Приведем пример
определения центра массы тела методом разделения его на отдельные тела, центры
масс которых известны.
Пример 1. Определить координаты центра массы однородной
пластины (рис.9). Размеры заданы в миллиметрах на рисунке 9.
Решение: Показываем оси координат и
. Разбиваем пластину на части,
которые образованы тремя прямоугольниками. Для каждого прямоугольника проводим
диагонали, точки пересечения которых и определяют положения центров массы
каждого прямоугольника. В принятой системе координат несложно найти значения
координат этих точек. А именно:
(-1;
1), (1;5),(5;9).
Площади каждого тела соответственно равны:
; ;
.
Площадь всей пластины равна:
.
Для определения
координат центра массы заданной пластины применяем выражения (21). Подставим
значения всех известных величин в данном уравнении, получим
.
Согласно полученных
значений координат центра массы пластины укажем точку С на рисунке. Как видно,
центр массы (геометрическая точка) пластины находится за ее пределами.
Способ дополнения. Этот способ есть частичным случаем способа
разделения. Он может применяться к телам, которые имеют вырезы (пустоты).
Причем, без вырезанной части, положение центра массы тела известно. Рассмотрим
например применение такого метода.
Пример 2. Определить положение центра массы веса круглой
пластины радиусом R, в которой есть вырез радиусом r (рис.10). Расстояние .
Решение: Как видим, из рис.10 центр массы пластины лежит на
оси симметрии пластины, то есть на прямой ,
поскольку эта прямая есть осью симметрии. Таким образом, для определения
положения центра массы этой пластины необходимо определить только одну
координату , поскольку вторая координата будет расположена на оси симметрии и
уравновешивает нулевые. Покажем оси координат , . Примем, что
пластина складывается из двух тел – из полного круга (как будто без выреза) и
тела, которое как будто выполнено с вырезом. В принятой системе координат
координаты для указанных тел будут равны: .Площади тел равны: ; .
Общая площадь всего тела будет равна разнице между площадями первого и
второго тела, а именно
.
Теперь,
для определения неизвестной координаты центра массы заданной пластины
применяем первое уравнение выражения (21). Подставим значения всех известных
величин в это уравнение, получаем
.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание – внизу страницы.
Приложения кратных интегралов в механике
Краткая теория
Масса и статистические моменты пластики
Если
– область плоскости
, занятая пластинкой, и
– поверхностная плотность пластики в точке
, то масса
пластинки и ее статистические моменты
и
относительно осей
и
выражаются двойными интегралами:
Если
пластика однородна, то
Координаты центра тяжести пластики
Если
– центр тяжести пластики, то
где
– масса пластинки и
– ее статистические моменты относительно осей
координат.
Моменты инерции пластики
Моменты
инерции пластинки относительно осей
и
соответственно равны:
Момент инерции пластики относительно
начала координат:
Полагая
, получаем геометрические моменты инерции плоской
фигуры.
Масса тела, занимающего область
и статистические моменты тела относительно
координатных плоскостей
где
– плоскость тела в точке
Координаты центра тяжести
Если тело
однородно, то формулах для координат центра тяжести можно положить
.
Моменты инерции относительно
осей координат
Полагая в
этих формулах
, получаем геометрические
моменты инерции тела.
Примеры решения задач
Задача 1
Вычислить
массу материальной пластины, занимающей область
плоскости
, если поверхностная
плотность
и границы области
заданы уравнениями.
Решение
Сделаем
чертеж области
:
Искомая
масса материальной пластины:
Ответ:
Задача 2
Найти
статистический момент фигуры, ограниченной линиями
и
относительно оси абсцисс.
Решение
Сделаем
чертеж:
Статистический
момент относительно оси
:
Ответ:
Задача 3
Вычислить
координаты центра масс однородной
материальной пластины
, ограниченной данными
линиями:
Решение
Сделаем
чертеж:
Масса
пластинки:
Статистические
моменты:
Искомые
координаты центра масс:
Ответ:
.
Задача 4
Вычислить массу тела
, ограниченного заданными поверхностями
-плотность в
точке
.
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Изобразим
тело на рисунке:
С боков
тело будет ограничено цилиндром
и плоскостями
. Сверху плоскостью
Проекция на плоскость
:
Ответ:
Задача 5
Найти
момент инерции однородного шара
с массой
относительно оси
.
Решение
Момент
инерции относительно оси
можно найти по формуле:
Шар
однородный, поэтому плотность:
Перейдем
к сферическим координатам:
Получаем:
Ответ:
Содержание:
- Центр масс
- Центр параллельных сил
- Центр тяжести
- Центры тяжести некоторых плоских однородных фигур
- Центр тяжести дуги окружности
- Центр тяжести кругового сектора
- Центр тяжести кругового сегмента
- Центр тяжести треугольника
- Центр тяжести трапеции
- Примеры решения задач на тему: Центр масс
- Способы определения координат центра тяжести тела
- Метод симметрии
- Метод разбиения
- Метод дополнения
- Экспериментальные способы
- Центры тяжести некоторых однородных тел
- Центр тяжести дуги окружности
- Центр тяжести треугольника
- Центр тяжести сектора
Центр масс – это геометрическая точка, положение которой определяется распределением массы в теле, а перемещение характеризует движение тела или механической системы как целого.
На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.
Центр масс
Центр масс – это некоторое положение, определяемое относительно объекта или системы объектов и это среднее положение всех частей системы, взвешенное в соответствии с их массами.
Центр параллельных сил
Если на тело действует система параллельных сил , ,…, , то точка , через которую проходит равнодействующая этой системы сил, называется центром параллельных сил (рис.9.1).
Координаты центра параллельных сил определяются по зависимостям:
где – координаты точек приложения сил .
Центр параллельных сил имеет ту особенность, что через него обязательно будет проходить линия действия равнодействующей при вращении линий действия всех сил системы вокруг точек их приложения на один и тот же угол в одну и ту же сторону. Модули сил при вращении не должны меняться.
Центр тяжести
Если твердое тело находится возле поверхности Земли, то на каждую материальную часть этого тела действует сила тяжести , которая направлена к центру Земли. Поскольку размеры тела небольшие по сравнению с размерами Земли, то образованную систему сил можно рассматривать как параллельную. Равнодействующая этой параллельной системе сил , которая равна их сумме, называется тяжестью тела, а центр этой системы – точка называется центром тяжести тела (рис.9.2).
Координаты центра тяжести твердого тела можно определить как координаты центра параллельных сил:
где – сила тяжести элементарной частицы тела;
– тяжесть тела;
– координаты центра тяжести;
– координаты элементарной частицы тела.
Если тело однородное, то есть удельный вес не меняется по объему , то:
где – объем тела;
– объем элементарной частицы.
Тогда формулы для определения координат центра тяжести твердого тела приобретут вид:
Положение центра тяжести однородного тела зависит только от формы объема, что занимает тело, и называется центром тяжести этого объема.
Если однородное тело имеет форму тонкой пластины, то его можно рассматривать как материальную плоскую фигуру. В этом случае положение центра тяжести плоской фигуры определяется двумя координатами и и зависит от формы площади фигуры:
где – площадь элементарной части плоской фигуры;
– площадь плоской фигуры.
Центр тяжести однородной пластины называется центром тяжести плоской фигуры.
Если выбранный элементарный объем (площадь элементарной площадки в плоском случае) направить к нулю, то формулы для вычисления координат центра тяжести приобретут интегральный вид:
а) для однородного твердого тела:
где – объем тела, интегрирование выполняется по всему объему тела;
б) для однородной поверхности:
где – площадь поверхности, интегрирование выполняется по всей поверхности тела;
в) для однородной плоской фигуры, лежащей в плоскости xy:
г) для однородной линии:
где – длина линии, интегрирование выполняется по всей длине линии.
Центры тяжести некоторых плоских однородных фигур
Для упрощения определения центра тяжести используются следующие вспомогательные правилами:
1. Если тело имеет плоскость симметрии, то центр тяжести лежит на этой плоскости.
2. Если тело симметрично относительно оси, то центр тяжести лежит на этой оси.
3. Если тело симметрично относительно точки, то центр тяжести лежит в центре симметрии.
4. Если тело состоит из нескольких частей, центры тяжести которых можно определить, то центр тяжести такого тела находят как центр тяжести нескольких материальных точек, а именно тех, в которых расположены весы каждой отдельной части тела.
Центр тяжести дуги окружности
Центр тяжести дуги окружности (рис.9.3) лежит на ее оси симметрии и на расстоянии от центра окружности:
где – радиус окружности;
– половина центрального угла, опирающегося на дугу .
Центр тяжести кругового сектора
Центр тяжести кругового сектора лежит на оси симметрии и имеет координаты:
где – радиус окружности;
– половина центрального угла сектора.
Центр тяжести кругового сегмента
Центр тяжести кругового сегмента лежит на оси симметрии сегмента и имеет координаты:
где – радиус окружности;
– половина центрального угла сегмента.
Центр тяжести треугольника
Центр тяжести треугольника (рис. 9.6) лежит в точке пересечения его медиан – на расстоянии 1/3 каждой медианы от соответствующего основания треугольника.
Центр тяжести трапеции
Центр тяжести трапеции (рис.9.7) с основаниями и и высотой лежит на прямой , которая соединяет середины основ.
Расстояния и центра тяжести площади трапеции от ее основ определяются по формулам:
Наиболее распространенный способ определения положения центра тяжести однородного тела сложной формы заключается в том, что его разбивают на такие части, положение центров тяжести которых известно, или может быть легко определено.
Например, однородную плоскую фигуру (рис.9.8) разбивают на три части 1,2 и 3, положения центров тяжести которых, можно определить.
Координаты центра тяжести фигуры определяются по формулам:
где – координаты центра тяжести первой части плоской фигуры;
– площадь первой части и т.п.
Этим способом удобно пользоваться и при определении положения центра тяжести плоской фигуры, из которой вырезана некоторая часть (рис.9.9).
В этом случае площадь плоской фигуры можно записать в виде разницы площадей сплошной фигуры 1 (площадь положительная) и вырезанной части 2 (площадь отрицательная), то есть .
Координаты центра тяжести фигуры равны:
где – координаты центра тяжести сплошной фигуры 1, площадь которой равна ;
– координаты центра тяжести вырезанной части 2, площадь которой равна – .
Первый из этих методов имеет название “метод разбиения”, второй – “метод дополнения”, или “метод отрицательных масс”. В общем случае формулы для определения центра тяжести плоской фигуры имеют вид:
где – площадь всей фигуры.
Примеры решения задач на тему: Центр масс
Задача № 1
Найти центр тяжести двутаврового профиля, размеры которого в сантиметрах указаны на рис.9.10.
Решение. Поскольку форма сечения имеет ось симметрии, ось направим вдоль оси симметрии, а ось перпендикулярно ей.
В силу симметричности профиля относительно оси центр тяжести будет лежать на этой оси, то есть
Линиями и поделим профиль на три прямоугольника 1, 2 и 3.
Запишем уравнение для определения абсциссы центра тяжести площади:
где – абсциссы центров тяжести прямоугольников 1, 2, 3;
– площади этих прямоугольников.
Поскольку центры тяжести прямоугольников и лежат на пересечении их диагоналей, то (рис.9.10):
Площади этих прямоугольников соответственно равны:
Тогда:
Таким образом, центр тяжести фигуры лежит в точке с координатами:
Ответ:
Задача № 2
Найти координаты центра тяжести поперечного пересечения разностороннего угольника (рис.9.11), полки которого имеют ширину и толщину
Решение. Разделим пересечение линией на два прямоугольника и , центры тяжести которых лежат на пересечении соответствующих диагоналей.
Запишем формулы для координат и центра тяжести пересечения:
где и – координаты центров тяжести прямоугольников 1 и 2;
, – площади прямоугольников 1 и 2.
С рис.9.11 видим, что
Тогда:
Ответ:
Задача № 3
Определить положение центра тяжести плоской фигуры (рис.9.12), ограниченной полуокружностью радиуса и двумя прямыми равной длины и , причем
Решение. Данная площадь имеет ось симметрии, вдоль которой направим ось . Поскольку центр тяжести площади лежит на оси симметрии, то
Разделим площадь линией на две части: полуокружность и равнобедренный треугольник .
Абсцисса центра тяжести площади будет равняться:
где – координата центра тяжести половины круга ;
– координата центра тяжести треугольника ;
, – площади половины круга и треугольника.
Для определения воспользуемся приведенными в разделе 9.3.2 координатами центра тяжести кругового сектора
В случае половины круга
Площадь половины круга равна:
Центр тяжести треугольника лежит на пересечении его медиан (раздел 9.3.4). Поскольку треугольник равнобедрен, то линия будет его медианой и расстояние будет равняться третьей части от :
Площадь треугольника равна:
Подставив найденные значения , , и в уравнение для , получим:
Ответ:
Задача № 4
Найти координаты центра тяжести квадратной пластины с вырезом в виде сегмента радиуса (рис.9.13), если
Решение. Осью симметрии рассматриваемой фигуры будет диагональ прямоугольника
Поэтому направим ось вдоль этой линии, а ось – перпендикулярно (рис.9.13).
Центр тяжести пластины будет лежать на оси , то есть
Площадь фигуры можно представить как разницу площадей квадрата (положительная площадь) и сектора (отрицательная площадь).
Абсцисса центра тяжести фигуры будет равняться:
где – абсцисса центра тяжести квадрата ;
– абсцисса центра тяжести сектора ;
и – площади квадрата и сектора.
Для квадрата получим:
Как следует из рис. 9.13, равняется
где – расстояние от точки к центру тяжести кругового сектора .
Для кругового сектора (раздел 9.3.2) получим:
Поскольку и , то
Таким образом, абсцисса равняется:
Площадь кругового сектора :
Подставив значение , , и в формулу для , получим:
Ответ:
Задача № 5
Найти координаты центра тяжести площади, ограниченной (рис.9.14) правой веткой параболы , осью и прямой
Решение. На расстоянии от оси выделяем элементарную площадку шириной (заштрихованная область).
Площадь выделенной элементарной площадки будет равняться:
Площадь фигуры, что ограничена заданными линиями:
Поскольку точка представляет собой пересечение параболы и прямой , то
Отсюда:
Тогда:
Абсцисса центра тяжести
Для определения координаты выделим элементарную площадку шириной на расстоянии от оси .
Площадь выделенной площадки:
Ордината центра тяжести:
Тогда:
Ответ:
Способы определения координат центра тяжести тела
Существует несколько способов определения координат центра тяжести тел. среди них различают: метод симметрии, метод разбиения и дополнения, экспериментальные способы.
Рассмотрим последовательно эти способы.
Метод симметрии
Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, или на оси симметрии, или в центре симметрии.
Таким образом, центр тяжести однородных симметричных тел, таких как кольца,
прямоугольные пластины, прямоугольные параллелепипеды, шары и другие тела, которые
имеют центр симметрии, расположенный в геометрических центрах (центры симметрии) этих тел.
Метод разбиения
Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести нетрудно определяется, то координаты центра тяжести всего тела можно определить непосредственно по формулам выше. Причем количество слагаемых в числителе каждого из указанных выражений будет равно количеству частей, на которое разбивается тело.
Приведем пример определения центра тяжести тела методом разбиения его на отдельные тела, центры тяжести которых известны.
Пример:
Определить координаты центра тяжести однородной пластины. Размеры в
мм заданные на рис. 1.64
Решение.
Выберем оси координат x и y. Разбиваем пластину на отдельные прямоугольные части. Для каждого прямоугольника проводим диагонали, точки пересечения которых c1, c2 и c3 соответствуют центрам веса каждого прямоугольника. В принятой системе координат нетрудно получить значение координат этих точек. А именно: c1 (–1,1), c2 (1,5), c3 (5,9). Площади каждого тела соответственно равны: I — s1 = 4 см2; II — s2 = 20 см2; III — s3 = 12 см2. Площадь всей пластины равна: S = s1 + s2 + s3 = 36 см2.
Для определения координат центра тяжести заданной пластины используем выражение выше. Подставив значения всех известных величин в уравнения, получим
По вычисленным значениям координат центра тяжести пластины можно обозначить точку C на рисунке. Как видим, центр тяжести (геометрическая точка) пластины расположен за ее пределами.
Метод дополнения
Способ, о котором говорится далее, является некоторым случаем способа разбиения. Он может применяться к телам, которые имеют вырезы, полости, причем без учета выреза, или вырезанной части тела положение центра тяжести тела известно. Рассмотрим пример применения такого метода.
Пример. Определить положение центра тяжести круглой пластины радиусом R, имеет круговое отверстие радиуса r (рис. 1.65). Расстояние C1C2 = a.
Решение.
Как видно из рисунка, центр тяжести пластины находится на оси симметрии пластины x, то есть на прямой, проходящей через точки C1 и C2. Таким образом, для определения положения центра тяжести этой пластины необходимо вычислить только одну координату xC, поскольку вторая координата yC равна нулю. Покажем оси координат x, y. Примем, что пластина состоит из двух тел — с полного круга (без учета выреза) и тела,
образовано вырезом. В принятой системе координаты x для указанных тел будут равны: x1 = 0; x2 = C1C2 = a. Площади тел равны: Общая площадь всего тела будет равна физической разницы между площадями первого и второго тел, а именно
Для определения неизвестной координаты центра тяжести
заданной пластины используем первое уравнение выражения.
Подставив значения всех известных величин в это уравнение, получим
Таким образом, значение координаты xC отрицательное, а потому, поскольку вторая координата 0 yC = 0, то центр тяжести пластины C размещен на оси x слева от точки C1.
Экспериментальные способы
Эти способы нашли широкое применение при отыскании положения центра тяжести тел сложных форм и конфигураций, для которых другие способы почти непригодны вследствие громоздкости и сложности. К таким телам, в первую очередь, следует отнести комбайны, тракторы, сложные сельскохозяйственные машины и орудия. При применении экспериментальных способов отыскания положения
центра тяжести наиболее широко используют метод подвешивания и метод взвешивания тел.
При применении метода подвешивания тело на тросе подвешивают за различные его точки. Направление троса, будет давать каждый раз направление силы веса тела. Тогда точка пересечения этих направлений и дает положение центра тяжести тела.
Использование второго метода — взвешивание требует измерения веса всего тела, а также отдельных его частей. Рассмотрим пример применения этого метода.
Пример.
Определим продольную координату центра тяжести трактора, у которого продольная база составляет l (рис. 1.66).
Решение.
Сначала поставим на платформу весов задние колеса трактора, как это показано на рисунке. Итак, определяем силу давления задних колес на платформу, или реакцию . Аналогично определяем вес переднего моста, или реакцию . Вполне понятно, что сумма этих реакций равна общему весу трактора, а именно:
Q = RA + RB.
Теперь составим алгебраическую сумму моментов всех сил относительно точки A. Она равна
Откуда определяем продольную координату центра тяжести:
xC = .
Для определения поперечной координаты центра тяжести трактора необходимо знать реакции левых колес (переднего и заднего) и правых, а также поперечную базу трактора. Дальше аналогичным выражением определяется эти координаты центра тяжести.
Центры тяжести некоторых однородных тел
Определим далее координаты центров тяжести некоторых простых однородных тел.
Центр тяжести дуги окружности
Рассмотрим дугу AB окружности радиусом R, в которой центральный угол OAB равен 2α (радиан) (рис. 1.67). Покажем оси координат x, y начало которых разместим в точке O. Вследствие того, что дуга имеет ось симметрии Ox, то центр ее тяжести будет расположен именно на этой оси (yC = 0). Остается только вычислить координату xC.
Используем для вычисления этой координаты первое уравнение выражения, а именно
Определим составляющие, которые необходимо подставить в это уравнение. Для этого выделим на дуге AB элемент M M1 длиной dl, равной:
dl = R · dφ.
Если φ — угол, определяющий положение элемента M M1 на дуге AB, то координата x элемента M M1 будет равна:
x = Rcosφ.
Общая длина дуги AB равна:
L = 2α · R.
Подставим эти значения в первое уравнение выражения. При этом считается, что интеграл в числителе данного выражения должен быть определенным по всей длине дуги. Будем иметь:
Таким образом, координата xC будет равняться
xC = .
Центр тяжести треугольника
Есть произвольный треугольник, вершины которого в принятой системе координат Oxy соответствуют точкам с координатами A1 (x1, y1), A2 (x2, y2), A3 (x3, y3) (рис. 1.68). Если провести прямые, которые будут параллельны основе A1A3 и провести их достаточное количество, то вся площадь треугольника будет состоять из полос бесконечно малой ширины, центры тяжести которых будут размещены посередине каждой полосы, а потому и центр тяжести треугольника будет расположенный на его медиане. А если провести линии, параллельные другой стороне треугольника, то и в этом случае центр тяжести будет размещен на соответствующей медиане. Таким образом, совершенно очевидно, что центр тяжести треугольника C будет расположен в точке пересечения его медиан.
Определим координаты этой точки. По курсу аналитической геометрии известно, что точка пересечения медиан треугольника в принятой системе координат определяется такими зависимостями
где x1, x2, …, y3 — координаты вершин треугольника.
Полезно также знать, что
Центр тяжести сектора
Рассмотрим круговой сектор OAB радиуса R, центральный угол которого равен 2α (радиан) (рис. 1.69). Центр тяжести сектора, вполне очевидно, лежит на оси его симметрии, то есть на биссектрисе угла AOB. Эту биссектрису примем за ось x и найдем на этой оси положение центра C. Разобьем площадь сектора на бесконечно большое число элементарных секторов с центральными углами ∆φ.
Будем рассматривать каждый сектор как треугольник с основанием R · ∆φ и высотой R. Центр тяжести каждого треугольника расположен на расстоянии от центра сектора. Таким образом, центры тяжести всех треугольников расположены на дуге A´B´. Итак, если 0 ∆φ → 0, то центры тяжести образуют дугу AB, тогда необходимо найти центр тяжести дуги A´B´. Используем формулу, по которой определяется центр тяжести дуги окружности радиусом r:
Тогда учитывая, что
Будем иметь
Услуги по теоретической механике:
- Заказать теоретическую механику
- Помощь по теоретической механике
- Заказать контрольную работу по теоретической механике
Учебные лекции:
- Статика
- Система сходящихся сил
- Момент силы
- Пара сил
- Произвольная система сил
- Плоская произвольная система сил
- Трение
- Расчет ферм
- Расчет усилий в стержнях фермы
- Пространственная система сил
- Произвольная пространственная система сил
- Плоская система сходящихся сил
- Пространственная система сходящихся сил
- Равновесие тела под действием пространственной системы сил
- Естественный способ задания движения точки
- Центр параллельных сил
- Параллельные силы
- Система произвольно расположенных сил
- Сосредоточенные силы и распределенные нагрузки
- Кинематика
- Кинематика твердого тела
- Движения твердого тела
- Динамика материальной точки
- Динамика механической системы
- Динамика плоского движения твердого тела
- Динамика относительного движения материальной точки
- Динамика твердого тела
- Кинематика простейших движений твердого тела
- Общее уравнение динамики
- Работа и мощность силы
- Обратная задача динамики
- Поступательное и вращательное движение твердого тела
- Плоскопараллельное (плоское) движение твёрдого тела
- Сферическое движение твёрдого тела
- Движение свободного твердого тела
- Сложное движение твердого тела
- Сложное движение точки
- Плоское движение тела
- Статика твердого тела
- Равновесие составной конструкции
- Равновесие с учетом сил трения
- Колебания материальной точки
- Относительное движение материальной точки
- Статические инварианты
- Дифференциальные уравнения движения точки под действием центральной силы и их анализ
- Динамика системы материальных точек
- Общие теоремы динамики
- Теорема об изменении кинетической энергии
- Теорема о конечном перемещении плоской фигуры
- Потенциальное силовое поле
- Метод кинетостатики
- Вращения твердого тела вокруг неподвижной точки
Метод
симметрии. При
определении центров тяжести широко
используется
симметрия тел. Для однородного тела,
имеющего плоскость
симметрии, центр тяжести находится в
плоскости симметрии.
Для однородного тела, имеющего ось или
центр симметрии, центр
тяжести находится соответственно на
оси симметрии или в центре
симметрии.
Метод
разбиения на части. Некоторые
тела сложной формы можно
разбить на части, центры тяжести которых
известны. В таких случаях
центры тяжести сложных фигур вычисляются
по общим формулам,
определяющим центр тяжести, только
вместо элементарных
частиц тела берутся его конечные части,
на которые оно разбито.
Пример
1. Определить
координаты центра тяжести однородной
пластины,
показанной на рис. 7.3. Все размеры показаны
на рисунке в сантиметрах.
Решение.
Проводим
оси координат и разбиваем пластину на
три прямоугольника
(линии разреза показаны пунктиром).
Вычислим координаты
центров тяжести каждого из
прямоугольников и их площади:
.
Площадь
всей фигуры
.
Рис.
7.3
Тогда,
,
.
Найденное
положение центра тяжести совпадает с
точкой С
и показано
на рис. 7.3.
Метод
отрицательных масс.
Проиллюстрируем этот метод на плоской
фигуре.
Пример
2. Определить положение центра тяжести
круглой пластины радиусом R
с вырезом радиуса r
(рис. 7.4). Расстояние
.
Решение.
Центр тяжести пластины лежит на линии
– на оси симметрии. Проводим оси
координат, как показано на рис. 7.4.
Для
нахождения координаты
дополняем площадь пластины
до полного круга, затем вычитаем из
полученной площади площадь вырезанного
круга
.
Тогда
.
Рис.
7.4
Положение центра
тяжести вычислим по формуле
Найденный
центр тяжести лежит левее точки
.
4 Центры тяжести простейших тел
Дуга
окружности.
Центр тяжести находится на оси симметрии
дуги, которую примем за ось координат
Ох
(рис. 7.5). Координату центра тяжести дуги
АВ
вычисляем по формуле
.
(а)
Рис.
7.5
Дуга
окружности АВ,
равная L,
определяется радиусом R
и стягиваемым ее центральным углом
2а
В рассматриваемом случае
.
Подставляя эти
значения в формулу (а), получим
.
Таким
образом,
.
Центр
тяжести полукруга.
Центр тяжести полукруга радиуса R
(pис. 7.6) находится на оси симметрии,
которую примем за ось Оу.
Координату центра тяжести полукруга
вычислим по формуле
Рис.
7.6
.
В
рассматриваемом случае
.
Имеем:
.
Подставляя
эти значения в формулу для вычисления
центра тяжести
полукруга
,
получим:
Таким
образом,
.
5 Статические моменты и центр тяжести
Рассмотрим
плоскую фигуру площадью А
и
ограниченную некоторой
кривой (рис. 7.7) в прямоугольной системе
координат. Примем
плотность тела
,
т.е. тогда масса
любой части тела будет измеряться
ее площадью. Это всегда подразумевается,
когда говорят о статических
моментах. Выделим в плоскости фигуры
элемент площади dA
с
координатами х
и
у
(pис.
7.7) и определим статические
моменты плоской фигуры, как
взятые по всей площади А
суммы
произведений
элементарных площадей dA
на
их расстояния х
и
у
до
осей Ох
и
Оу.
Итак,
статические моменты плоской
фигуры определяются как
.
(7.9)
Рис.
7.7
Статические
моменты обычно выражаются в см3
или м3.
При
параллельном переносе осей значения
статических моментов
не остаются постоянными, а изменяются
и могут иметь как положительное,
так и отрицательное значение. Следовательно,
существует
ось, относительно которой статический
момент равен нулю.
Ось,
относительно которой статический момент
равен нулю, называется
центральной.
Точка
пересечения центральных осей является
центром тяжести
сечения.
Если
известны статические моменты площади
фигуры относительно
координатных осей, то координаты ее
центра тяжести можно определить
по формулам
,
(7.10)
где
А
–
площадь сечения.
Пример
3.
Вычислить
центр тяжести плоской фигуры, изображенной
на рис. 7.8.
Размеры
сечения на рисунке даны в сантиметрах.
Рис.
7.8
Решение.
Сечение
имеет ось симметрии. Поэтому определяем
только
координату
пользуясь
методом разбиения на части. Дополним
трапецию до треугольника abf
u
рассмотрим
заданное сечение, состоящее из
треугольников abf
(часть
1) и def
(часть
2) (рис. 7.8). При
вычислении статического момента площадь
треугольника def
следует
брать со знаком «минус», так как этот
треугольник является дополнением
к заданному сечению (трапеции).
Вычислим
центр тяжести по формулам (7.9).
Определим
статический момент трапеции относительно
оси Ох.
.
Площадь сечения
.
Тогда
.
Статический
момент
можно также определить как сумму
статических
моментов составляющих ее частей
относительно той же оси
Ох.
Для
этого разобьем трапецию на два одинаковых
треугольника
amd
(часть
1) и пbе
(часть
2) и прямоугольник mden
(часть
3) (рис. 7.8,
б)
и вычислим
Координата
центра тяжести
имеет
положительное значение, т.
к.
и, следовательно, должна быть отложена
по оси Оу
вверх.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Метод определения центра масс
Изложены способы нахождения центра масс, в том числе теорема Вариньона; показано различие между центром тяжести и центром масс.
Центром масс системы называется воображаемая точка, радиус вектор которой
$vec{R} = frac{m_1vec{r_1} + m_2vec{r_2} + cdots + m_nvec{r_n}}{m_1 + m_2 + cdots + m_n} = frac{displaystylesum_{i=1}^{n} m_ivec{r_i}}{displaystylesum_{i=1}^{n} m_i}$.
Обозначим массу системы
$M = displaystylesum_{i=1}^{n} m_i$,
$Mvec{R} = m_1vec{r_1} + m_2vec{r_2} + cdots + m_nvec{r_n}$.
Найдем производную по времени:
$Mvec{v_ц} = m_1vec{v_1} + m_2vec{v_2} + cdots + m_nvec{v_n}$.
В правой части стоит суммарный импульс системы, а $vec{v_ц}$ – скорость центра масс.
Таким образом, центр масс системы движется как материальная точка массы $M$. Это теорема о движении центра масс.
Найдя еще одну производную, получим
$Mvec{a_ц} = displaystylesum_{i=1}^{n} vec{F_i^{вн}} = vec{F}$.
Здесь $vec{a_ц}$ – ускорение центра масс, $vec{F_i^{вн}}$ – внешняя сила, действующая на $i$-тое тело системы, а $F$ – равнодействующая всех сил, действующих на систему. Напомним. Что на основании третьего закона Ньютона сумма внутренних сил равна нулю.
$displaystylesum_{i=1}^{n} vec{F_i^{вн}} = 0$.
Этот результат дает возможность сформулировать следующее определение центра масс системы, подверженной внешним воздействиям вне зависимости от их природы. Центр масс такой системы – точка приложения равнодействующей всех сил. В случае действия одних лишь сил тяжести центр масс системы заменяют совпадающим с ним, но более узким по содержанию понятием центра тяжести.
В следующих задачах рассмотрим способы нахождения центра масс, а в следующей главе продемонстрируем применение теоремы о его движении.
Задача 1. К концам невесомого стержня длиной $l$ приложены силы $F_1$ и $F_2$ (рис.). Найти точку приложения равнодействующей силы.
Пусть $O$ – искомая точка. По правилу моментов
$F_1x = F_2(l – x)$,
откуда
$x = frac{F_2l}{F_1 + F_2}$.
Задача 2. Найти центр масс системы изображенной на рисунке.
Для сил $F_1$ и $F_2$ воспользуемся результатом задачи 1.
$ x = frac{F_2l}{F_1 + F_2}$.
Вторично воспользуемся им для сил
$vec{F_1} + vec{F_2}$ и $vec{F_3}$:
$y = frac{(F_1 + F_2)(l_1 + l_2 – x)}{F_1 + F_2 + F_3}$.
Подставив значение $x$, получим
$y = frac{(F_2l_2 + F_1(l_1 + l_2)}{F_1 + F_2 + F_3}$.
Решив эти две задачи, мы фактически методом математической индукции доказали теорему Вариньона: момент равнодействующей относительно произвольно выбранной оси равен сумме моментов всех сил относительно этой же оси. Эта ось проходит через точку $A$. Теорема дает возможность находить центр масс, причем ось удобно выбирать в точке приложения нескольких сил (моменты этих сил будут равны нулю).
Задача 3. Из тонкого однородного диска радиуса $R$ вырезан диск радиуса $r$ ($r < frac{R}{2}$). Расстояние между центрами диска $O$ и полости равно $a$ ($a > r$). Найти расположение центра масс.
1-й способ. Вырежем диск $C$ радиуса $r$ симметрично относительно центра $O$ (рис.).
$pi r^2(a – x) = pi (R^2 – 2r^2)x$,
отсюда
$x = frac{a}{frac{R^2}{r^2}} – 1$.
2-й способ (рис.). Задачу решаем методом отрицательных масс.
Мысленно заполним полость однородным веществом той же плотности, что и диск. Чтобы такая операция была правомерной, введенную массу удобно считать «отрицательной».
$pi R^2x + (-pi r^2)(x + a) = 0$ и $x = frac{a}{frac{R^2}{r^2}} – 1$.
Задача 4. На рисунке изображены цепочка длиной $L$ и два стержня длиной $L/2$ каждый. Чей центр масс выше?
Оттянув цепочку вниз, мы придадим ей форму стержней. Следовательно, центр масс стержней выше центра масс цепочки.
Задача 5. На поверхности воды плавает деревянный кубик квадратного сечения, плотность кубика в два раза меньше плотности воды. Какое из двух положений равновесия будет устойчивым?
В воде находится половина кубика, поэтому его центр тяжести в обоих случаях расположен на одной высоте.
Центр тяжести вытесненной воды в первом случае находится на расстоянии $frac{a}{4}$ от ее поверхности, во втором –
$frac{1}{3}afrac{sqrt{2}}{2} < frac{a}{4}$.
Это означает, что положение 2 устойчиво.
Задача 6. Найти центр масс тонкой проволоки согнутой в виде полуокружности радиуса $r$.
Впишем в окружность правильный многоугольник (рис.).
Пусть сила тяжести действует перпендикулярно чертежу. Момент сил тяжести, приложенных к серединам сторон многоугольника, относительно оси $AK^/$:
$M = rho g(ABcdot x_1 + BCcdot x_2 + CDcdot x_3 + cdots)$,
где $rho$ – масса единицы длины.
Поскольку
$ABcdot x_1 = AB^/ cdot h, BCcdot x_2 = B^/C^/ cdot h, CDcdot x_3 = C^/D^/ cdot h$ $cdots$,
то
$M = rho gh(AB^/ + C^/B^/ + cdots) = rho ghcdot 2r = 2rho ghr$.
Будем увеличивать число сторон многоугольника. Тогда $h to r$ и, следовательно, $M = 2rho gr^2$.
С другой стороны, $M = pi rrho gx$, отсюда
$x = frac{2r}{pi}$.
Задача 7. Определить положение центра тяжести однородного тонкого полукруга радиуса $r$.
Разбиваем полукруг на треугольники и сегменты (рис.).
Центры тяжести треугольника лежат на расстоянии $frac{r}{3}h$ от точки $O$.
При большом числе треугольников $h to r$.
Далее необходимо определить центр тяжести полуокружности
$ccdot r_0 = frac{2}{3}; OM = frac{2r_0}{pi} = frac{4r}{3pi}$.
Центр масс дает возможность решать не только статические задачи.
Задача 8. Брусок $2$ отпускают (рис.). Что произойдет раньше: брусок $2$ ударится о стенку, или $1$ упрется в блок?
На центр масс системы, первоначально находившейся на уровне стены, действует неотрицательная сила $Tcdot (1 – cosvarphi)$, направленная вправо от оси $x$, поэтому случай, когда $2$ раньше удариться о стену, исключается, поскольку тогда центр масс будет левее плоскости стены.
Задача 9. На гладкой горизонтальной поверхности на расстоянии $2l$ друг от друга неподвижно лежат два шарика, массой $m$ каждый, связанные невесомой нерастяжимой нитью длиной $2l$. Среднюю точку нити $A$ начинают двигать с постоянной скоростью $v$ в горизонтальном направлении, перпендикулярном нити. Какой путь пройдет точка $A$ до момента столкновения шаров?
Перейдем в систему отсчета связанную с центром масс. Тогда шарики будут двигаться со скоростью центра масс навстречу друг другу со скоростью $v$. И четверть окружности длиной $frac{2pi i}{4} = frac{pi l}{2}$ пройдут за время $t = frac{pi l}{2v}$. Теперь вернемся обратно и найдем расстояние, пройденное средней точки за это время
$S = frac{pi l}{2v} = frac{pi l}{2}$.
Задачи для самостоятельной работы.
Задача 10. Определить положение центра тяжести тонкой однородной проволоки, прогнутой по дуге радиуса $r$r (рис.).
$h = 2r frac{sin(alpha /2)}{alpha}$
Задача 11. Определить положение центра тяжести тонкой однородной пластинки, представляющей собой сектор радиуса $r$, имеющей центральный угол $alpha$ (рис.).
$OM = frac{4}{3}rfrac{sin(alpha /2)}{alpha}$
Задача 12. Найти центр масс фигуры (рис.).
$OC = frac{2}{3}frac{r}{4pi}$