Как найти центр круга в треугольнике


Download Article

Use the midpoint formula, the distance formula, or a compass to find circumcenter


Download Article

  • What is the circumcenter?
  • |

  • Finding Circumcenter with the Midpoint Formula
  • |

  • Finding Circumcenter with the Distance Formula
  • |

  • Drawing the Circumcenter with a Compass

You’ve got a stack of math problems in front of you and they’re all asking the same thing: find the circumcenter of the triangle. You have the triangle and the coordinates of its vertices, but where do you go from here? Well, you’ve come to the right place! In this article, we’ll tell you what formulas you need and how to use them to calculate the circumcenter’s coordinates. To help you visualize the circumcenter of a triangle, we’ll also give you step-by-step instructions on how to draw it with a compass. Read on to learn more!

Things You Should Know

  • Circumcenter is where the perpendicular lines at the midpoints of each triangle’s side intersect. Each vertex of the triangle is an equal distance from circumcenter.
  • Find circumcenter using a triangle’s vertices and the mid-point and slope-intercept formulas.
  • Alternatively, use the distance formula to find circumcenter.
  • Draw the circumcenter on a triangle using a compass. Find the perpendicular, bisecting lines on the triangle’s sides and mark where they intersect.
  1. Image titled Find Circumcenter Step 1

    Circumcenter is where a triangle’s perpendicular, bisecting lines intersect. If you draw a line at the midpoint of each triangle’s side, you’ll have 3 perpendicular lines bisecting each side. These perpendicular lines all meet together at a point; this is the circumcenter. The circumcenter also forms the triangle’s circumcircle. It is the center of a circle, that when drawn, passes through each vertex of the triangle.[1]

    • The main principle behind the circumcenter is that each vertex on the triangle is an equal distance away from the circumcenter.
    • On right triangles, the circumcenter is located at the midpoint of the hypotenuse, or the longest side of the triangle.[2]
    • On obtuse triangles, the circumcenter is located outside of the triangle.
    • On acute triangles, the circumcenter is located inside the triangle.
  2. Advertisement

  1. Image titled Find Circumcenter Step 2

    1

    Find the midpoints of the triangle using the vertices’ coordinates. Most math problems give you the (x, y) coordinates of each of the triangle’s vertices. The circumcenter is at the intersection of the perpendicular lines at the midpoint of the triangle’s sides. Because the distance from the circumcenter to each vertex is the same, you only need to find the midpoints of 2 sides.[3]

    • A triangle’s verticies are A = (-4, 2), B = (2, 4), and C = (4, -4).
      • Use the midpoint formula: [(x1 + x2)/2,( y1 + y2)/2].
      • Plug in the coordinates for line AB: [(-4 + 2)/2, (2 + 4)/2].
      • Plug in the coordinates for line BC: [(2 + 4)/2, (4 + -4)/2].
      • Solve each midpoint: line AB’s midpoint is (-1, 3) and line BC’s is (3, 0).
  2. Image titled Find Circumcenter Step 3

    2

    Calculate the slope of the 2 lines. The perpendicular lines at the triangle’s midpoints intersect to give you the circumcenter. So, calculate the slope of the lines to find out where they intersect. Because these lines are perpendicular, take the opposite reciprocal of the slope to find the perpendicular line’s slope. For example, a slope of 2/1 becomes -½.[4]

    • A triangles vertices are A = (-4, 2), B = (2, 4), and C = (4, -4).
      • Use the slope formula: m = (y2 – y1) / (x2 – x1).
      • Plug in the coordinates for line AB: m = (4 – 2) / (2 – -4).
      • Plug in the coordinates for line BC: m = (-4 – 4) / (4 – 2).
      • Solve each slope: line AB’s slope is m = ⅓ and line BC’s is m = -4.
      • Take the opposite reciprocal of the slope: Flip AB’s slope to 1/(⅓) and change the sign. The perpendicular slope is m = -3. BC’s perpendicular slope is m = ¼.
  3. Image titled Find Circumcenter Step 4

    3

    Solve each line’s point-slope equation to find the y-intercept. With your slopes identified for the perpendicular lines, use the slope-intercept formula of y – y1 = m(x – x1) to find the entire slope equation.[5]

    • Use the point-slope equation: y – y1 = m(x – x1)
      • Plug in the midpoint and slope for line AB: y – 3 = -3(x – -1).
      • Plug in the midpoint and slope for line BC: y – 0 = ¼(x – 3).
      • Solve and simplify each equation: line AB’s is y = -3x. Line BC’s is y = ¼x – ¾ (or 4y = x – 3 if you get rid of the fractions).
  4. Image titled Find Circumcenter Step 5

    4

    Set the equations equal to each other to find circumcenter. Use substitution to find where the 2 perpendicular lines intersect. Insert line AB’s y-value into line BC’s point-slope equation. This gives you an x-value. Then, plug the x-value into either point-slope equation to find the y-coordinate. Put the x and y values together to get the circumcenter’s coordinates![6]

    • Substitute line AB’s point-slope equation into line BC’s equation: (-3x) = ¼x – ¾.
      • Solve for x: x = -3/13.
      • Plug x into either equation: y = -3(-3/13) with y = 9/13. So, the circumcenter is located at (-3/13, 9/13).
  5. Advertisement

  1. Image titled Find Circumcenter Step 6

    1

    Use the distance formula to set 2 vertices equal to each other. Each vertex on the triangle is the same distance away from the circumcenter. If the circumcenter is O and the triangle’s vertices are A, B, and C, the distance between A to O is the same as B to O and C to O. So, set AO and BO equal to each other, as well as BO and CO, using the distance formula.[7]

    • A triangle’s vertices are A = (−2, 3), B = (2, −1), and C = (4, 0).
      • Use a simplified distance formula: (x2 – x1)2 + (y2 – y1)2.
      • Set A and B equal to each other: (-2 – x)2 + (3 – y)2 = (2 – x)2 + (-1 – y)2.
      • Set B and C equal to each other: (2 – x)2 + (-1 – y)2 = (4 – x)2 + (0 – y)2.
  2. Image titled Find Circumcenter Step 7

    2

    Solve the distance equations. Use the FOIL method (First, Outer, Inner, Last) to multiply the squared expressions together (i.e. (-2-x)2 in the example above). Then, simplify the expression by adding or subtracting the x, y, and numerical values together.[8]

    • Use FOIL to solve each equation.
      • For AO = BO: x2 + 4x + 4 + y2 − 6y + 9 = x2 − 4x + 4 + y2 + 2y +1
      • For BO = CO: x2 − 4x + 4 + y2 + 2y + 1= x2 − 8x + 16 + y2
      • Solve and simplify each equation: AO = BO results in y = x + 1. Solving BO = CO results in 4x + 2y = 11.
  3. Image titled Find Circumcenter Step 8

    3

    Substitute 1 equation into the 2nd to get the circumcenter’s x-value. To find the x-coordinate of the circumcenter, insert the first equation’s y-value in the second equation. Then, solve for x.[9]

    • Substitute AO = BO’s equation into BO = CO: 4x + 2(x + 1) = 11.
      • Expand the equation: 4x + 2x +2 = 11.
      • Solve for x: x = 3/2.
  4. Image titled Find Circumcenter Step 9

    4

    Insert the x-value in one of the equations to find the y-coordinate. Now that you know what the circumcenter’s x-coordinate is, solve for its y-coordinate. Just substitute x into one of the equations and solve. Then, put the x and y-values together to get the circumcenter’s coordinates![10]

    • Insert x into one of the equations: y = (3/2) + 1.
      • Solve for y: y = 5/2. So, the circumcenter’s coordinates are (3/2, 5/2).
  5. Advertisement

  1. Image titled Find Circumcenter Step 10

    1

    Use a compass to draw an arc through one of the triangle’s sides. Choose a side of the triangle and place the compass point on one of the line’s vertices; these are the points where 2 lines meet. Open the compass up so it’s a little more than half as long as the line segment. With the point in place, draw one continuous arc spanning below the triangle’s side, through it, and above it.[11]

  2. Image titled Find Circumcenter Step 11

    2

    Place the compass on the line’s other vertex and draw an arc. Using the same triangle side you chose, move the compass point to the line’s other vertex. Follow the same steps as above to draw an arc above and below this side, too.[12]

  3. Image titled Find Circumcenter Step 12

    3

    Use a ruler to draw a line through the points where the arcs intersect. With your 2 arcs drawn, you’ll see 2 points where they meet. Just take out a ruler and draw a straight line through these points, taking the line through the triangle’s side. This gives you the midpoint of this triangle line and the perpendicular, bisecting line.[13]

  4. Image titled Find Circumcenter Step 13

    4

    Follow the same steps for one of the triangle’s other sides. Place the compass point at the vertex of one of the other triangle sides. Adjust the compass so it’s open to about half the size of the line segment. Draw an arc, then move the compass to the side’s other vertex. Make the other arc line, then draw a straight line through the intersecting points.[14]

  5. Image titled Find Circumcenter Step 14

    5

    Find the circumcenter by marking where the 2 lines intersect. With your 2 perpendicular, bisecting lines drawn, simply mark where they intersect. Depending on the type of triangle you have, the circumcenter might be in the triangle, on one of its sides, or outside of the triangle.[15]

    • If you want, find the perpendicular line of the 3rd triangle side, too. You’ll see that its perpendicular, bisecting line also passes through the circumcenter.
  6. Image titled Find Circumcenter Step 15

    6

    Use the compass to draw the circumcircle around the triangle. Place the compass point at the circumcenter. Then, adjust the compass so the pencil reaches one of the triangle’s vertices. Draw the circle. As you go around the triangle, you’ll notice that the edges of the circle just touch each point of the triangle. This is because the triangle’s vertices are equidistant from the circumcenter.[16]

  7. Advertisement

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

References

About This Article

Thanks to all authors for creating a page that has been read 2,673 times.

Did this article help you?

Планиметрия (прямая и окружность)

Планиметрия изучется в начальном курсе геометрии и зачастую сводится к решению практических задач без изучения теоретической базы.
В данной статье приводятся альтернативные (подсказкам) решения задач из первого раздела (кроме 1.5) приложения Euclidea (геометрические построения с помощью циркуля и линейки).

Решения задач 1.1, 1.2 и 1.3 основаны на том, что с помощью циркуля и линейки можно построить равносторонний треугольник.

1.1 Построить угол 60° с заданой стороной

1.2 Построить серединный перпендикуляр к отрезку

На данной ограниченной прямой построить равносторонний треугольник

1.3 Середина отрезка

всё, что можно построить с помощью циркуля и линейки, может быть построено с помощью одного циркуля.

Из точки В радиусом АВ описываем окружность.
По этой окружности откладываем от точки А расстояние АВ три раза: получаем точку С, очевидно, диаметрально противоположную А. Расстояние АС представляет собой двойное рассрастояние АВ. Проведя окружность из С радиусом ВС, мы можем таким же образом найти точку,
диаметрально противоположную В и, следовательно, удаленную от А на
тройное расстояние АВ, и т. д.

любое построение, выполнимое на плоскости циркулем и линейкой, можно выполнить одной линейкой, если нарисована хотя бы одна окружность и отмечен её центр.

Проведем прямые PA и PB и отметим точки D и C их пересечения прямой b. Пусть О — точка пересечения прямых AC и BD. Тогда, согласно предыдущей лемме, прямая PO пересечёт отрезок AB в его середине M.

Решением задачи 1.3 по методу Штейнера-Понеселе будет:

1.4 Окружность, вписанная в квадрат

Из точки A, лежащей вне данной полуокружности, опустить на её диаметр перпендикуляр, обходясь при этом без циркуля. Положение центра полуокружности не указано.

Нам пригодится здесь то свойство треугольника, что все его высоты пересекаются в одной точке. Соединим A с B и C; получим точки D и E. Прямые BE и CD, очевидно, — высоты треугольника ABC. Третья высота — искомый перпендикуляр к BC — должна проходить через пересечение двух других, т.е. через точку M. Проведя по линейке прямую через точки A и M, мы выполним требованиек задачи, не прибегая к услугам циркуля.

И опустив перпендикуляр из точки пересечения диагоналей квадрата на ребро, найдём середину ребра.
Это же построение можно использовать для решения задачи 2.9 Окружность, касающаяся прямой

1.6 Найти центр окружности

Плоский угол, опирающийся на диаметр окружности, — прямой.

Определение: касательной к окружности называется прямая, имеющая с окружностью одну общую точку. Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

Рассмотрим задачу 2.8
2.8 Касательная к окружности в точке
Возвращаясь к предыдущей задаче, эту задачу можно решить построив угол, опирающийся на диаметр окружности по теореме Фалеса

Далее, построив перпендикуляр к касательной, найдём диаметр окружности, и, разделив его пополам, найдём центр окружности.

Ещё об одном способе построения касательной к окружности можно узнать из лекции 1.5 курса «Геометрия и группы» А. Савватеева ссылка

1.7 Квадрат, вписанный в окружность

Задача Наполеона

Решим задачу методом Мора-Маскерони.
Построим три окружности радиусом r и две окружности радиусом

В приложении нет такой операции, как перенос раствора циркуля (равного MO), поэтому необходимо использовать дополнительные построения.
Для того, чтобы построить касательную к исходной окружности, параллельную МО, необходимо произвести построения, которые были приведены выше (построить три окружности радиусом r и две окружности радиусом ), но вместо исходной окружности взять окружность, обозначенную на рисунке синим цветом

Т.о. мы перенесли раствор циркуля (равный МО) в точку А.
Далее из точки А необходимо провести окружность c радиусом МО

Исследовательская работа по математике: «Как определить центр окружности»

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №1 с. Александров – Гай

Исследовательская работа по математике:

Подготовил: Амиров Марат, ученик 6 «а»

класса МБОУ СОШ №1 с. Александров – Гай

Руководитель: , учитель математики МБОУ СОШ №1 с. Александров – Гай

С. Александров – Гай

Глава 1 «Способы нахождения окружности» …………………………………..4

Глава 2 «Практическая часть»…………………………………………………..6

Список литературы и источников………………………………………………12

Окружность — совокупность точек, находящихся на равном расстоянии от одной точки, называемой центром. Однако в тех случаях, когда вам дана одна только окружность, нахождение ее центра может быть непростой задачей. Поэтому цель моей исследовательской работы: изучить способы определения центра окружности. Исходя из цели были поставлены задачи:

– найти самый простой способ определения центра окружности;

– сравнить несколько способов определения центра окружности;

– практические способы определения центра окружности.

Актуальность ислледовательской работы заключается в том, что в повседневной жизни людей часто приходится находить центр окружности, но не каждый знает как это правильно сделать. Поэтому изучение данной темы поможет найти правильное решение проблемы и определить оптимальный вариант для человека любой професии.

При написании исследовательской работы были использованны электронные источники и литература. Электронные источники помогли найти теоретический материал по теме, а учебники по математике были использованны для подбора задач и практической части работы.

Глава 1. Способы нахождения центра окружности.

1.Самый простой способ нахождения центра окружности — согнуть лист бумаги, на котором она начерчена, следя на просвет, чтобы окружность оказалась сложена точно пополам. Полученная линия сгиба будет одним из диаметров заданной окружности. Затем лист можно согнуть в другом направлении, получив тем самым второй диаметр. Точка их пересечения и будет центром окружности.

2. Для того чтобы найти центр окружности, надо сначала вписать ее в квадрат. То есть все стороны четырехугольника должны касаться круга. Для этого проведите с помощью линейки четыре ровные линии. Теперь соедините по диагонали два противоположных угла. Следите за тем, чтобы линия разбивала угол квадрата на две равные части. Соедините прямыми все 4 угла квадрата. Точка пересечения данных прямых и будет центром окружности.

3. Для любого треугольника центр описанной окружности находится в точке пересечения срединных перпендикуляров. Если этот треугольник — прямоугольный, то центр описанной окружности всегда совпадает с серединой гипотенузы. Следовательно, если вписать в окружность прямоугольный треугольник, то его гипотенуза будет диаметром этой окружности.
В качестве трафарета для этого способа подойдет любой прямой угол — школьный или строительный угольник, или просто лист бумаги. Поместите вершину прямого угла в любую точку окружности и сделайте отметки там, где стороны угла пересекают границу круга. Это конечные точки диаметра.
Тем же способом найдите второй диаметр. В точке их пересечения

4.На круглую деталь накладываем лист бумаги так, что бы один его угол находился на окружности или крае круга. И отмечаем точки, где лист соприкасается другими краями с кругом. Отмечаем эти точки.

Проводим прямую линию между отмеченными точками. Расстояние между ними является диаметром этого круга. Обрезаем лишнюю бумагу и проводим на детали прямую линию – диаметр.

Достаточно переместить наш треугольник в другое положение и нарисовать еще один диаметр круга, как тут же в точке пересечения диаметров мы и получим искомый центр окружности…

5. Диаметр и радиус окружности.

Диаметр окружности — это отрезок прямой, соединяющий пару наиболее удаленных друг от друга точек окружности, проходящий через центр окружности. Слово “диаметр” произошло от греческого слова “diametros” – поперечный. Обычно диаметр обозначается латинской буквой D или значком Ø.

Диаметр можно найти по формуле: D = 2R, где диаметр равен удвоенному радиусу окружности.
Радиус – расстояние от центра до любой точки окружности. Обозначается латинской R.
Если известен радиус окружности, допустим, он равен 8 см, то значит D = 2 * 8 = 16 см.

Радиус окружности определяется по формуле : R=D:2

” width=”390″ height=”299 >
Глава 2 «Практическая часть»

1) Прямой угол детали закруглен дугой радиуса R

Для решения задачи с центром в вершине прямого угла проводят окружность радиуса R, которая пересекает стороны прямого угла в точках А и В.

С центрами в точках А и В строят еще две окружности радиуса R; С – их точка пересечения. Дуга окружности радиуса R с центром в точке С и будет искомым закруглением.

Произвольный угол детали закруглить дугой радиуса R

Решение: На расстоянии R от сторон угла проводят соответствующие параллельные им прямые. О – их пересечение. Затем строим окружность с центром О, радиуса R

Даны две параллельные прямые и точка А между ними. Как построить окружность, касающуюся данных прямых и проходящих через данную точку?

1) Построим любую окружность, касающуюся двух прямых (центр окружности находим, разделив ее пополам)

2) Проведем через А прямую, равную данным. Она пересечет построенную окружность в точках В и С. Перед ними центр построенной окружности на АВ или АС.

Задачи на построение технического рисунка

Как при помощи слесарного разметочного угольника измерить недоступный диаметр круглой детали.

Можно ли прибором, изображенным на рисунке одним прикладыванием найти центр круга?

«Как найти центр окружности?» – вопрос, на который мне пришлось ответить в ходе исследования. Таким образом, я нашел несколько способов построения центра окружности: 1) центроискатель – прямой угол. Принцип работы: вписанный угол опирается на диаметр. 2) Центроискатель – угол с биссектрисой. Принцип работы: диаметр окружности лежит на биссектрисе угла, описанного около этой окружности.3)Центроискатель – пара взаимно перпендикулярных прямых. Принцип работы: диаметр, проведенный в точку касания, перпендикулярен касательной. 4)Центроискатель – пара взаимно перпендикулярных прямых. Принцип работы: хорда, перпендикулярная другой хорде и проходящая через ее середину, есть диаметр.

Соответственно цель моей работы достигнута: изучив несколько способов нахождения центра окружности возможно из каждого выбрать оптимальный вариант.

О, математика земная!
Гордись, прекрасная, собой,
Ты всем наукам мать родная,
И дорожат они тобой.

Твои расчеты величаво
Ведут к планетам корабли
Не ради праздничной забавы,
А ради гордости Земли
!

Список использованной литературы и источников

1.Журнал «Математика в школе» №20 1989г.

Определение центра окружности и центра дуги окружности

Порядок определение центра

Взаимное пересечение перпендикуляров, восставленных в середине каждой хорды, определяет центр окружности (точку О). На фиг. 9,6 показано нахождение центра дуги окружности (построение аналогично предыдущему).

Выпрямление дуги окружности

Определение длины 1 дуги АВ окружности (приближенный способ, фиг. 10).

Через хорду АВ проводят перпендикуляр (фиг. 10,а), пересекающий дугу в точке К. Из точек С и D, как из центров, радиусами г, равными d— диаметру окружности, проводят две дуги до взаимного их пересечения в точке 01.

Расстояние между точками пересечения лучей 01А и O1B с касательной, проведенной к окружности в точке К, определяет приближенное значение спрямленной дуги (отрезок А1В1).

Расстояние между точками С1 и D1 определяет приближенную длину полуокружности. При отсутствии центра окружности

длина дуги АВ (фиг. 10,6) может быть определена следующим путем: хорду А В делят на четыре равные части; одну четвертую часть откладывают от точки В на дуге АВ; полученную точку С соединяют с точкой деления 1. Отрезок 1—С равен половине длины дуги АВ; CD — приближенное значение длины всей дуги АВ.

Определение длины окружности. Длину окружности определяют по формуле l=П*D, где l — длина окружности, П = 3,14159, a D—диаметр окружности. На фиг. 11,а показана длина l окружности диаметра D.

Графически длина окружности приближенно может быть определена путем суммирования длины двух сторон аз равностороннего треугольника и двух сторон а квадрата, вписанных в окружность, как это показано на фиг. 11,6 (2аз + 2а4). Точность определения — 0,01. На фиг. 11,в длина окружности определена следующим способом: из центра О под углом 30° проводят прямую до пересечения ее в точке А с касательной к окружности; от точки А откладывают отрезок АВ, равный трем радиусам R; из точки В, как из центра, радиусом ВМ проводят дугу окружности до пересечения с касательной прямой в точках С и D. Отрезок CD будет равен длине окружности. Точность определения — 0,0001.

Определение приближенной длины очерка эллипса (фиг. 12). Для определения длины очерка эллипса ACBD соединяют точки А и С и из центра О радиусом, равным АС, засекают на осях эллипса точки М и N. Измерив длину отрезка MN, умножают ее на 3,14 и получают приближенную длину очерка эллипса (l = 3,14*MN).

[spoiler title=”источники:”]

http://pandia.ru/text/80/020/15275.php

http://www.cad-project.ru/opredelenie-czentra-okruzhnosti

[/spoiler]

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 декабря 2021 года; проверки требуют 4 правки.

Центр вписанной окружности
Окружность, вписанная в треугольник '"`UNIQ--postMath-00000001-QINU`"'
Окружность, вписанная в треугольник ABC
Барицентрические координаты {displaystyle a:b:c}
Трилинейные координаты 1:1:1
Код ЭЦТ X(1)
Связанные точки
Изогонально сопряженная она же
Дополнительная[es] центр Шпикера
Антидополнительная[es] точка Нагеля
Логотип Викисклада Медиафайлы на Викискладе

Центр вписанной окружности треугольника (инцентр) — одна из замечательных точек треугольника, точка пересечения биссектрис треугольника. Центр вписанной в треугольник окружности также иногда называют инцентром.

Традиционно обозначается латинской буквой I (по первой букве английского слова “Incenter”). В энциклопедии центров треугольника зарегистрирован под символом {displaystyle X(1)}.

Свойства[править | править код]

  • Центр вписанной окружности треугольника находится на одинаковом расстоянии от всех сторон треугольника.

где R и r — радиусы описанной и вписанной окружностей соответственно.
  • Перпендикуляры, восставленные к сторонам треугольника в точках касания вневписанных окружностей, пересекаются в одной точке. Эта точка симметрична центру вписанной окружности относительно центра описанной окружности[1].
  • Инцентр можно найти как центр масс вершин треугольника если в каждую вершину поместить массу, равную длине противолежащей стороны (см. также Центр Шпикера).
  • Инцентр данного треугольника является точкой Нагеля треугольника, образованного его 3 средними линиями (серединного треугольника).[2]

Полувписанная окружность и центр гомотетии G для вписанной и описанной окружностей с радиусами соответственно r и R. Лемма Веррьера: Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и окружности Веррьера (полувписанной окружности)

  • Лемма Веррьера[3]. Точки касания окружностей Веррьера (полувписанных окружностей) со сторонами лежат на прямой, которая проходит через центр вписанной окружности (инцентр) (См. серый рис. снизу).
  • Теорема Ригби. Если к любой стороне остроугольного треугольника провести высоту и касающуюся ее с другой стороны вневписанную окружность, то точка касания последней с этой стороной, середина упомянутой высоты, а также инцентр лежат на одной прямой.[4].
    • Из теоремы Ригби следует, что 3 отрезка, соединяющих середину каждой из 3 высот треугольника с точкой касания вневписанной окружности, проведенной к той же стороне, что и высота, пересекаются в инцентре.

  • Третья теорема Тебо. Пусть ABC — произвольный треугольник, D — произвольная точка на стороне BC, I_1 — центр окружности, касающейся отрезков {displaystyle AD,BD} и описанной около Delta ABC окружности, I_{2} — центр окружности, касающейся отрезков {displaystyle CD,AD} и описанной около Delta ABC окружности. Тогда отрезок I_{1}I_{2} проходит через точку I — центр окружности, вписанной в Delta ABC, и при этом I_{1}I:II_{2}=operatorname {tg}^{2}{frac  {phi }{2}}, где phi =angle BDA.
  • Слабая точка в треугольнике (weak point) та, у которой может найтись близнец с помощью её ортогонального сопряжения за пределы треугольника. Например, инцентр, Точка Нагеля и другие являются слабыми точками, ибо допускают получение аналогичных точек при их сопряжении за пределы треугольника.[5].

См. также[править | править код]

  • Ортоцентр
  • Центроид
  • Формула Эйлера
  • Лемма о трезубце

Примечания[править | править код]

  1. Мякишев А. Г. . Элементы геометрии треугольника. — М.: МЦНМО, 2002. — 32 с. — (Библиотека «Математическое просвещение». вып. 19). — ISBN 5-94057-048-8. — С. 11, п. 5.
  2. Honsberger, R.. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer. 1995. P. 51, Пункт (b).// https://b-ok.cc/book/447019/c8c303
  3. Ефремов Д. Новая геометрия треугольника. — Одесса, 1902. — С. 130. — 334 с.
  4. Ross Honsberger, “3. An Unlikely Collinearity” in “Episodes in Nineteenth and Twentieth Century Euclidean Geometry” (Washington, DC: The Mathematical Association of America, 1996, ISBN 978-0883856390), p. 30, Figure 34
  5. Мякишев А. Прогулки по окружностям: от Эйлера до Тейлора// Математика. Все для учителя! № 6 (6). июнь. 2011. с. 11, правая колонка, 2-ой абзац сверху// https://www.geometry.ru/persons/myakishev/papers/circles.pdf

Литература[править | править код]

  • Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. — М.: Просвещение, 1991. — С. 88-90. — 383 с. — ISBN 5-09-001287-3.
Как найти центр любой окружности?
Как найти центр любой окружности?

Уверен, у каждого домашнего мастера был случай, когда ему нужно было сделать разметку какой-нибудь круглой заготовки и найти центр ее основания. Казалось бы, это очень просто сделать, но некоторые мастера долго не могут найти выход в данной ситуации. Сегодня я покажу вам два простых решения, с помощью которых можно быстро и точной найти центр любой окружности.

1. Первый способ подойдет для разметки небольших заготовок. В качестве примера я возьму заглушку от пластиковой трубы диаметром 50 мм.

Заглушка от пластиковой трубы диаметром 50 мм
Заглушка от пластиковой трубы диаметром 50 мм

Для того, чтобы найти центр окружности заглушки, не нужны будут какие-то математические вычисления и сложные манипуляции. Нам понадобятся всего лишь строительный угольник и обычная линейка (или второй угольник), которые есть в любой мастерской.

Строительный угольник и линейка
Строительный угольник и линейка

Складываем вместе угольник и линейку, так чтобы образовался угол в 45 градусов.

Складываем вместе угольник и линейку под углом 45 градусов
Складываем вместе угольник и линейку под углом 45 градусов

Затем, придерживая одной рукой угольник и линейку, прикладываем их к круглой заготовке (заглушке) так, чтобы она вплотную соприкасалась с двумя сторонами угольника.

Прикладываем угольник и линейку к круглой заготовке
Прикладываем угольник и линейку к круглой заготовке

Теперь берем карандаш и чертим на заглушке первую линию, потом немного ее поворачиваем и делаем вторую метку (достаточно провести две линии, но для уверенности можно поставить три метки).

Чертим две линии на заготовке
Чертим две линии на заготовке

Все задача решена! Точка пересечения этих двух линий и будет центром данной окружности. Данный способ один из самых быстрых и простых.

Точка пересечения этих двух линий и будет центром окружности
Точка пересечения этих двух линий и будет центром окружности

2. Второй способ подойдет, если окружность имеет большой диаметр или она расположена на плоскости. Для примера я обвел карандашом крышку от кастрюли. В этом случае тоже все очень просто. Для начала выбираем любую точку на окружности.

Выбираем любую точку на окружности
Выбираем любую точку на окружности

Потом от этой точки чертим две линии до пересечения с окружностью так, чтобы у нас получился прямой угол (90 градусов). Для построения данных линий проще всего воспользоваться угольником (если окружность очень большая, линии можно продлить с помощью линейки).

Откладываем от точки две прямые под углом 90 градусов
Откладываем от точки две прямые под углом 90 градусов

А теперь все очень просто, соединяем точки, в которых пересекаются линии с окружностью и измеряем длину получившегося отрезка. Его середина и будет центром окружности. Уверен, многие помнят это из уроков по геометрии. Середина гипотенузы прямого треугольника вписанного в окружность, является центром этой окружности.

Как найти цент окружности большого диаметра?
Как найти цент окружности большого диаметра?

Где лежит центр вписанной в треугольник окружности? Что можно сказать о центре окружности, вписанной в многоугольник?

Теорема.

Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника.

центр вписанной окружности в треугольнике

O — точка пересечения биссектрис треугольника ABC.

tsentr vpisannoy v treugolnik okruzhnosti

Дано: ∆ ABC,

окр. (O; r) — вписанная.

Доказать:

O — точка пересечения биссектрис ∆ ABC.

Доказательство:

Обозначим точки касания вписанной в треугольник окружности со сторонами AC, BC и AB соответственно M, K. F.

tsentr vpisannoy okruzhnostiСоединим отрезками центр окружности с точками A, M и F.

    [OF bot AB,]

    [OM bot AC]

(как радиусы, проведенные в точки касания). Следовательно, треугольники AOF и AOM — прямоугольные.

У них общая гипотенуза AO, катеты OF=OM (как радиусы).

Следовательно, треугольники AOF и AOM равны (по катету и гипотенузе).

Из равенства треугольников следует равенство соответствующих углов: ∠OAF=∠OAM.

Значит, точка O лежит на биссектрисе треугольника, проведенной из вершины A.

Аналогично из равенства треугольников BOF и BOK, COM и COK доказывается, что точка O лежит на биссектрисах треугольника ABC, проведенных из вершин B и C.

Следовательно, центр вписанной в треугольник окружности лежит в точке пересечении биссектрис этого треугольника.

Что и требовалось доказать.

Замечание.

Доказательство теоремы можно основать непосредственно на свойстве биссектрисы угла.

1) OM=OF=OK (как радиусы),

2) OM⊥AC, OM⊥AB, OK⊥BC (как радиусы, проведённые в точку касания).

Значит точка O равноудалена от сторон углов BAC, ABC и ACB.

Так как любая точка, лежащая внутри неразвёрнутого угла и равноудалённая от сторон этого угла, лежит на его биссектрисе, то AO, BO и CO — биссектрисы треугольника ABC, O — точка их пересечения.

Аналогично, центр вписанной в многоугольник окружности (если в него можно вписать окружность) лежит в точке пересечения биссектрис этого многоугольника.

Добавить комментарий