мы хотим пройти из A в B, набрав по пути воды из реки l. В какой точке набирать воду? Ответ: в точке пересечения l с AB’ (где B’ симметрична B относительно l). Заодно мы доказали равенство углов. Мы хотим пройти из A в B, набрав по пути воды из реки l. Где набирать воду?
Ответ 1: в точке пересечения
l с AB’.
Ответ 2: там, где «угол падения равен углу отражения».

Принцип Ферма: свет выбирает кратчайший путь между двумя точками.

Математика эллипса: всё, что нужно знать

Вернемся к доказательству оптического свойства эллипса. На эллипсе сумма AM+MB постоянна. А для точек вне эллипса эта сумма больше, AX+XB > AM+MB.

Математика эллипса: всё, что нужно знать

В частности, если провести в точке M касательную к эллипсу, то для любой другой точки X на этой касательной AX+XB > AM+MB. Значит, по предыдущей задаче «угол падения равен углу отражения».

Математика эллипса: всё, что нужно знать

…по предыдущей задаче «угол падения равен углу отражения». Оптическое свойство эллипса доказано.

Многофокусные эллипсы

N-эллипс — обобщение эллипса , имеющее более двух фокусов. N-эллипсы называют также мультифокальными эллипсами , полиэллипсами, k -эллипсами, эллипсами Чирнхауса . Впервые такие фигуры исследовал Джеймс Максвелл в 1846 году.

Пусть на плоскости задано n точек (ui , vi ) (фокусы ), тогда n -эллипс является геометрическим местом точек плоскости, для которых сумма расстояний до n фокусов является постоянной величиной d . В виде формулы данное утверждение записывается как

Математика эллипса: всё, что нужно знать

1-эллипс представляет собой окружность , 2-эллипс — обычный эллипс. Обе данные кривые являются алгебраическими кривыми степени 2.

Для любого числа n фокусов n -эллипс представляет собой замкнутую выпуклую кривую. Кривая является гладкой вне окрестностей фокуса.

Эллипс с 4-мя фокусами и фокусным расстоянием d = 7
Эллипс с 4-мя фокусами и фокусным расстоянием d = 7

Библиотека с книгами для физиков, математиков и программистов
Репетитор IT mentor в VK
Репетитор IT mentor в Instagram
Репетитор IT mentor в telegram

Добавить комментарий