Как найти центр масс двух точек

Автор статьи

Андрей Геннадьевич Блохин

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Сущность понятия «центр масс»

Понятие “центр масс” широко используется в физике для решения задач, связанных с движением тел. Например, математический маятник удобно представить себе как подвешенное на нити тело, вся масса которого сконцентрирована в единой точке. В законе всемирного тяготения тоже речь идет о расстоянии не между телами, а между центрами тел, под каковыми подразумеваются именно центры масс, а не геометрические центры.

Определение 1

Центр масс – точка, характеризующая размещение и движение исследуемой системы как единого целого.

Признаком центра масс является то, что если тело подвесить, закрепив за эту точку, оно останется в покое, т.е. не будет раскачиваться или вращаться относительно этого центра. В простейшем случае, если речь идет о симметричном теле с равномерной плотностью, центр масс находится на пересечении осей симметрии рассматриваемого тела. Например, если взять линейку длиной 30 см, то ее центр масс будет расположен на отметке “15 см”. Подложив карандаш под эту отметку, легко привести линейку в положение равновесия.

На практике далеко не все тела, центр масс которых нужно найти, являются симметричными и однородными по плотности. Более того, многие исследуемые объекты представляют собой системы из нескольких тел с различными геометрическими и химическими характеристиками. Для расчетов их разбивают на элементарные фрагменты и производят вычисления поэтапно.

Нахождение координат центра масс

Определение 2

Центр масс двух тел с точечными массами $m_1$ и $m_2$ и координатами на координатной прямой $x_1$ и $x_2$ находится в точке, делящей расстояние между этими телами на отрезки с длинами обратно пропорциональными массам рассматриваемых тел.

Отсюда следует, что чем массивнее тело в такой элементарной системе, тем ближе оно к общему центру масс.

Расстояние между точечными телами равно:

$Delta x = x_2 – x_1$

Пропорция между массами и расстояниями, согласно определению:

$frac{l_1}{l_2} = frac{m_2}{m_1}$,

«Как найти координаты центра масс» 👇

где $l_1$, $l_2$ – расстояния от соответствующих тел до центра масс.

Выразив, длины через координаты

$l_1 = x_c – x_1; l_2 = x_2 – x_c$,

центр масс можно определить как

$x_c = frac{m_1 cdot x_1 + m_2 cdot x_2}{m_1 + m_2}$.

где $x_c$ – координата центра тяжести.

Разложив любую сложную систему на множество элементарных тел с точечными массами, можно обобщить изложенный принцип в виде формулы (для оси абсцисс):

$x_c = frac{sumlimits^N_{i=1}{m_i cdot x_i}}{sumlimits^N_{i=1}{m_i}}$

В большинстве случаев центр масс требуется найти не на координатной прямой, а в двух- или трехмерной системе координат. Для дополнительных осей координаты центра масс ($y_c$, $z_c$) находят по аналогичному принципу.

Замечание 1

Центр тяжести системы тел представляет собой точку, подобную центру масс, но рассчитывается не для масс, а для весов (обусловленных гравитацией сил), действующих на точечные тела, входящие в систему. Центр тяжести определяется так же, как и центр масс, если размеры системы малы в сравнении с радиусом планеты Земля. Он в большинстве случаев с достаточной для практики точностью совпадает с центром масс рассматриваемой системы.

Пример 1

Найти центр масс двух линеек, изготовленных из одинакового материала, одинаковой толщины и ширины, левые концы линеек совмещены. Длины линеек – 10 и 30 см. Толщиной линеек можно пренебречь.

Поскольку толщиной можно пренебречь, найти нужно лишь координату центра масс по оси $x$.

Разобьем мысленно систему на два отрезка. Первый – где толщина линеек складывается. Его координаты – $[0, 10]$. Второй отрезок – где длинная линейка продолжается одна. Его координаты – $[10, 30]$. Примем за единицу измерения массу одного погонного сантиметра линейки. Тогда масса второго фрагмента:

$m_2 = 30 – 10 = 20$

На каждый сантиметр первого фрагмента приходится вдвое больше массы, поскольку там сложены две линейки:

$m_1 = 10 cdot 2 = 20$

Центры масс отрезков находятся на их осях симметрии, т.е. на середине длины каждого:

$x_{c1} = frac{10}{2} = 5$;

$x_{c2} = 10 + frac{20}{2} = 20$

Подставим значения в формулу:

$x_c = frac{m_1 cdot x_1 + m_2 cdot x_2}{m_1 + m_2}$

$x_c = frac{20 cdot 5 + 20 cdot 20}{20 +20} = frac{100 + 400}{40} = 12, 5$

Ответ: центр масс находится на расстоянии 12,5 см от левого конца системы линеек.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Точку, в которой происходит равное распределение величины, определяющей инерционные и гравитационные свойства, называют центром масс. Формула для определения параметра зависит от радиус-вектора частиц системы и их полной энергии. Эту характеристику тела отличают от тяжести, при этом в трудах советских учёных Ландау, Лифшица для неё используется термин «центр инерции».

Оглавление:

  • Общие сведения
  • Связь с центром тяжести
  • Вычисление положения
  • Геометрический способ определения

Центр тяжести

Общие сведения

Допустим, имеется тело, на которое действуют скомпенсированные силы. В этом случае оно будет в состоянии покоя или прямолинейного равномерного движения. Пусть тело будет неподвижным. Например, лодка на воде. К ней можно приложить воздействие F1 в районе её кормы. Под действием силы она начнёт разворачиваться. Аналогично если воздействовать на её нос F2, то она тоже будет поворачиваться, но при этом разворот будет происходить в другую сторону.

Получается, что можно подобрать такую линию, на которой действие сил приведёт её к ускоренно поступательному движению. Пусть это будет F3. На самом деле таких сил может быть несколько. При этом их можно перемещать вдоль линии их воздействия. Если все такие силы изобразить в виде линий, то они пересекутся в одной точке. Такое место и называют центром масс тела (ЦМ). То есть точку, в которой пересекаются линии действия сил, вызывающие только ускоренное поступательное механическое движение.

Центр масс

Эта важная точка в теле и движется она довольно просто. Перемещение любого тела можно представить, как комбинацию двух видов движения:

  • центра масс;
  • вращения.

Существует теорема: ЦМ тела движется так, как перемещалась бы материальная точка, в которой сосредоточена вся масса и к которой приложены все воздействия, действующие на объект. Таким образом, различные виды изменения положения точек в пространстве можно описать с помощью законов Ньютона. Согласно же теореме их можно применять и к телу, если считать, что все силы приложены к центру масс.

Рассматривая объект, можно не учитывать его размер, форму, а брать во внимание только инерцию, ускорение и принцип парного взаимодействия. Фактически в механике перемещение сколь угодно сложного вида рассматривается по принципу суперпозиции и закона сохранении энергии. При этом довольно удобно изучать изменение положения в системе отсчёта связанной с этим центром. В ней полный импульс всегда будет равным нулю, что позволяет упростить уравнение движения.

Связь с центром тяжести

Связь с центром тяжести

Пусть имеется объект, находящийся на Земле. Говорят, что на него действует сила тяжести. Но на самом деле она воздействует не на вещество, а на каждый его атом, частичку. Если предположить, что ускорение свободного падения буде одинаковым, то на объект действует очень множество сил тяжести. Рассматривать такую систему неудобно. Поэтому все воздействия заменяют равнодействующей. И считают, что действует одна сила, которая приложена к центру тяжести твёрдого тела.

Для того чтобы найти взаимосвязь между тяжестью и массой нужно представить, что объект вдруг распался на отдельные равные кусочки. Они держатся вместе, но не прикреплены друг к другу. Если тело отпустить, то они будут падать вместе, так как ускорение свободного падения не зависит от массы. При этом движение будет поступательным. Значит, сила, приложенная к телу в целом, будет приложена к центру масс.

Получается, что центральная точка является общей как для тяжести, так и для масс. Это две точки положение которых совпадает несмотря на разный их принцип определения в физике. Но существуют условия, когда это правило не выполняется. Например, если система материальных точек неоднородна по объёму плотности в гравитационном поле, то центры не совпадут.

Для примера можно привести список однородных фигур с указанием их центральной точки:

  • отрезок — середина;
  • параллелограмм — место пересечения диагоналей;
  • треугольник — точка пересечения медиан (центроид);
  • любой правильный многоугольник — центр поворотной симметрии;
  • полукруг — точка, в которой перпендикулярный радиус делится в отношении 4:3p считая от центра круга.

Физика

Чтобы найти координату центра масс объекта, который можно представить, как совокупность связанных материальных точек используют два метода: аналитический и геометрический. Но второй способ не всегда можно применить. В однородном гравитационном поле центры тяжести и масс всегда совпадают. И это часто подтверждается на практике, из-за того, что внешнее гравитационное поле в задачах, связанных с действиями на Земле, считают постоянным в пределах объёма тела.

Поэтому эти термины объединяют в геометрии, статике и так далее. То есть в тех областях, где применение определения можно назвать метафорическим и предполагается ситуация их эквивалентности.

При таком понимании оба термина синонимичны, но при этом чаще предпочитают использовать термин, связанный с тяжестью. Это происходит в силу того, что исторически он появился раньше.

Вычисление положения

Пусть тело представляет собой совокупность материальных точек, лежащих на одной прямой при этом их массы разные. Задача состоит в нахождении его центра. Для этого следует вести систему координат с осью икс, которая будет совпадать с линией расположения точек. При этом тело пусть подвешено на невесомой опоре и находится под действием Земного тяготения. Это условие даёт возможность воспользоваться тем фактом, что положения центров масс и тяжести совпадают.

Формула и закон для определения центра масс

На каждую из материальных точек действует своя сила: m1g, m2g… mng. Если предоставить это тело самому себе, то оно будет в состоянии свободного падения. Остановить тело — подпереть, но при этом так, чтобы оно находилось в равновесии. Это значит, что сила реакции опоры должна проходить через центр тяжести, так как равнодействующая тоже её пересекает.

Получится, что сила реакции опоры будет лежать на одной прямой с силой тяжести действующей на тело в совокупности и их моменты тоже будут проходить через неё. С помощью координатной оси точкам можно присвоить положение, x1, x2… xn, а ЦМ xц. Чтобы тело находилось в равновесии необходимо выполнение двух условий:

  • векторная сумма всех сил должна быть равной нулю: m1g + m2g +…+mng + F = 0;
  • сумма моментов равняться нулю: Mm 1 g + Mm 2 g +…+ Mmng + MF = 0.

Из первого условия можно найти силу реакции опоры: F = (m1 + m2 +…+mn) * g. Если вращение выбрать против часовой стрелки, тогда относительно оси все моменты силы тяжести будут отрицательными, а опоры — положительные. Тогда справедливо записать: F * хц = (m1 x 1 + m2 x 2 +…+mn xn) * g.

Определение центра масс

Из последнего равенства можно выразить координату ЦМ: xц = ((m1 x 1 + m2 x 2 +…+mn xn) * g) / F. В эту формулу можно подставить выражение для F. В результате ускорение свободного падения сократится и получится: xц = (m1 x 1 + m2 x 2 +…+mn xn) / (m1 + m2 +…+mn). Это формула выглядит громоздко, но запомнить её легко. В числителе стоят произведения масс материальных точек на их координаты, а в знаменателе — вес всего тела.

Если точки не будут лежать на одной прямой, то координата ЦМ тоже не изменится. То есть приведённая формула справедлива для любого положения тела относительно координаты y.

При этом её можно применять и для рассмотрения предметов в пространстве, так как все направления в существующем мире равноправные.

Геометрический способ определения

Для простейших симметричных фигур ЦМ можно определить геометрическим методом. Для этого используются свойства диагоналей и медиан. Пусть имеется произвольной формы четырёхугольник. Изготовлен он из однородного материала.

Идея вычисления состоит в том, что эту фигуру необходимо разбить на два треугольника. Для этого нужно провести диагональ, которая разделит фигуру на два тела. Затем провести в каждом треугольном теле три медианы. Точка их пересечения и будет ЦМ. В результате вместо четырёхугольника можно рассматривать две материальные точки.

Несмотря на то что масса у них разная ЦМ будет находиться на соединяющем их отрезке. Теперь четырёхугольник можно разбить на два других треугольника и выполнить аналогичные действия уже для них. Получится два отрезка, на которых одновременно расположен ЦМ. Значит, его положение будет определяться точкой их пересечения.

Определение центра масс

Для более сложной фигуры, например, шести или восьмиугольника можно использовать такой же подход. Сначала нужно разделить тело на прямоугольники, а затем треугольники. Найти ЦМ для полученных фигур и определить точку пересечения. Следует понимать, что ЦМ может находиться и за пределами объекта.

Но в реальных ситуациях бывают фигуры, которые имеют неправильную форму. Для них нельзя применить расчёт или геометрический метод. Поэтому выясняют, где расположен ЦМ экспериментальным путём.

Например, пусть имеется тело сложной неправильной формы. Чтобы найти ЦМ необходимо фигуру подвесить в пространстве. На неё действует две силы: тяжести и реакции оси. Первая заставляет фигуру поворачиваться с определённой скоростью до тех пор, пока момент силы тяжести относительно оси крепления не станет равным нулю. То есть точка опоры, ось и центр тяжести окажутся на одной вертикале.

Чтобы узнать, где же находится ЦМ, тело нужно подвесить, используя другую точку. При этом на самой фигуре следует отметить, как проходит вертикаль.

Повторяя такой опыт минимум три раза, можно увидеть точку пересечения осей, которая и будет искомым ЦМ. Причём чем будет больше экспериментов, тем точнее он будет определён.

Центр масс, теория и онлайн калькуляторы

Центр масс

Определение центра масс

Определение

При рассмотрении системы частиц, часто удобно найти такую точку, которая характеризует положение и движение
рассматриваемой системы как единого целого. Такой точкой является центр масс.

Если у нас две частицы одинаковой массы, то такая точка находится посередине между ними.

Координаты центра масс

Допустим, что две материальные точки, имеющие массы $m_1$ и $m_2$ находятся на оси абсцисс и имеют координаты $x_1$ и $x_2$. Расстояние ($Delta x$) между этими частицами равно:

[Delta x=x_2-x_1left(1right).]

Определение

Точку С (рис.1), делящую расстояние между этими частицами на отрезки, обратно
пропорциональные массам частиц называют центром масс этой системы частиц.

Центр масс, рисунок 1

В соответствии с определением для рис.1 имеем:

[frac{l_1}{l_2}=frac{m_2}{m_1}left(2right).]

Так как:

[l_1{=x}_c-x_1;; l_1{=x}_2-x_cleft(3right),]

где $x_c$ – координата центра масс, то получаем:

[m_1left(x_c-x_1right)=m_2{(x}_2-x_c)(4).]

Из формулы (4) получим:

[x_c=frac{m_1x_1+m_2x_2}{m_1+m_2}left(5right).]

Выражение (5) легко обобщается для множества материальных точек, которые расположены произвольным образом. При этом абсцисса центра масс равна:

[x_c=frac{sumlimits^N_{i=1}{m_ix_i}}{sumlimits^N_{i=1}{m_i}}left(6right).]

Аналогично получают выражения для ординаты ($y_c$) центра масс и его аппликаты ($z_c$):

[y_c=frac{sumlimits^N_{i=1}{m_iy_i}}{sumlimits^N_{i=1}{m_i}}left(7right).]

[z_c=frac{sumlimits^N_{i=1}{m_iz_i}}{sumlimits^N_{i=1}{m_i}}left(8right).]

Формулы (6-8) совпадают с выражениями, определяющими центр тяжести тела. В том случае, если размеры тела малы в сравнении с расстоянием до центра Земли, центр тяжести считают совпадающим с центром масс тела. В большинстве задач центр тяжести совпадает с центром масс тела.

Если положение N материальных точек системы задано в векторной форме, то радиус – вектор, определяющий положение центра масс находим как:

[{overline{r}}_c=frac{sumlimits^N_{i=1}{m_i{overline{r}}_i}}{sumlimits^N_{i=1}{m_i}}left(9right).]

Движение центра масс

Выражение для скорости центра масс (${overline{v}}_c=frac{d{overline{r}}_c}{dt}$) имеет вид:

[{overline{v}}_c=frac{m_1{overline{v}}_1+m_2{overline{v}}_2+dots +m_n{overline{v}}_n}{m_1+m_2+dots +m_n}=frac{overline{P}}{M}left(10right),]

где $overline{P}$ – суммарный импульс системы частиц; $M$ масса системы. Выражение (10) справедливо при движениях со скоростями которые существенно меньше скорости света.

Если система частиц является замкнутой, то сумма импульсов ее частей не изменяется. Следовательно, скорость центра масс при этом величина постоянная. Говорят, что центр масс замкнутой системы перемещается по инерции, то есть прямолинейно и равномерно, и это движение не зависимо от движения составных частей системы. В замкнутой системе могут действовать внутренние силы, в результате их действия части системы могут иметь ускорения. Но это не оказывает влияния на движение центра масс. Под действием внутренних сил скорость центра масс не изменяется.

Примеры задач с решением

Пример 1

Задание. Запишите координаты центра масс системы из трех шариков, которые находятся в вершинах и центра равностороннего треугольника, сторона которого равна $b (м)$ (рис.2).

Центр масс, пример 1

Решение. Для решения задачи используем выражения, определяющие координаты центра масс:

[x_c=frac{m_1x_1+m_2x_2+m_3x_3+m_4x_4}{m_1+m_2+m_3+m_4}(2.1);;]

[y_c=frac{m_1y_1+m_2y_2+m_3y_3+m_4y_4}{m_1+m_2+m_3+m_4}(2.2).]

Из рис.2 мы видим, что абсциссы точек:

[left{ begin{array}{c}
m_1=2m, x_1=0;; \
{rm }m_2=3m, x_2=frac{b}{2};; \
m_3=m, x_3=frac{b}{2};; \
m_4=4m, x_4=b. end{array}
right.left(2.3right).]

Тогда абсцисса центра масса равна:

[x_c=frac{2mcdot 0+3mcdot frac{b}{2}+mcdot frac{b}{2}+4mcdot b}{2m+3m+m+4m}=frac{6mb}{10m}=0,6b (м);;]

Найдем ординаты точек.

[ begin{array}{c}
m_1=2m, y_1=0;; \
{rm }m_2=3m, y_2=frac{bsqrt{3}}{2};; \
m_3=m, y_3=frac{bsqrt{3}}{6};; \
m_4=4m, y_4=0. end{array}
left(2.4right).]

Для нахождения ординаты $y_2$ вычислим, чему равна высота в равностороннем треугольнике:

[h=sqrt{b^2-frac{b^2}{4}}=frac{bsqrt{3}}{2}=y_2left(2.5right).]

Ординату $y_3$ найдем, помня, что медианы в равностороннем треугольнике точкой пересечения делятся в отношении 2:1 от вершины, получаем:

[y_3=hcdot frac{1}{3}=frac{bsqrt{3}}{6} left(2.6right).]

Вычислим ординату центра масс:

[y_c=frac{2mcdot 0+3mcdot frac{bsqrt{3}}{2}+mcdot frac{bsqrt{3}}{6}+4mcdot 0}{2m+3m+m+4m}=frac{10mfrac{bsqrt{3}}{6}}{10m}=frac{bsqrt{3} }{6}(м).]

Ответ. $x_c=0,6b {rm }{rm м}$; $y_c=frac{bsqrt{3} }{6}$ м

   

Пример 2

Задание. Запишите закон движения центра масс.

Решение. Закон изменения импульса системы частиц является законом движения центра масс. Из формулы:

[{overline{v}}_c=frac{overline{P}}{M}to overline{P}=M{overline{v}}_cleft(2.1right)]

при постоянной массе $M$ продифференцировав обе части выражения (2.1), получим:

[frac{doverline{P}}{dt}=Mfrac{d{overline{v}}_c}{dt}left(2.2right).]

Выражение (2.2) означает, что скорость изменения импульса системы равняется произведению массы системы на ускорение ее центра масс. Так как

[frac{doverline{P}}{dt}=sumlimits^N_{i=1}{{overline{F}}_ileft(2.3right),}]

имеем:

[Mfrac{d{overline{v}}_c}{dt}=sumlimits^N_{i=1}{{overline{F}}_ileft(2.4right).}]

В соответствии с выражением (2.4) получаем, что центр масс системы движется так, как двигалась бы одна материальная точка массы M, если на нее действует сила, равная сумме всех внешних сил, действующих на частицы, которые входят в рассматриваемую систему. Если $sumlimits^N_{i=1}{{overline{F}}_i=0,}$ то центр масс движется равномерно и прямолинейно.

   

Читать дальше: центр тяжести.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 июля 2022 года; проверки требуют 3 правки.

Центр масс (тж. центр ине́рции) — геометрическая точка, положение которой определяется распределением массы в теле, а перемещение характеризует движение тела или механической системы как целого[1]. Радиус-вектор данной точки задаётся формулой

{displaystyle {vec {r}}_{c}=left(int rho ({vec {r}})dVright)^{-1}int rho ({vec {r}}){vec {r}}dV,}

где {displaystyle rho ({vec {r}})} — зависящая от координат плотность, а интегрирование осуществляется по объёму тела. Центр масс может оказаться как внутри, так и вне тела.

Использование понятия центра масс, а также системы координат, связанной с центром масс, удобно во многих приложениях механики и упрощает расчёты. Если на механическую систему не действуют внешние силы, то её центр масс движется с постоянной по величине и направлению скоростью.

Джованни Чева применял рассмотрение центров масс к решению геометрических задач, в результате были сформулированы теоремы Менелая и теоремы Чевы[2].

В случае систем материальных точек и тел в однородном гравитационном поле центр масс совпадает с центром тяжести, хотя в общем случае это разные понятия.

Центр масс в классической механике[править | править код]

Определение[править | править код]

Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом[3]:

{vec  r}_{c}={frac  {sum limits _{i}m_{i}{vec  r}_{i}}{sum limits _{i}m_{i}}},

где {vec  r}_{c} — радиус-вектор центра масс, {vec  r}_{i} — радиус-вектор i-й точки системы, {displaystyle m_{i}} — масса i-й точки.

Для случая непрерывного распределения масс:

{vec  r}_{c}={1 over M}int limits _{V}rho ({vec  r}){vec  r}dV,
M=int limits _{V}rho ({vec  r})dV,

где M — суммарная масса системы, V — объём, rho  — плотность.
Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Если система состоит не из материальных точек, а из протяжённых тел с массами M_{i}, то радиус-вектор центра масс такой системы R_{c} связан с радиус-векторами центров масс тел R_{{ci}} соотношением[4]:

{vec  R}_{c}={frac  {sum limits _{i}M_{i}{vec  R}_{{ci}}}{sum limits _{i}M_{i}}}.

Действительно, пусть даны несколько систем материальных точек с массами {displaystyle M_{1},M_{2},...M_{N}.} Радиус-вектор {displaystyle {vec {R}}_{c_{n}}} n-ной системы:

{displaystyle {vec {R}}_{c_{n}}={frac {sum limits _{i_{n}}m_{i_{n}}{vec {r}}_{i_{n}}}{sum limits _{i_{n}}m_{i_{n}}}}={frac {sum limits _{i_{n}}m_{i_{n}}{vec {r}}_{i_{n}}}{M_{n}}}, n=1,2,...N.}
{displaystyle {vec {R}}_{c}={frac {sum limits _{n}left({frac {sum limits _{i_{n}}m_{i_{n}}{vec {r}}_{i_{n}}}{M_{n}}}cdot M_{n}right)}{sum limits _{n}M_{n}}}={frac {sum limits _{i}M_{i}{vec {R}}_{ci}}{sum limits _{i}M_{i}}}.}

При переходе к протяженным телам с непрерывным распределением плотности в формулах будут интегралы вместо сумм, что даст тот же результат.

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

Примеры[править | править код]

Центры масс плоских однородных фигур
  • У отрезка — середина.
  • У многоугольников :
    • У параллелограмма — точка пересечения диагоналей.
    • У треугольника — точка пересечения медиан (центроид).
  • У правильного многоугольника — центр поворотной симметрии.
  • У полукруга — точка, делящая перпендикулярный радиус в отношении {displaystyle {frac {4}{3pi }}} от центра круга.

Координаты центра масс однородной плоской фигуры можно вычислить по формулам (следствие из теорем Паппа — Гульдина):

x_{s}={frac  {V_{y}}{2pi S}} и y_{s}={frac  {V_{x}}{2pi S}}, где V_{x},V_{y} — объём тела, полученного вращением фигуры вокруг соответствующей оси, S — площадь фигуры.
Центры масс периметров однородных фигур
  • Центр масс сторон треугольника находится в центре вписанной окружности дополнительного треугольника (треугольника с вершинами, расположенными в серединах сторон данного треугольника). Эту точку называют центром Шпикера. Это означает то, что если стороны треугольника сделать из тонкой проволоки одинакового сечения, то центр масс (барицентр) полученной системы будет совпадать с центром вписанной окружности дополнительного треугольника или с центром Шпикера.

Использование[править | править код]

Понятие центра масс широко используется в физике, в частности, в механике.

Движение твёрдого тела можно рассматривать как суперпозицию движения центра масс и вращательного движения тела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы все законы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.

Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называется системой центра масс (Ц-система), или системой центра инерции. В ней полный импульс замкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения.

Центр масс в релятивистской механике[править | править код]

В случае высоких скоростей (порядка скорости света) (например, в физике элементарных частиц) для описания динамики системы применяется аппарат СТО. В релятивистской механике (СТО) понятия центра масс и системы центра масс также являются важнейшими понятиями, однако, определение понятия меняется:

{vec  r}_{c}={frac  {sum limits _{i}{vec  r}_{i}E_{i}}{sum limits _{i}E_{i}}},

где {vec  r}_{c} — радиус-вектор центра масс, {vec  r}_{i} — радиус-вектор i-й частицы системы, {displaystyle E_{i}} — полная энергия i-й частицы.

Данное определение относится только к системам невзаимодействующих частиц. В случае взаимодействующих частиц в определении должны в явном виде учитываться импульс и энергия поля, создаваемого частицами[5].

Во избежание ошибок следует понимать, что в СТО центр масс характеризуется не распределением массы, а распределением энергии. В курсе теоретической физики Ландау и Лифшица предпочтение отдается термину «центр инерции». В западной литературе по элементарным частицам применяется термин «центр масс» (англ. center-of-mass): оба термина эквивалентны.

Скорость центра масс в релятивистской механике можно найти по формуле:

{vec  v}_{c}={frac  {c^{2}}{sum limits _{i}E_{i}}}cdot sum limits _{i}{vec  p}_{i}.

Смежные понятия[править | править код]

Центр масс vs. барицентр[править | править код]

Движение космических тел вокруг барицентра.

Термин «центр масс» синонимичен одному из значений понятия барицентр (от др.-греч. βαρύς — тяжёлый + κέντρον — центр), однако последнее применяется преимущественно в задачах астрофизики и небесной механики. Под барицентром подразумевается общий для нескольких небесных тел центр масс, вокруг которого эти тела движутся. Примером может выступить совместное движение планеты и звезды (см. рис.) или компонент двойных звёзд. Центр масс (барицентр) в таком случае находится на отрезке длины l, соединяющем тела массами m_1 и m_2, на удалении {displaystyle s=m_{2}l/(m_{1}+m_{2})} от тела m_1.

Другое значение слова барицентр относится, скорее, к геометрии, нежели к физике; в этом значении выражение для координаты барицентра отличается от формулы для центра масс отсутствием плотности (как если бы всегда было {displaystyle rho =} const).

Центр масс vs. центр тяжести[править | править код]

Центр тяжести (в данном случае = центр масс), демонстрация

Центр масс тела не следует путать с центром тяжести.

Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести (действующих на систему) равен нулю. Например, в системе, состоящей из двух одинаковых масс, соединённых несгибаемым стержнем, и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести системы будет смещён к тому концу стержня, который находится ближе к планете (ибо вес P = m·g зависит от параметра гравитационного поля g), и, вообще говоря, даже расположен вне стержня.

В однородном гравитационном поле центр тяжести всегда совпадает с центром масс. В некосмических задачах гравитационное поле обычно может считаться постоянным в пределах объёма тела, поэтому на практике эти два центра почти совпадают.

По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (поскольку реального гравитационного поля нет, то и учёт его неоднородности не имеет смысла). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.

См. также[править | править код]

  • Классическая механика
  • Теоретическая механика
  • Теорема о движении центра масс системы
  • Неваляшка
  • Барицентр
  • Центроид треугольника

Примечания[править | править код]

  1. Тарг С. М.  Центр инерции (центр масс) // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1999. — Т. 5: Стробоскопические приборы — Яркость. — С. 624—625. — 692 с. — 20 000 экз. — ISBN 5-85270-101-7.
  2. G. Ceva, De lineis rectis se invicem secantibus, statica constructio Milan, 1678
  3. Журавлёв, 2001, с. 66.
  4. Фейнман Р., Лейтон Р., Сэндс М.  Выпуск 2. Пространство. Время. Движение // Фейнмановские лекции по физике. — М.: Мир, 1965. — 164 с. — С. 68.
  5. Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.

Литература[править | править код]

  • Бобылёв Д. К. Центр, в физике // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Журавлёв В. Ф.  Основы теоретической механики. 2-е изд. — М.: Физматлит, 2001. — 320 с. — ISBN 5-94052-041-3..

Пусть система состоит из N материальных точек. Силы, действующие на i – ю точку, подразделяются на внутренние, действующие со стороны остальных точек системы, и внешние.

В соответствии с 3-м законом Ньютона сумма внутренних сил равна нулю:

Центр масс системы материальных точек

Сумма всех сил, действующих на точки системы, равна сумме внешних сил, действующих на систему.

Если система не взаимодействует с внешними телами, то систему называют замкнутой или изолированной.

Центром масс (или центром инерции) системы материальных точек называют точку, положение которой определяется радиусом – вектором:

Центр масс системы материальных точек
Центр масс системы материальных точек

где mᵢ – масса материальной точки, rᵢ – радиус – вектор материальной точки, m – масса всей системы.

Центр масс системы совпадает с ее центром тяжести:

Центр масс системы материальных точек

Центр тяжести – точка приложения равнодействующей для сил тяжести всех частей системы. Движение механической системы описывается движением ее центра масс:

Центр масс системы материальных точек

Импульс центра масс системы равен сумме импульсов всех материальных точек системы.

Продифференцировав по времени верхнее уравнение (для Vc) получим уравнение движения центра масс:

Центр масс системы материальных точек

Центр масс движется так, как двигалась бы воображаемая материальная точка с массой, равной массе системы, если к ней приложить результирующую внешнюю силу.

На нашем YouTube канале “Элементарная Физика”, в доступной и живой форме объясняются фундаментальные законы физики. Спасибо за внимание 🙂

Добавить комментарий