Метод определения центра масс
Изложены способы нахождения центра масс, в том числе теорема Вариньона; показано различие между центром тяжести и центром масс.
Центром масс системы называется воображаемая точка, радиус вектор которой
$vec{R} = frac{m_1vec{r_1} + m_2vec{r_2} + cdots + m_nvec{r_n}}{m_1 + m_2 + cdots + m_n} = frac{displaystylesum_{i=1}^{n} m_ivec{r_i}}{displaystylesum_{i=1}^{n} m_i}$.
Обозначим массу системы
$M = displaystylesum_{i=1}^{n} m_i$,
$Mvec{R} = m_1vec{r_1} + m_2vec{r_2} + cdots + m_nvec{r_n}$.
Найдем производную по времени:
$Mvec{v_ц} = m_1vec{v_1} + m_2vec{v_2} + cdots + m_nvec{v_n}$.
В правой части стоит суммарный импульс системы, а $vec{v_ц}$ – скорость центра масс.
Таким образом, центр масс системы движется как материальная точка массы $M$. Это теорема о движении центра масс.
Найдя еще одну производную, получим
$Mvec{a_ц} = displaystylesum_{i=1}^{n} vec{F_i^{вн}} = vec{F}$.
Здесь $vec{a_ц}$ – ускорение центра масс, $vec{F_i^{вн}}$ – внешняя сила, действующая на $i$-тое тело системы, а $F$ – равнодействующая всех сил, действующих на систему. Напомним. Что на основании третьего закона Ньютона сумма внутренних сил равна нулю.
$displaystylesum_{i=1}^{n} vec{F_i^{вн}} = 0$.
Этот результат дает возможность сформулировать следующее определение центра масс системы, подверженной внешним воздействиям вне зависимости от их природы. Центр масс такой системы – точка приложения равнодействующей всех сил. В случае действия одних лишь сил тяжести центр масс системы заменяют совпадающим с ним, но более узким по содержанию понятием центра тяжести.
В следующих задачах рассмотрим способы нахождения центра масс, а в следующей главе продемонстрируем применение теоремы о его движении.
Задача 1. К концам невесомого стержня длиной $l$ приложены силы $F_1$ и $F_2$ (рис.). Найти точку приложения равнодействующей силы.
Пусть $O$ – искомая точка. По правилу моментов
$F_1x = F_2(l – x)$,
откуда
$x = frac{F_2l}{F_1 + F_2}$.
Задача 2. Найти центр масс системы изображенной на рисунке.
Для сил $F_1$ и $F_2$ воспользуемся результатом задачи 1.
$ x = frac{F_2l}{F_1 + F_2}$.
Вторично воспользуемся им для сил
$vec{F_1} + vec{F_2}$ и $vec{F_3}$:
$y = frac{(F_1 + F_2)(l_1 + l_2 – x)}{F_1 + F_2 + F_3}$.
Подставив значение $x$, получим
$y = frac{(F_2l_2 + F_1(l_1 + l_2)}{F_1 + F_2 + F_3}$.
Решив эти две задачи, мы фактически методом математической индукции доказали теорему Вариньона: момент равнодействующей относительно произвольно выбранной оси равен сумме моментов всех сил относительно этой же оси. Эта ось проходит через точку $A$. Теорема дает возможность находить центр масс, причем ось удобно выбирать в точке приложения нескольких сил (моменты этих сил будут равны нулю).
Задача 3. Из тонкого однородного диска радиуса $R$ вырезан диск радиуса $r$ ($r < frac{R}{2}$). Расстояние между центрами диска $O$ и полости равно $a$ ($a > r$). Найти расположение центра масс.
1-й способ. Вырежем диск $C$ радиуса $r$ симметрично относительно центра $O$ (рис.).
$pi r^2(a – x) = pi (R^2 – 2r^2)x$,
отсюда
$x = frac{a}{frac{R^2}{r^2}} – 1$.
2-й способ (рис.). Задачу решаем методом отрицательных масс.
Мысленно заполним полость однородным веществом той же плотности, что и диск. Чтобы такая операция была правомерной, введенную массу удобно считать «отрицательной».
$pi R^2x + (-pi r^2)(x + a) = 0$ и $x = frac{a}{frac{R^2}{r^2}} – 1$.
Задача 4. На рисунке изображены цепочка длиной $L$ и два стержня длиной $L/2$ каждый. Чей центр масс выше?
Оттянув цепочку вниз, мы придадим ей форму стержней. Следовательно, центр масс стержней выше центра масс цепочки.
Задача 5. На поверхности воды плавает деревянный кубик квадратного сечения, плотность кубика в два раза меньше плотности воды. Какое из двух положений равновесия будет устойчивым?
В воде находится половина кубика, поэтому его центр тяжести в обоих случаях расположен на одной высоте.
Центр тяжести вытесненной воды в первом случае находится на расстоянии $frac{a}{4}$ от ее поверхности, во втором –
$frac{1}{3}afrac{sqrt{2}}{2} < frac{a}{4}$.
Это означает, что положение 2 устойчиво.
Задача 6. Найти центр масс тонкой проволоки согнутой в виде полуокружности радиуса $r$.
Впишем в окружность правильный многоугольник (рис.).
Пусть сила тяжести действует перпендикулярно чертежу. Момент сил тяжести, приложенных к серединам сторон многоугольника, относительно оси $AK^/$:
$M = rho g(ABcdot x_1 + BCcdot x_2 + CDcdot x_3 + cdots)$,
где $rho$ – масса единицы длины.
Поскольку
$ABcdot x_1 = AB^/ cdot h, BCcdot x_2 = B^/C^/ cdot h, CDcdot x_3 = C^/D^/ cdot h$ $cdots$,
то
$M = rho gh(AB^/ + C^/B^/ + cdots) = rho ghcdot 2r = 2rho ghr$.
Будем увеличивать число сторон многоугольника. Тогда $h to r$ и, следовательно, $M = 2rho gr^2$.
С другой стороны, $M = pi rrho gx$, отсюда
$x = frac{2r}{pi}$.
Задача 7. Определить положение центра тяжести однородного тонкого полукруга радиуса $r$.
Разбиваем полукруг на треугольники и сегменты (рис.).
Центры тяжести треугольника лежат на расстоянии $frac{r}{3}h$ от точки $O$.
При большом числе треугольников $h to r$.
Далее необходимо определить центр тяжести полуокружности
$ccdot r_0 = frac{2}{3}; OM = frac{2r_0}{pi} = frac{4r}{3pi}$.
Центр масс дает возможность решать не только статические задачи.
Задача 8. Брусок $2$ отпускают (рис.). Что произойдет раньше: брусок $2$ ударится о стенку, или $1$ упрется в блок?
На центр масс системы, первоначально находившейся на уровне стены, действует неотрицательная сила $Tcdot (1 – cosvarphi)$, направленная вправо от оси $x$, поэтому случай, когда $2$ раньше удариться о стену, исключается, поскольку тогда центр масс будет левее плоскости стены.
Задача 9. На гладкой горизонтальной поверхности на расстоянии $2l$ друг от друга неподвижно лежат два шарика, массой $m$ каждый, связанные невесомой нерастяжимой нитью длиной $2l$. Среднюю точку нити $A$ начинают двигать с постоянной скоростью $v$ в горизонтальном направлении, перпендикулярном нити. Какой путь пройдет точка $A$ до момента столкновения шаров?
Перейдем в систему отсчета связанную с центром масс. Тогда шарики будут двигаться со скоростью центра масс навстречу друг другу со скоростью $v$. И четверть окружности длиной $frac{2pi i}{4} = frac{pi l}{2}$ пройдут за время $t = frac{pi l}{2v}$. Теперь вернемся обратно и найдем расстояние, пройденное средней точки за это время
$S = frac{pi l}{2v} = frac{pi l}{2}$.
Задачи для самостоятельной работы.
Задача 10. Определить положение центра тяжести тонкой однородной проволоки, прогнутой по дуге радиуса $r$r (рис.).
$h = 2r frac{sin(alpha /2)}{alpha}$
Задача 11. Определить положение центра тяжести тонкой однородной пластинки, представляющей собой сектор радиуса $r$, имеющей центральный угол $alpha$ (рис.).
$OM = frac{4}{3}rfrac{sin(alpha /2)}{alpha}$
Задача 12. Найти центр масс фигуры (рис.).
$OC = frac{2}{3}frac{r}{4pi}$
Центр масс, теория и онлайн калькуляторы
Центр масс
Определение центра масс
Определение
При рассмотрении системы частиц, часто удобно найти такую точку, которая характеризует положение и движение
рассматриваемой системы как единого целого. Такой точкой является центр масс.
Если у нас две частицы одинаковой массы, то такая точка находится посередине между ними.
Координаты центра масс
Допустим, что две материальные точки, имеющие массы $m_1$ и $m_2$ находятся на оси абсцисс и имеют координаты $x_1$ и $x_2$. Расстояние ($Delta x$) между этими частицами равно:
[Delta x=x_2-x_1left(1right).]
Определение
Точку С (рис.1), делящую расстояние между этими частицами на отрезки, обратно
пропорциональные массам частиц называют центром масс этой системы частиц.
В соответствии с определением для рис.1 имеем:
[frac{l_1}{l_2}=frac{m_2}{m_1}left(2right).]
Так как:
[l_1{=x}_c-x_1;; l_1{=x}_2-x_cleft(3right),]
где $x_c$ – координата центра масс, то получаем:
[m_1left(x_c-x_1right)=m_2{(x}_2-x_c)(4).]
Из формулы (4) получим:
[x_c=frac{m_1x_1+m_2x_2}{m_1+m_2}left(5right).]
Выражение (5) легко обобщается для множества материальных точек, которые расположены произвольным образом. При этом абсцисса центра масс равна:
[x_c=frac{sumlimits^N_{i=1}{m_ix_i}}{sumlimits^N_{i=1}{m_i}}left(6right).]
Аналогично получают выражения для ординаты ($y_c$) центра масс и его аппликаты ($z_c$):
[y_c=frac{sumlimits^N_{i=1}{m_iy_i}}{sumlimits^N_{i=1}{m_i}}left(7right).]
[z_c=frac{sumlimits^N_{i=1}{m_iz_i}}{sumlimits^N_{i=1}{m_i}}left(8right).]
Формулы (6-8) совпадают с выражениями, определяющими центр тяжести тела. В том случае, если размеры тела малы в сравнении с расстоянием до центра Земли, центр тяжести считают совпадающим с центром масс тела. В большинстве задач центр тяжести совпадает с центром масс тела.
Если положение N материальных точек системы задано в векторной форме, то радиус – вектор, определяющий положение центра масс находим как:
[{overline{r}}_c=frac{sumlimits^N_{i=1}{m_i{overline{r}}_i}}{sumlimits^N_{i=1}{m_i}}left(9right).]
Движение центра масс
Выражение для скорости центра масс (${overline{v}}_c=frac{d{overline{r}}_c}{dt}$) имеет вид:
[{overline{v}}_c=frac{m_1{overline{v}}_1+m_2{overline{v}}_2+dots +m_n{overline{v}}_n}{m_1+m_2+dots +m_n}=frac{overline{P}}{M}left(10right),]
где $overline{P}$ – суммарный импульс системы частиц; $M$ масса системы. Выражение (10) справедливо при движениях со скоростями которые существенно меньше скорости света.
Если система частиц является замкнутой, то сумма импульсов ее частей не изменяется. Следовательно, скорость центра масс при этом величина постоянная. Говорят, что центр масс замкнутой системы перемещается по инерции, то есть прямолинейно и равномерно, и это движение не зависимо от движения составных частей системы. В замкнутой системе могут действовать внутренние силы, в результате их действия части системы могут иметь ускорения. Но это не оказывает влияния на движение центра масс. Под действием внутренних сил скорость центра масс не изменяется.
Примеры задач с решением
Пример 1
Задание. Запишите координаты центра масс системы из трех шариков, которые находятся в вершинах и центра равностороннего треугольника, сторона которого равна $b (м)$ (рис.2).
Решение. Для решения задачи используем выражения, определяющие координаты центра масс:
[x_c=frac{m_1x_1+m_2x_2+m_3x_3+m_4x_4}{m_1+m_2+m_3+m_4}(2.1);;]
[y_c=frac{m_1y_1+m_2y_2+m_3y_3+m_4y_4}{m_1+m_2+m_3+m_4}(2.2).]
Из рис.2 мы видим, что абсциссы точек:
[left{ begin{array}{c}
m_1=2m, x_1=0;; \
{rm }m_2=3m, x_2=frac{b}{2};; \
m_3=m, x_3=frac{b}{2};; \
m_4=4m, x_4=b. end{array}
right.left(2.3right).]
Тогда абсцисса центра масса равна:
[x_c=frac{2mcdot 0+3mcdot frac{b}{2}+mcdot frac{b}{2}+4mcdot b}{2m+3m+m+4m}=frac{6mb}{10m}=0,6b (м);;]
Найдем ординаты точек.
[ begin{array}{c}
m_1=2m, y_1=0;; \
{rm }m_2=3m, y_2=frac{bsqrt{3}}{2};; \
m_3=m, y_3=frac{bsqrt{3}}{6};; \
m_4=4m, y_4=0. end{array}
left(2.4right).]
Для нахождения ординаты $y_2$ вычислим, чему равна высота в равностороннем треугольнике:
[h=sqrt{b^2-frac{b^2}{4}}=frac{bsqrt{3}}{2}=y_2left(2.5right).]
Ординату $y_3$ найдем, помня, что медианы в равностороннем треугольнике точкой пересечения делятся в отношении 2:1 от вершины, получаем:
[y_3=hcdot frac{1}{3}=frac{bsqrt{3}}{6} left(2.6right).]
Вычислим ординату центра масс:
[y_c=frac{2mcdot 0+3mcdot frac{bsqrt{3}}{2}+mcdot frac{bsqrt{3}}{6}+4mcdot 0}{2m+3m+m+4m}=frac{10mfrac{bsqrt{3}}{6}}{10m}=frac{bsqrt{3} }{6}(м).]
Ответ. $x_c=0,6b {rm }{rm м}$; $y_c=frac{bsqrt{3} }{6}$ м
Пример 2
Задание. Запишите закон движения центра масс.
Решение. Закон изменения импульса системы частиц является законом движения центра масс. Из формулы:
[{overline{v}}_c=frac{overline{P}}{M}to overline{P}=M{overline{v}}_cleft(2.1right)]
при постоянной массе $M$ продифференцировав обе части выражения (2.1), получим:
[frac{doverline{P}}{dt}=Mfrac{d{overline{v}}_c}{dt}left(2.2right).]
Выражение (2.2) означает, что скорость изменения импульса системы равняется произведению массы системы на ускорение ее центра масс. Так как
[frac{doverline{P}}{dt}=sumlimits^N_{i=1}{{overline{F}}_ileft(2.3right),}]
имеем:
[Mfrac{d{overline{v}}_c}{dt}=sumlimits^N_{i=1}{{overline{F}}_ileft(2.4right).}]
В соответствии с выражением (2.4) получаем, что центр масс системы движется так, как двигалась бы одна материальная точка массы M, если на нее действует сила, равная сумме всех внешних сил, действующих на частицы, которые входят в рассматриваемую систему. Если $sumlimits^N_{i=1}{{overline{F}}_i=0,}$ то центр масс движется равномерно и прямолинейно.
Читать дальше: центр тяжести.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Андрей Геннадьевич Блохин
Эксперт по предмету «Физика»
Задать вопрос автору статьи
Сущность понятия «центр масс»
Понятие “центр масс” широко используется в физике для решения задач, связанных с движением тел. Например, математический маятник удобно представить себе как подвешенное на нити тело, вся масса которого сконцентрирована в единой точке. В законе всемирного тяготения тоже речь идет о расстоянии не между телами, а между центрами тел, под каковыми подразумеваются именно центры масс, а не геометрические центры.
Определение 1
Центр масс – точка, характеризующая размещение и движение исследуемой системы как единого целого.
Признаком центра масс является то, что если тело подвесить, закрепив за эту точку, оно останется в покое, т.е. не будет раскачиваться или вращаться относительно этого центра. В простейшем случае, если речь идет о симметричном теле с равномерной плотностью, центр масс находится на пересечении осей симметрии рассматриваемого тела. Например, если взять линейку длиной 30 см, то ее центр масс будет расположен на отметке “15 см”. Подложив карандаш под эту отметку, легко привести линейку в положение равновесия.
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
На практике далеко не все тела, центр масс которых нужно найти, являются симметричными и однородными по плотности. Более того, многие исследуемые объекты представляют собой системы из нескольких тел с различными геометрическими и химическими характеристиками. Для расчетов их разбивают на элементарные фрагменты и производят вычисления поэтапно.
Нахождение координат центра масс
Определение 2
Центр масс двух тел с точечными массами $m_1$ и $m_2$ и координатами на координатной прямой $x_1$ и $x_2$ находится в точке, делящей расстояние между этими телами на отрезки с длинами обратно пропорциональными массам рассматриваемых тел.
Отсюда следует, что чем массивнее тело в такой элементарной системе, тем ближе оно к общему центру масс.
Расстояние между точечными телами равно:
$Delta x = x_2 – x_1$
Пропорция между массами и расстояниями, согласно определению:
$frac{l_1}{l_2} = frac{m_2}{m_1}$,
«Как найти координаты центра масс» 👇
где $l_1$, $l_2$ – расстояния от соответствующих тел до центра масс.
Выразив, длины через координаты
$l_1 = x_c – x_1; l_2 = x_2 – x_c$,
центр масс можно определить как
$x_c = frac{m_1 cdot x_1 + m_2 cdot x_2}{m_1 + m_2}$.
где $x_c$ – координата центра тяжести.
Разложив любую сложную систему на множество элементарных тел с точечными массами, можно обобщить изложенный принцип в виде формулы (для оси абсцисс):
$x_c = frac{sumlimits^N_{i=1}{m_i cdot x_i}}{sumlimits^N_{i=1}{m_i}}$
В большинстве случаев центр масс требуется найти не на координатной прямой, а в двух- или трехмерной системе координат. Для дополнительных осей координаты центра масс ($y_c$, $z_c$) находят по аналогичному принципу.
Замечание 1
Центр тяжести системы тел представляет собой точку, подобную центру масс, но рассчитывается не для масс, а для весов (обусловленных гравитацией сил), действующих на точечные тела, входящие в систему. Центр тяжести определяется так же, как и центр масс, если размеры системы малы в сравнении с радиусом планеты Земля. Он в большинстве случаев с достаточной для практики точностью совпадает с центром масс рассматриваемой системы.
Пример 1
Найти центр масс двух линеек, изготовленных из одинакового материала, одинаковой толщины и ширины, левые концы линеек совмещены. Длины линеек – 10 и 30 см. Толщиной линеек можно пренебречь.
Поскольку толщиной можно пренебречь, найти нужно лишь координату центра масс по оси $x$.
Разобьем мысленно систему на два отрезка. Первый – где толщина линеек складывается. Его координаты – $[0, 10]$. Второй отрезок – где длинная линейка продолжается одна. Его координаты – $[10, 30]$. Примем за единицу измерения массу одного погонного сантиметра линейки. Тогда масса второго фрагмента:
$m_2 = 30 – 10 = 20$
На каждый сантиметр первого фрагмента приходится вдвое больше массы, поскольку там сложены две линейки:
$m_1 = 10 cdot 2 = 20$
Центры масс отрезков находятся на их осях симметрии, т.е. на середине длины каждого:
$x_{c1} = frac{10}{2} = 5$;
$x_{c2} = 10 + frac{20}{2} = 20$
Подставим значения в формулу:
$x_c = frac{m_1 cdot x_1 + m_2 cdot x_2}{m_1 + m_2}$
$x_c = frac{20 cdot 5 + 20 cdot 20}{20 +20} = frac{100 + 400}{40} = 12, 5$
Ответ: центр масс находится на расстоянии 12,5 см от левого конца системы линеек.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Содержание:
Центр тяжести:
При рассмотрении движения тел, особенно таких, как самолеты, ракеты, космические корабли, важное значение имеет понятие центра тяжести.
Определения и формулы для вычисления центров тяжести
Для введения понятия центра тяжести разобьем мысленно рассматриваемое тело на достаточно большое число малых по сравнению с телом или элементарных его частей произвольной формы. Силу тяжести элементарной частицы тела с индексом
Радиус-вектор центра тяжести тела вычисляем как радиус-вектор центра параллельных сил (рис. 88) по формуле
где — радиус-вектор точки приложения силы тяжести элементарной части тела, принятой за точку; — сила тяжести элементарной частицы; — сила тяжести всего тела; — число частей, на которое мысленно разбито все тело. Центр тяжести является точкой приложения равнодействующей силы тяжести, если силы тяжести отдельных его частей считать системой параллельных сил.
Рис. 88
Если в (1) перейти к пределу, увеличивая число элементарных частей до бесконечности, то после замены дифференциалом , а суммы — интегралом получим
где — радиус-вектор элементарной части тела, принятой за точку. В проекциях на оси координат из (1) и (1′) получаем:
где — координаты центра тяжести; — координаты точки приложения силы тяжести .
Используя понятие центра тяжести тела, введем понятие его центра масс. Силы тяжести элементарных частей тела и всего тела можно выразить через их массы и и ускорение силы тяжести с помощью формул
Подставляя эти значения сил тяжести в (1) и (1′) после сокращения на , которое принимаем одинаковым для всех частей тела, имеем
и соответственно
По формулам (2) и (2′) определяют радиус-вектор центра масс тела. Центр масс обычно определяют независимо от центра тяжести как геометрическую точку, радиус-вектор, которой вычисляется по формулам (2) или (2′). В проекциях на оси координат из (2) и (2′) получаем:
и
где — координаты центра масс тела.
Для однородного тела силу тяжести элементарной частицы тела и ее массу можно вычислить по формулам
где — объем элементарной частицы тела; и — соответственно удельный вес и плотность тела. Сила тяжести и масса всего тела
где — объем тела. Подставляя эти значения в (2) и (2′), после сокращения на и соответственно получим формулы
по которым определяют центр тяжести объема тела.
Если тело имеет форму поверхности, т. е. один из размеров мал по сравнению с двумя другими, как, например, у тонкого листа железа, то имеем
где — удельный вес; — площадь элементарной частицы поверхности; — площадь всей поверхности. После сокращения на для однородной поверхности получим следующие формулы для определения центра тяжести ее площади:
Для однородных тел типа проволоки, у которых два размера малы по сравнению с третьим, можно определить радиус-вектор центра тяжести длины линии по формулам
где — длина элемента линии; —общая длина линии, центр тяжести которой определяется.
Методы определения центров тяжести (Центров масс)
Метод симметрии
При определении центров тяжести широко используется симметрия тел. Докажем, что для однородного тела, имеющего плоскость симметрии, центр тяжести находится в плоскости симметрии. Для доказательства выберем начало координат в плоскости симметрии тела и одну из осей координат, ось направим перпендикулярно плоскости симметрии, а две других оси расположатся в плоскости симметрии (рис. 89). Каждая частица массой , находясь по одну сторону плоскости симметрии, имеет симметричную частицу такой же массы по другую сторону этой плоскости. Координаты у симметричных частиц одинаковы при сделанном выборе осей координат, а координаты по оси отличаются только знаком. Для координаты центра масс имеем следующее выражение:
Разбивая сумму в числителе на две по симметричным частям тела, получаем, что
так как симметричные части тела 1 и 2 одинаковы.
Таким образом, центр масс расположен в плоскости симметрии и для его определения достаточно вычислить только две его координаты и в этой плоскости.
Аналогично доказывается, что для однородного тела, имеющего ось или центр симметрии, центр масс находится соответственно на оси симметрии или в центре симметрии.
Рис. 89
Метод разбиения на части (метод группировки)
Некоторые тела сложной формы можно разбить на части, центры тяжести которых известны или предварительно могут быть определены. В таких случаях центры тяжести сложных тел вычисляются по общим формулам, определяющим центр тяжести, только вместо элементарных частиц тела берутся его конечные части, на которые оно разбито. Покажем это на частном примере плоской фигуры, изображенной на рис. 90. Плоскую фигуру можно разбить на три части, центры тяжести которых , и известны. Они находятся на пересечении диагоналей прямоугольников. Их радиусы-векторы обозначим и площади . Общая площадь сложной фигуры будет .
Используя определение центра тяжести и производя группировку слагаемых под знаком суммы по частям фигуры, на которые она разбита, получим
Радиусы-векторы центров тяжести частей тела выразятся в такой форме:
или
Используя эти формулы для радиуса-вектора всей фигуры, имеем
Полученная формула имеет ту же структуру, что и формула, определяющая радиус-вектор центра тяжести тела при разбиении его на элементарные частицы, только в нее входят величины для конечных частей тела.
Рис. 90
Метод отрицательных масс
Видоизменением метода разбиения на части является метод отрицательных масс. Проиллюстрируем его тоже на примере плоской фигуры (рис. 91). Для определения центра тяжести этой фигуры ее можно разбить на три части. Можно поступить по-другому. Для этого дополним нашу фигуру до прямоугольника и примем, что этот прямоугольник с площадью и центром масс полностью заполнен массой (имеет положительную площадь). На той части фигуры, которую добавили, следует распределить отрицательную массу (отрицательную площадь) той же плотности. Площадь этой фигуры с отрицательной массой обозначим , а ее центр масс — . Применяя метод разбиения на части, радиус-вектор заданной фигуры определим по формуле
В отличие от обычного метода разбиения на части в формуле (4) массы и, следовательно, площади входят со знаком минус.
Метод отрицательных масс особенно удобен при вычислении положения центров тяжести тел, имеющих отверстия.
Рис. 91
Центры тяжести простейших тел
Для определения центров тяжести тел сложной формы методом разбиения на части или методом отрицательных масс необходимо уметь вычислять центры тяжести простейших тел, на которые разбивается тело сложной формы. Рассмотрим некоторые из тел, для определения центров тяжести которых известны простые способы их нахождения или вычисления по формулам.
Прямолинейный отрезок
Центр тяжести прямолинейного однородного отрезка располагается на его середине, а неоднородного— на самом отрезке и не может находиться вне отрезка.
Площадь треугольника
Для определения центра тяжести площади треугольника разобьем его прямыми линиями, параллельными одной из его сторон , на полоски, которые в пределе можно принять за прямолинейные отрезки (рис. 92). Центры тяжести отрезков и, следовательно, полосок находятся посередине полоски. Все они расположатся на медиане . В пределе центры тяжести полосок непрерывно покроют медиану, но не равномерно, так как площади полосок разные. В каждом центре масс полоски следует считать сосредоточенной массу или площадь этой полоски, пропорциональную длине полоски, если ширину полосок выбирать одинаковой.
Затем разобьем треугольник на полоски прямыми линиями, параллельными другой стороне треугольника. Центры их тяжести в пределе покроют неравномерно медиану . Центры тяжести неоднородных прямолинейных отрезков и должны располагаться на этих отрезках, а следовательно, в точке их пересечения , являющейся точкой пересечения медиан треугольника. Эта точка делит медианы в отношении 1 к 2, т. е. если длина медианы равна , то , .
Рис. 92
Дуга окружности
Дуга окружности определяется радиусом и стягиваемым ею центральным углом (рис. 93). Она имеет ось симметрии, делящую угол пополам. Центр тяжести находится на оси симметрии дуги, которую примем за ось координат . Координату центра тяжести дуги вычисляем по формуле
Рис. 93
В рассматриваемом случае
Подставляя эти значения в формулу для , получим
Таким образом,
Для полуокружности . Приняв , получим:
Площадь кругового сектора
Центр тяжести площади кругового сектора с радиусом и центральным углом находится на оси симметрии, принимаемой за ось (рис. 94). Разобьем сектор на элементарные треугольники одинаковой величины. Центры тяжести треугольников в пределе при увеличении их числа до бесконечности равномерно покроют дугу окружности радиусом .
Рис. 94
Используя формулу для центра тяжести дуги окружности, получим
или
Для площади полукруга , . При получим
Объем пирамиды и конуса
Определим положение центра тяжести объема конуса (рис. 95). Для простоты рассмотрим прямой конус, у которого высота является осью симметрии. Высотой конуса является отрезок, соединяющий его вершину с центром тяжести площади основания . Выберем начало координат в вершине конуса, а ось направим по оси симметрии конуса. Тогда центр тяжести объема конуса расположится на оси .
Разобьем конус плоскостями, перпендикулярными оси , на элементарные тонкие диски толщиной и площадью . Все полученные сечения (диски) конуса подобны его основанию. Координату центра тяжести объема конуса вычислим по формуле
Отношения линейных размеров сечений к соответствующим размерам основания конуса пропорциональны их расстояниям до вершины конуса. Отношения площадей пропорциональны квадратам расстояний. Приняв , получим
Учитывая, что
имеем
или
Таким образом, центр тяжести прямого конуса находится на расстоянии от вершины или от основания.
Рис. 95
Это справедливо для объема любого конуса и любой пирамиды, как прямых, так и наклонных, т. е. центр тяжести объема пирамиды или конуса находится на расстоянии расстояния от центра тяжести площади основания до вершины.
Объем полушара
Полушар имеет ось симметрии, которую примем за координатную ось (рис. 96). Разобьем объем полушара на элементарные диски толщиной dx и радиусом у, который является координатой точки окружности, которая получилась от пересечения полушара с координатной плоскостью . Уравнение этой окружности
где — радиус полушара. Для координаты центра тяжести объема полушара имеем
где — координата центра тяжести элементарного диска. Объем полушара
Объем элементарного диска
так как радиус диска . Выполняя интегрирование в пределах от до , получим
Таким образом, центр тяжести объема полушара находится от его центра на расстоянии
Это расстояние меньше половины радиуса полушара.
Рис. 96
Задача №1
Определить координаты центра тяжести площади плоской фигуры, имеющей размеры, указанные на рис. 97.
Рис.97
Рис. 98
Решение. Присоединим к заданной фигуре дополнительно полукруг 3 и разобьем полученную фигуру на прямоугольник 1 и треугольник 2. Получили три фигуры, две из которых имеют положительные площади (прямоугольник 1 и треугольник 2) и одна — отрицательную (полукруг 3). В выбранной системе координат для координат центра тяжести заданной фигуры имеем
где — координаты центров тяжести отдельных фигур; — площади этих фигур.
Вычислим площади и координаты центров тяжести отдельных фигур, учитывая рис. 98 Имеем:
так как .
Подставляя полученные значения в (а), получим:
Центр тяжести плоской фигуры
постановка задачи. Найти площадь и координаты центра тяжести плоской фигуры.
План решения:
1. Разбиваем фигуру на простые отдельные части, положение центров тяжести которых известны.
2. Выбираем систему координат. Вычисляем площади и координаты центров тяжести отдельных частей. Площади вырезанных частей берем со знаком минус.
3. Находим общую площадь фигуры по формуле
4. Определяем координаты центра тяжести фигуры:
Задача №2
Найти площадь и координаты центра тяжести плоской фигуры. Криволинейный участок контура является половиной окружности с центром на оси Ох (рис. 74). Размеры на рисунке даны
Решение
1. Разбиваем фигуру на простые отдельные части, положение центров тяжести которых известны.
Центр тяжести прямоугольника находится в его геометрическом центре, положение центра тяжести других фигур, встречающихся в задачах, изображено на рис. 75
Представляем фигуру в виде двух треугольников 1,2, прямоугольника 3 и выреза 4 в виде полукруга (рис. 76).
2. Вычисляем площадь (в ) и координаты центра тяжести (в м) каждого элемента:
Площадь выреза берем со знаком минус.
3.Площадь фигуры
4. Находим координаты центра тяжести всей фигуры:
Вычисления удобно свести в таблицу:
Сначала заполняем столбцы затем вычисляем статические моменты Внизу записываем суммы столбцов, необходимые для вычисления координат центра тяжести. Таким образом
Замечание 1. Большинство задач на определение центра тяжести допускает несколько способов разбиения фигуры. Это можно использовать для проверки решения. Второй вариант разбиения фигуры в данном примере состоит из прямоугольника 3 с размерами и вырезанных из него полукруга 4 и двух треугольников 1 и 2 (рис. 77).
Замечание 2. Решение задачи в системе Maple V методом контурного интегрирования.
- Заказать решение задач по теоретической механике
Пространственная стержневая система
Постановка Задачи. Найти координаты центра тяжести пространственной фигуры, состоящей из N однородных стержней.
План решения:
1. Разбиваем фигуру на отдельные стержни.
2. Выбираем систему координат. Вычисляем длины и координаты центров тяжести отдельных стержней. Координаты центра прямолинейного однородного стержня вычисляем как полусумму координат его концов.
3. Находим суммарную длину стержней системы
4. Определяем координаты центра тяжести тела по формулам
Задача №3
Найти координаты центра тяжести пространственной фигуры, состоящей из шести однородных стержней (рис. 78). Даны размеры:
Решение
1. Разбиваем фигуру на шесть стержней.
2. Выбираем систему координат (рис. 78). Вычисляем длины и координаты центров тяжести отдельных стержней.
3. Находим суммарную длину стержней системы:
Промежуточные результаты удобно занести в таблицу:
4. Определяем координаты центра тяжести тела по формулам
Постановка задачи. Найти координаты центра тяжести однородного объемного тела.
План решения:
1. Разбиваем тело на простые части, положение центров тяжести которых известно.
2. Выбираем систему координат. Вычисляем объемы и координаты центров тяжести отдельных частей. Объемы вырезанных частей берем со знаком минус.
3. Находим общий объем тела по формуле
4. Определяем координаты центра тяжести тела:
Задача №4
Найти координаты центра тяжести однородного объемного тела (рис.79);
Решение
1. Разбиваем тело на пирамиду 1, параллелепипед 2 и половину цилиндра 3 (рис. 80).
2. Выбираем систему координат. Вычисляем объемы и координаты центров тяжестей отдельных частей. Центр тяжести пирамиды 1 лежит в точке
Центр тяжести параллелепипеда 2 совпадает с его геометрическим центром:
Объем половины цилиндра 3 берем со знаком минус:
где — расстояние по оси у от оси цилиндра до его центра тяжести .
3. Находим общий объем тела:
В общем случае объем тела, лежащего в области можно найти, вычисляя тройной интеграл по области а координаты центра тяжести, например, однородного тела можно определить по формуле см.
4. Определяем координаты центра тяжести тела:
Центр тяжести
Центр тяжести — точка, через которую проходит линия действия равнодействующей элементарных сил тяжести. Он обладает свойством центра параллельных сил. Поэтому формулы для определения положения центра тяжести различных тел имеют вид:
Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес каждого отрезка можно представить в виде произведения
где d — постоянный для всей фигуры вес единицы длины материала.
После подстановки в формулы (1) вместо их значений постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий, примут вид:
Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174),
то вес каждой плоскости (поверхности) можно представить так:
где — площади каждой поверхности, ар — вес единицы площади фигуры.
После подстановки этого значения в формулы (1) получаем формулы координат центра тяжести фигуры, составленной из площадей:
Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части
где — объем каждой части, а у — вес единицы объема тела.
После подстановки значений в формулы (I) получаем формулы для определения координат центра тяжести тела, составленного из однородных объемов;
При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.
Если известен радиус дуги г и центральный угол 2а, стягиваемый дугой и выраженный в радианах, то положение центра тяжести С (рис. 176, а) относительно центра дуги О определится формулой
Если же задана хорда дуги, то в формуле (5) можно произвести замену
и тогда
В частном случае для полуокружности обе формулы примут вид (рис. 176, б)
Положение центра тяжести кругового сектора, если задан его радиус r (рис. 176, в), определяется при помощи формулы
Если же задана хорда сектора, то
В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.
У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).
При решении задач на определение положения центра тяжести любого однородного тела, й составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:
- выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;
- разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;
- определить или длины, или площади, или объемы составных частей;
- выбрать расположение осей координат;
- определить координаты центров тяжести составных частей;
- найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;
- по найденным координатам указать на рисунке положение центра тяжести тела.
- Кинематика точки
- Плоское движение твердого тела
- Мгновенный центр скоростей
- Мгновенный центр ускорений
- Условия равновесия системы сил
- Плоская система сил
- Трение
- Пространственная система сил
Представим себе два груза массами m2 и m2, соединенные легким стержнем так, что расстояние между ними равно r (рис. 1). Такие грузы уже не могут вести себя независимо — они образуют единую систему. Если приложить внешнюю силу к грузу m1, то будет ускоряться и груз m2, и наоборот. Как описывать лучше всего движение такой системы?
Оказывается, что имеется одна особая точка, которая движется так, как если бы в ней была сосредоточена вся масса системы и приложены все внешние силы (внутренние силы можно не учитывать, так как их векторная сумма по третьему закону Ньютона равна нулю). Если, например, подбросить грузики в поле тяжести, то они будут кувыркаться, но одна точка системы будет двигаться, как и положено, по параболе. Эта точка называется центром масс. Она имеется у любой, даже самой сложной, системы.
Как найти положение центра масс? Если подвесить стержень с грузами, то при определенном выборе точки подвеса стержень будет оставаться в равновесии в горизонтальном положении. Для этого должно выполняться условие m1r1 = m2r2, так чтобы моменты сил тяжести относительно точки подвеса были бы равны. С другой стороны, так как, по определению, можно считать, что в центре масс сосредоточена вся масса системы, то и равнодействующая сил тяжести должна проходить через центр масс (поэтому его также называют центром тяжести с и с т е м ы). Следовательно, в равновесии, когда нет вращения, центр масс должен совпадать с точкой подвеса. Конечно, положение центра масс не обязательно находить экспериментально. Его можно рассчитать, используя указанную выше формулу: центр масс находится на линии, соединяющей грузы на расстоянии r1 = rm2/(m1 + m2) от груза m1 или на расстоянии r2 = rm1/(m1 + m2) от груза m2. Если имеется много грузиков, то последовательно разбивая систему на пары, можно найти положение центра масс всей системы.
Итак, центр масс позволяет описать крупномасштабное движение системы под действием внешних сил, отвлекаясь от деталей внутреннего движения. В частности, если на тело не действуют внешние силы (или их векторная сумма равна нулю), то центр масс должен двигаться с постоянной скоростью. Если он вначале покоился, то его смещение будет равно нулю. Центр масс изолированной системы остается на месте. Вот почему нельзя разбежаться по очень скользкому льду, улететь на ракете, не выбрасывая назад топливо, и т. д. Это свойство отражает очень важный закон природы — закон сохранения импульса.
С другой стороны, если нас интересуют внутренние процессы в системе, то, для того чтобы отвлечься от ее движения как целого, можно перейти в систему отсчета, связанную с центром масс (система центра масс). Для изолированной системы центр масс движется с постоянной скоростью, и такая система будет инерциальной.
Известно, например, что γ-кванты могут рождать пары частиц: электрон и позитрон. Но оказывается, что этот процесс не может происходить с одним квантом. Для того чтобы в этом убедиться, воспользуемся системой центра масс. В этой системе суммарный импульс электрона и позитрона равен нулю (так как массы частиц одинаковы, то центр масс всегда находится посередине, и относительно него частицы разлетаются с одинаковыми по величине скоростями в разные стороны). В то же время импульс γ-кванта, из которого родились частицы, был отличен от нуля, так как в любой системе отсчета он движется со скоростью света. Поэтому закон сохранения импульса запрещает такой процесс. Он может идти, например, при столкновении двух γ-квантов или когда есть еще и другие частицы, которым передается лишний импульс. Аналогично при аннигиляции рождаются два γ-кванта (рис. 2). Как видно, в системе центра масс удобно исследовать процессы взаимодействия частиц, и такую систему часто используют в ядерной физике и физике элементарных частиц.