I wondered, is there a geometrical way to find the center of a pentagon or a hexagon? I’m not talking about equal sides, just polygons with 5 or 6 corners.
Like, with a triangle you can take the intersection of two medians to find the center. With a quadrilateral, the center is the intersection of the bimedians.
Is it possible to construct the center of pentagons and hexagons in a similar way?
Edit: Apparently is rather difficult, so I probably have to settle for a formula to calculate the centroid. I always learned that the $x$ and $y$ values of the centroid are just the mean values of the $x_i$ and $y_i$ values of the corners respectively, but Wikipedia says otherwise (Wiki):
$C_x = dfrac{1}{6A} displaystyle sum_{i=0}^{n-1} (x_i+x_{i+1})(x_iy_{i+1}-x_{i+1}y_i)$
$C_y = dfrac{1}{6A} displaystyle sum_{i=0}^{n-1} (y_i+y_{i+1})(x_iy_{i+1}-x_{i+1}y_i)$
Where $A = dfrac{1}{2} displaystyle sum_{i=0}^{n-1} (x_iy_{i+1}-x_{i+1}y_i)$
I’m not entirely sure, but wouldn’t those $(x_iy_{i+1}-x_{i+1}y_i)$ terms cancel out because you divide by the summation over the same interval? That would leave:
$C_x = dfrac{1}{12} displaystyle sum_{i=0}^{n-1} (x_i+x_{i+1})$
which is rubbish, except for when your polygon has 6 corners — and that’s exactly the case on the source from Wikipedia, here.
Therefore I wonder, is my math correct and is this formula just a very elaborate way to calculate the centroid of a hexagon (and no other polygons), or is it just coincidence? If so, please explain the formula.
|
Макеты страниц
218. Треугольник.
Медиана треугольника есть диаметр, делящий пополам хорды, параллельные основанию, поэтому на ней лежит центр тяжести (п° 217) площади треугольника. Следовательно, три медианы треугольника, пересекаясь, определяют центр тяжести площади треугольника.
Элементарные соображения показывают, что медианы треугольника пересекаются в точке, отстоящей на две трети длины каждой из них от соответствующей вершины. Поэтому центр тяжести площади треугольника лежит на любой его медиане на расстоянии двух третей ее длины от вершины.
219. Четырехугольник.
Центр тяжести площади четырехугольника определяется пересечением двух прямых, которые мы получаем, применяя распределительное свойство центров тяжести (п° 213).
Сначала делим четырехугольник диагональю на два треугольника. Центр тяжести четырехугольника лежит на прямой, соединяющей центры тяжести этих треугольников. Эта прямая и есть первая из двух искомых прямых.
Вторую прямую получим таким же способом, разбивая четырехугольник на два треугольника (отличных от предыдущих) посредством другой диагонали.
220. Многоугольник.
Мы знаем способы нахождения центров тяжести площади треугольника и четырехугольника. Чтобы определить центр тяжести площади многоугольника с произвольным числом сторон, предположим, что мы умеем находить центр тяжести площади многоугольника с меньшим числом сторон.
Тогда можно поступить так же, как в случае четырехугольника. Площадь данного многоугольника делят на две части двумя разными способами проведением диагоналей. В каждом из двух случаев соединяют прямой центры тяжести отдельных частей. Эти две прямые пересекаются в искомом центре тяжести.
221. Дуга окружности.
Пусть требуется определить центр тяжести дуги окружности АВ длины s. Отнесем окружность к двум взаимно перпендикулярным диаметрам ОХ и OY, из которых первый проходит через середину С дуги АВ. Центр тяжести лежит на оси ОХ, являющейся осью симметрии. Достаточно поэтому определить 5. Для этого имеем формулу:
Пусть будут: а — радиус окружности, с — длина хорды АВ, — угол между осью ОХ и радиусом, проведенным к элементу значения , соответствующие концам дуги АВ. Имеем:
Тогда, принимая В за переменную интегрирования и выполняя интегрирование вдоль дуги АВ, получим:
Следовательно, центр тяжести дуги окружности лежит на радиусе, проведенном через середину дуги, в точке, расстояние которой от центра окружности есть четвертая пропорциональная длины дуги, радиуса и хорды.
222. Круговой сектор.
Сектор, заключенный между дугой окружности и двумя радиусами ОА и ОВ, может быть разложен промежуточными радиусами на бесконечно малые равные между собою секторы. Эти элементарные секторы можно рассматривать как бесконечно узкие треугольники; центр тяжести каждого из них, по предыдущему, лежит на радиусе, проведенном через середину элементарной дуги этого сектора, на расстоянии двух третей длины радиуса от центра окружности. Равные между собою массы всех элементарных треугольников, сосредоточенные в их центрах тяжести, образуют однородную дугу окружности, радиус которой равен двум третям радиуса дуги сектора. Рассматриваемый случая приводится, таким образом, к отысканию центра тяжести этой однородной дуги, т. е. к задаче, решенной в предыдущем п°.
223. Тетраэдр.
Определим центр тяжести объема тетраэдра. Плоскость, проходящая через одно из ребер и через середину противоположного ребра, есть диаметральная плоскость, которая делит пополам хорды, параллельные этому последнему ребру: она содержит поэтому центр тяжести объема тетраэдра. Следовательно, шесть плоскостей, тетраэдра, из которых каждая проходит через одно из ребер и через середину противоположного ребра, пересекаются в одной точке, представляющей собой центр тяжести объема тетраэдра.
Фиг. 37.
Рассмотрим тетраэдр ABCD (фиг. 37); соединим вершину А с центром тяжести I основания BCD; прямая AI есть пересечение диаметральных плоскостей, проходящих
через ребра АВ и поэтому она содержит искомый центр тяжести. Точка находится на расстоянии двух третей медианы ВН от вершины В. Точно так же возьмем на медиане АН точку К на расстоянии двух третей ее длины от вершины . Прямая В К пересечет прямую А в центре тяжести тетраэдра. Проведем из подобия треугольников АВН и ЮН видно, что IK есть третья часть АВ) далее, из подобия треугольников и ВГА заключаем, что есть третья часть .
Фиг. 38.
Следовательно, центр тяжести объема тетраэдра лежит на отрезке, соединяющем любую вершину тетраэдра с центром тяжести противоположной грани, на расстоянии трех четвертей длины этого отрезка от вершины.
Заметим еще, что прямая, соединяющая середины Я и L двух противоположных ребер (фиг. 38) есть пересечение диаметральных плоскостей, проходящих через эти ребра, она также проходит через центр тяжести тетраэдра. Таким образом, три прямые, соединяющие середины противоположных ребер тетраэдра, пересекаются в его центре тяжести.
Пусть Н и – середины одной пары противоположных ребер (фиг. 38) и М, N — середины двух других противоположных ребер. Фигура HNLM есть параллелограм, стороны которого соответственно параллельны остальным
двум ребрам. Прямые HL и MN, соединяющие середины двух противоположных ребер, суть диагонали этого параллелограма, а значит, они в точке пересечения делятся пополам. Таким образом, центр тяжести тетраэдра лежит в середине отрезка, соединяющего середины двух противоположных ребер тетраэдра.
224. Пирамида с многоугольным основанием.
Центр тяжести пирамиды лежит на отрезке, соединяющем вершину пирамиды с центром тяжести основания на расстоянии трех четвертей длины этого отрезка от вершины.
Чтобы доказать эту теорему, разложим пирамиду на тетраэдры плоскостями, проведенными через вершину пирамиды и через диагонали основания ABCD (например BD на фиг. 39).
Фиг. 39.
Проведем плоскость пересекающую ребра на расстоянии трех четвертей их длины от вершины. Эта плоскость содержит центры тяжести тетраэдров, а следовательно, и пирамиды. Массы тетраэдров, которые мы предполагаем сосредоточенными в их центрах тяжести, пропорциональны их объемам, следовательно и площадям из оснований (фиг. 39) или также площадям треугольников bad, bed,…, подобных предыдущим и расположенным в секущей плоскости abcd… Таким образом, искомый центр тяжести совпадает с центром тяжести многоугольника abcd. Последний же лежит на прямой, соединяющей вершину S пирамиды с центром тяжести (подобно расположенным) многоугольника основания.
225. Призма. Цилиндр. Конус.
На основании симметрии, центры тяжести призмы и цилиндра лежат на середине отрезка, соединяющего центры тяжести оснований.
Рассматривая конус, как предел вписанной в него пирамиды с той же вершиной, убеждаемся, что центр тяжести конуса лежит на отрезке, соединяющем вершину конуса с центром тяжести основания, на расстоянии трех четвертей длины этого отрезка от вершины. Можно также сказать, что центр тяжести конуса совпадает с центром тяжести сечения конуса плоскостью, параллельной основанию и проведенной на расстоянии одной четверти высоты конуса от основания.
Оглавление
- ПРЕДИСЛОВИЕ К ПЕРВОМУ ИЗДАНИЮ
- ВВЕДЕНИЕ. НАЧАЛА ТЕОРИИ ВЕКТОРОВ
- § 1. ВЕКТОРЫ. ОПЕРАЦИИ НАД ВЕКТОРАМИ
- § 2. СИСТЕМЫ ВЕКТОРОВ
- § 3. ЭКВИВАЛЕНТНЫЕ СИСТЕМЫ ВЕКТОРОВ
- § 4. ПРИВЕДЕНИЕ СИСТЕМЫ ВЕКТОРОВ. ЭЛЕМЕНТАРНЫЕ ОПЕРАЦИИ
- § 5. ПАРАЛЛЕЛЬНЫЕ ВЕКТОРЫ
- § 6. ВЕКТОРНОЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ
- ЧАСТЬ ПЕРВАЯ. КИНЕМАТИКА ТОЧКИ И ТВЕРДОГО ТЕЛА
- ГЛАВА I. КИНЕМАТИКА ТОЧКИ
- § 2. ОТНОСИТЕЛЬНЫЕ ДВИЖЕНИЯ. СЛОЖЕНИЕ СКОРОСТЕЙ
- ГЛАВА II. КИНЕМАТИКА ТВЕРДОГО ТЕЛА
- § 1. ПРОСТЫЕ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА
- § 2. СЛОЖЕНИЕ МГНОВЕННЫХ ПОСТУПАТЕЛЬНЫХ ДВИЖЕНИЙ И МГНОВЕННЫХ ВРАЩЕНИЙ
- § 3. РАСПРЕДЕЛЕНИЕ СКОРОСТЕЙ В ДВИЖУЩЕМСЯ ТВЕРДОМ ТЕЛЕ
- § 4. НЕПРЕРЫВНОЕ ДВИЖЕНИЕ ПЛОСКОЙ ФИГУРЫ В ЕЕ ПЛОСКОСТИ
- § 5. НЕПРЕРЫВНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
- § 6. КОНЕЧНЫЕ ПЕРЕМЕЩЕНИЯ ТВЕРДОГО ТЕЛА
- ГЛАВА III. ДОПОЛНИТЕЛЬНОЕ ИЗУЧЕНИЕ УСКОРЕНИЯ ПРИ ДВИЖЕНИИ ТОЧКИ И ТВЕРДОГО ТЕЛА
- § 1. ОБ УСКОРЕНИИ В ОТНОСИТЕЛЬНОМ ДВИЖЕНИИ ТОЧКИ
- § 2. РАСПРЕДЕЛЕНИЕ УСКОРЕНИЙ В ПЛОСКОЙ ФИГУРЕ, ДВИЖУЩЕЙСЯ В СВОЕЙ ПЛОСКОСТИ
- § 3. РАСПРЕДЕЛЕНИЕ УСКОРЕНИЙ В ДВИЖУЩЕМСЯ ТВЕРДОМ ТЕЛЕ
- ЧАСТЬ ВТОРАЯ. ОСНОВНЫЕ ЗАКОНЫ. ДИНАМИКА ТОЧКИ
- ГЛАВА IV. ОСНОВНЫЕ ЗАКОНЫ МЕХАНИКИ. ФИЗИЧЕСКИЕ СИЛЫ. ЕДИНИЦЫ
- § 2. ФИЗИЧЕСКИЕ СИЛЫ. ПРИТЯЖЕНИЕ. ВЕС. УПРУГИЕ СИЛЫ
- § 3. ОСНОВНЫЕ ЕДИНИЦЫ ИЗМЕРЕНИЯ
- ГЛАВА V. ДВИЖЕНИЕ СВОБОДНОЙ ТОЧКИ
- § 1. УРАВНЕНИЯ ДВИЖЕНИЯ
- § 2. ПРИЛОЖЕНИЕ ДВИЖЕНИЕ ТЯЖЕЛОЙ ТОЧКИ В ПУСТОТЕ
- § 3. ВНУТРЕННИЕ УРАВНЕНИЯ ДВИЖЕНИЯ. ЦЕНТРОСТРЕМИТЕЛЬНАЯ И ЦЕНТРОБЕЖНАЯ СИЛЫ
- § 4. ТЕОРЕМА ПЛОЩАДЕЙ
- § 5. РАБОТА СИЛЫ
- § 6. СИЛОВОЕ ПОЛЕ. СИЛОВАЯ ФУНКЦИЯ
- § 7. ТЕОРЕМА ЖИВОЙ СИЛЫ
- § 8. ДВИЖЕНИЕ ТОЧКИ ПОД ДЕЙСТВИЕМ ЦЕНТРАЛЬНОЙ СИЛЫ, ПРОПОРЦИОНАЛЬНОЙ РАССТОЯНИЮ
- § 9. КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ ПРОСТОЕ, ЗАТУХАЮЩЕЕ И ВЫНУЖДЕННОЕ
- § 10. ДВИЖЕНИЕ ПЛАНЕТЫ ВОКРУГ СОЛНЦА
- § 11. РАВНОВЕСИЕ ТОЧКИ. УСТОЙЧИВОСТЬ РАВНОВЕСИЯ
- ГЛАВА VI. ДВИЖЕНИЕ НЕСВОБОДНОЙ ТОЧКИ ПО НЕПОДВИЖНОЙ КРИВОЙ ИЛИ ПОВЕРХНОСТИ
- § 2. ТЕОРИЯ ПРОСТОГО МАЯТНИКА
- § 3. ЦИКЛОИДАЛЬНЫЙ МАЯТНИК
- § 4. ДВИЖЕНИЕ ТОЧКИ ПО НЕПОДВИЖНОЙ ПОВЕРХНОСТИ
- § 5. СФЕРИЧЕСКИЙ МАЯТНИК
- ГЛАВА VII. ОТНОСИТЕЛЬНОЕ ДВИЖЕНИЕ ТОЧКИ
- § 1. УРАВНЕНИЯ ОТНОСИТЕЛЬНОГО ДВИЖЕНИЯ.
- 2. ДВИЖЕНИЕ ТОЧКИ ОТНОСИТЕЛЬНО ПОВЕРХНОСТИ ЗЕМЛИ
- § 3. ДВИЖЕНИЕ ТЯЖЕЛОЙ ТОЧКИ В ПУСТОТЕ ОТНОСИТЕЛЬНО ПОВЕРХНОСТИ ЗЕМЛИ
- § 4. ОТКЛОНЕНИЕ СВОБОДНОГО МАЯТНИКА. МАЯТНИК ФУКО
- ЧАСТЬ ТРЕТЬЯ. СТАТИКА
- § 1. НАЧАЛА СТАТИКИ. РАВНОВЕСИЕ ТОЧКИ
- § 2. НЕОБХОДИМЫЕ УСЛОВИЯ РАВНОВЕСИЯ, ОБЩИЕ ДЛЯ ВСЕХ МАТЕРИАЛЬНЫХ СИСТЕМ
- § 3. УСЛОВИЯ РАВНОВЕСИЯ СВОБОДНОГО ТВЕРДОГО ТЕЛА
- § 4. РАВНОВЕСИЕ НЕСВОБОДНОГО ТВЕРДОГО ТЕЛА
- § 5. РАВНОВЕСИЕ ВЕРЕВОЧНОГО МНОГОУГОЛЬНИКА
- § 6. ПЛОСКИЕ СТЕРЖНЕВЫЕ (ИЛИ СОЧЛЕНЕННЫЕ) СИСТЕМЫ
- § 7. РАВНОВЕСИЕ НИТЕЙ
- ГЛАВА IX. ЦЕНТР ТЯЖЕСТИ
- § 1. ОПРЕДЕЛЕНИЕ И ОБЩИЕ СВОЙСТВА ЦЕНТРА ТЯЖЕСТИ
- § 2. ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ СПЛОШНЫХ ТЕЛ
- § 3. ЦЕНТРЫ ТЯЖЕСТИ НЕКОТОРЫХ ПРОСТЫХ ФИГУР
- § 4. ПОВЕРХНОСТИ ВРАЩЕНИЯ. ТЕОРЕМЫ ГЮЛЬДЕНА
- ГЛАВА X. АНАЛИТИЧЕСКАЯ СТАТИКА
- § 1. ПРИНЦИП ВИРТУАЛЬНЫХ РАБОТ ДЛЯ СИСТЕМ С ОБРАТИМЫМИ ПЕРЕМЕЩЕНИЯМИ
- § 2. ПРИМЕНЕНИЕ ПРИНЦИПА ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ К РАВНОВЕСИЮ СВОБОДНОГО ТВЕРДОГО ТЕЛА
- § 3 ПРИМЕНЕНИЕ ПРИНЦИПА ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ К РАВНОВЕСИЮ НЕСВОБОДНОГО ТВЕРДОГО ТЕЛА
- § 4. ПРИМЕНЕНИЕ ПРИНЦИПА ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ К МЕХАНИЗМАМ. РАВНОВЕСИЕ ПРОСТЫХ МАШИН
- § 5. ОБЩЕЕ УРАВНЕНИЕ СТАТИКИ
- § 6. ПРИНЦИП ВИРТУАЛЬНЫХ РАБОТ ДЛЯ СИСТЕМ С НЕОБРАТИМЫМИ ПЕРЕМЕЩЕНИЯМИ
- § 7. ОТНОСИТЕЛЬНОЕ РАВНОВЕСИЕ
- ГЛАВА XI. ТРЕНИЕ
- § 1. ТРЕНИЕ СКОЛЬЖЕНИЯ
- § 2. ТРЕНИЕ КАЧЕНИЯ И ВЕРЧЕНИЯ
Содержание:
- Центр масс
- Центр параллельных сил
- Центр тяжести
- Центры тяжести некоторых плоских однородных фигур
- Центр тяжести дуги окружности
- Центр тяжести кругового сектора
- Центр тяжести кругового сегмента
- Центр тяжести треугольника
- Центр тяжести трапеции
- Примеры решения задач на тему: Центр масс
- Способы определения координат центра тяжести тела
- Метод симметрии
- Метод разбиения
- Метод дополнения
- Экспериментальные способы
- Центры тяжести некоторых однородных тел
- Центр тяжести дуги окружности
- Центр тяжести треугольника
- Центр тяжести сектора
Центр масс – это геометрическая точка, положение которой определяется распределением массы в теле, а перемещение характеризует движение тела или механической системы как целого.
На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.
Центр масс
Центр масс – это некоторое положение, определяемое относительно объекта или системы объектов и это среднее положение всех частей системы, взвешенное в соответствии с их массами.
Центр параллельных сил
Если на тело действует система параллельных сил , ,…, , то точка , через которую проходит равнодействующая этой системы сил, называется центром параллельных сил (рис.9.1).
Координаты центра параллельных сил определяются по зависимостям:
где – координаты точек приложения сил .
Центр параллельных сил имеет ту особенность, что через него обязательно будет проходить линия действия равнодействующей при вращении линий действия всех сил системы вокруг точек их приложения на один и тот же угол в одну и ту же сторону. Модули сил при вращении не должны меняться.
Центр тяжести
Если твердое тело находится возле поверхности Земли, то на каждую материальную часть этого тела действует сила тяжести , которая направлена к центру Земли. Поскольку размеры тела небольшие по сравнению с размерами Земли, то образованную систему сил можно рассматривать как параллельную. Равнодействующая этой параллельной системе сил , которая равна их сумме, называется тяжестью тела, а центр этой системы – точка называется центром тяжести тела (рис.9.2).
Координаты центра тяжести твердого тела можно определить как координаты центра параллельных сил:
где – сила тяжести элементарной частицы тела;
– тяжесть тела;
– координаты центра тяжести;
– координаты элементарной частицы тела.
Если тело однородное, то есть удельный вес не меняется по объему , то:
где – объем тела;
– объем элементарной частицы.
Тогда формулы для определения координат центра тяжести твердого тела приобретут вид:
Положение центра тяжести однородного тела зависит только от формы объема, что занимает тело, и называется центром тяжести этого объема.
Если однородное тело имеет форму тонкой пластины, то его можно рассматривать как материальную плоскую фигуру. В этом случае положение центра тяжести плоской фигуры определяется двумя координатами и и зависит от формы площади фигуры:
где – площадь элементарной части плоской фигуры;
– площадь плоской фигуры.
Центр тяжести однородной пластины называется центром тяжести плоской фигуры.
Если выбранный элементарный объем (площадь элементарной площадки в плоском случае) направить к нулю, то формулы для вычисления координат центра тяжести приобретут интегральный вид:
а) для однородного твердого тела:
где – объем тела, интегрирование выполняется по всему объему тела;
б) для однородной поверхности:
где – площадь поверхности, интегрирование выполняется по всей поверхности тела;
в) для однородной плоской фигуры, лежащей в плоскости xy:
г) для однородной линии:
где – длина линии, интегрирование выполняется по всей длине линии.
Центры тяжести некоторых плоских однородных фигур
Для упрощения определения центра тяжести используются следующие вспомогательные правилами:
1. Если тело имеет плоскость симметрии, то центр тяжести лежит на этой плоскости.
2. Если тело симметрично относительно оси, то центр тяжести лежит на этой оси.
3. Если тело симметрично относительно точки, то центр тяжести лежит в центре симметрии.
4. Если тело состоит из нескольких частей, центры тяжести которых можно определить, то центр тяжести такого тела находят как центр тяжести нескольких материальных точек, а именно тех, в которых расположены весы каждой отдельной части тела.
Центр тяжести дуги окружности
Центр тяжести дуги окружности (рис.9.3) лежит на ее оси симметрии и на расстоянии от центра окружности:
где – радиус окружности;
– половина центрального угла, опирающегося на дугу .
Центр тяжести кругового сектора
Центр тяжести кругового сектора лежит на оси симметрии и имеет координаты:
где – радиус окружности;
– половина центрального угла сектора.
Центр тяжести кругового сегмента
Центр тяжести кругового сегмента лежит на оси симметрии сегмента и имеет координаты:
где – радиус окружности;
– половина центрального угла сегмента.
Центр тяжести треугольника
Центр тяжести треугольника (рис. 9.6) лежит в точке пересечения его медиан – на расстоянии 1/3 каждой медианы от соответствующего основания треугольника.
Центр тяжести трапеции
Центр тяжести трапеции (рис.9.7) с основаниями и и высотой лежит на прямой , которая соединяет середины основ.
Расстояния и центра тяжести площади трапеции от ее основ определяются по формулам:
Наиболее распространенный способ определения положения центра тяжести однородного тела сложной формы заключается в том, что его разбивают на такие части, положение центров тяжести которых известно, или может быть легко определено.
Например, однородную плоскую фигуру (рис.9.8) разбивают на три части 1,2 и 3, положения центров тяжести которых, можно определить.
Координаты центра тяжести фигуры определяются по формулам:
где – координаты центра тяжести первой части плоской фигуры;
– площадь первой части и т.п.
Этим способом удобно пользоваться и при определении положения центра тяжести плоской фигуры, из которой вырезана некоторая часть (рис.9.9).
В этом случае площадь плоской фигуры можно записать в виде разницы площадей сплошной фигуры 1 (площадь положительная) и вырезанной части 2 (площадь отрицательная), то есть .
Координаты центра тяжести фигуры равны:
где – координаты центра тяжести сплошной фигуры 1, площадь которой равна ;
– координаты центра тяжести вырезанной части 2, площадь которой равна – .
Первый из этих методов имеет название “метод разбиения”, второй – “метод дополнения”, или “метод отрицательных масс”. В общем случае формулы для определения центра тяжести плоской фигуры имеют вид:
где – площадь всей фигуры.
Примеры решения задач на тему: Центр масс
Задача № 1
Найти центр тяжести двутаврового профиля, размеры которого в сантиметрах указаны на рис.9.10.
Решение. Поскольку форма сечения имеет ось симметрии, ось направим вдоль оси симметрии, а ось перпендикулярно ей.
В силу симметричности профиля относительно оси центр тяжести будет лежать на этой оси, то есть
Линиями и поделим профиль на три прямоугольника 1, 2 и 3.
Запишем уравнение для определения абсциссы центра тяжести площади:
где – абсциссы центров тяжести прямоугольников 1, 2, 3;
– площади этих прямоугольников.
Поскольку центры тяжести прямоугольников и лежат на пересечении их диагоналей, то (рис.9.10):
Площади этих прямоугольников соответственно равны:
Тогда:
Таким образом, центр тяжести фигуры лежит в точке с координатами:
Ответ:
Задача № 2
Найти координаты центра тяжести поперечного пересечения разностороннего угольника (рис.9.11), полки которого имеют ширину и толщину
Решение. Разделим пересечение линией на два прямоугольника и , центры тяжести которых лежат на пересечении соответствующих диагоналей.
Запишем формулы для координат и центра тяжести пересечения:
где и – координаты центров тяжести прямоугольников 1 и 2;
, – площади прямоугольников 1 и 2.
С рис.9.11 видим, что
Тогда:
Ответ:
Задача № 3
Определить положение центра тяжести плоской фигуры (рис.9.12), ограниченной полуокружностью радиуса и двумя прямыми равной длины и , причем
Решение. Данная площадь имеет ось симметрии, вдоль которой направим ось . Поскольку центр тяжести площади лежит на оси симметрии, то
Разделим площадь линией на две части: полуокружность и равнобедренный треугольник .
Абсцисса центра тяжести площади будет равняться:
где – координата центра тяжести половины круга ;
– координата центра тяжести треугольника ;
, – площади половины круга и треугольника.
Для определения воспользуемся приведенными в разделе 9.3.2 координатами центра тяжести кругового сектора
В случае половины круга
Площадь половины круга равна:
Центр тяжести треугольника лежит на пересечении его медиан (раздел 9.3.4). Поскольку треугольник равнобедрен, то линия будет его медианой и расстояние будет равняться третьей части от :
Площадь треугольника равна:
Подставив найденные значения , , и в уравнение для , получим:
Ответ:
Задача № 4
Найти координаты центра тяжести квадратной пластины с вырезом в виде сегмента радиуса (рис.9.13), если
Решение. Осью симметрии рассматриваемой фигуры будет диагональ прямоугольника
Поэтому направим ось вдоль этой линии, а ось – перпендикулярно (рис.9.13).
Центр тяжести пластины будет лежать на оси , то есть
Площадь фигуры можно представить как разницу площадей квадрата (положительная площадь) и сектора (отрицательная площадь).
Абсцисса центра тяжести фигуры будет равняться:
где – абсцисса центра тяжести квадрата ;
– абсцисса центра тяжести сектора ;
и – площади квадрата и сектора.
Для квадрата получим:
Как следует из рис. 9.13, равняется
где – расстояние от точки к центру тяжести кругового сектора .
Для кругового сектора (раздел 9.3.2) получим:
Поскольку и , то
Таким образом, абсцисса равняется:
Площадь кругового сектора :
Подставив значение , , и в формулу для , получим:
Ответ:
Задача № 5
Найти координаты центра тяжести площади, ограниченной (рис.9.14) правой веткой параболы , осью и прямой
Решение. На расстоянии от оси выделяем элементарную площадку шириной (заштрихованная область).
Площадь выделенной элементарной площадки будет равняться:
Площадь фигуры, что ограничена заданными линиями:
Поскольку точка представляет собой пересечение параболы и прямой , то
Отсюда:
Тогда:
Абсцисса центра тяжести
Для определения координаты выделим элементарную площадку шириной на расстоянии от оси .
Площадь выделенной площадки:
Ордината центра тяжести:
Тогда:
Ответ:
Способы определения координат центра тяжести тела
Существует несколько способов определения координат центра тяжести тел. среди них различают: метод симметрии, метод разбиения и дополнения, экспериментальные способы.
Рассмотрим последовательно эти способы.
Метод симметрии
Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, или на оси симметрии, или в центре симметрии.
Таким образом, центр тяжести однородных симметричных тел, таких как кольца,
прямоугольные пластины, прямоугольные параллелепипеды, шары и другие тела, которые
имеют центр симметрии, расположенный в геометрических центрах (центры симметрии) этих тел.
Метод разбиения
Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести нетрудно определяется, то координаты центра тяжести всего тела можно определить непосредственно по формулам выше. Причем количество слагаемых в числителе каждого из указанных выражений будет равно количеству частей, на которое разбивается тело.
Приведем пример определения центра тяжести тела методом разбиения его на отдельные тела, центры тяжести которых известны.
Пример:
Определить координаты центра тяжести однородной пластины. Размеры в
мм заданные на рис. 1.64
Решение.
Выберем оси координат x и y. Разбиваем пластину на отдельные прямоугольные части. Для каждого прямоугольника проводим диагонали, точки пересечения которых c1, c2 и c3 соответствуют центрам веса каждого прямоугольника. В принятой системе координат нетрудно получить значение координат этих точек. А именно: c1 (–1,1), c2 (1,5), c3 (5,9). Площади каждого тела соответственно равны: I — s1 = 4 см2; II — s2 = 20 см2; III — s3 = 12 см2. Площадь всей пластины равна: S = s1 + s2 + s3 = 36 см2.
Для определения координат центра тяжести заданной пластины используем выражение выше. Подставив значения всех известных величин в уравнения, получим
По вычисленным значениям координат центра тяжести пластины можно обозначить точку C на рисунке. Как видим, центр тяжести (геометрическая точка) пластины расположен за ее пределами.
Метод дополнения
Способ, о котором говорится далее, является некоторым случаем способа разбиения. Он может применяться к телам, которые имеют вырезы, полости, причем без учета выреза, или вырезанной части тела положение центра тяжести тела известно. Рассмотрим пример применения такого метода.
Пример. Определить положение центра тяжести круглой пластины радиусом R, имеет круговое отверстие радиуса r (рис. 1.65). Расстояние C1C2 = a.
Решение.
Как видно из рисунка, центр тяжести пластины находится на оси симметрии пластины x, то есть на прямой, проходящей через точки C1 и C2. Таким образом, для определения положения центра тяжести этой пластины необходимо вычислить только одну координату xC, поскольку вторая координата yC равна нулю. Покажем оси координат x, y. Примем, что пластина состоит из двух тел — с полного круга (без учета выреза) и тела,
образовано вырезом. В принятой системе координаты x для указанных тел будут равны: x1 = 0; x2 = C1C2 = a. Площади тел равны: Общая площадь всего тела будет равна физической разницы между площадями первого и второго тел, а именно
Для определения неизвестной координаты центра тяжести
заданной пластины используем первое уравнение выражения.
Подставив значения всех известных величин в это уравнение, получим
Таким образом, значение координаты xC отрицательное, а потому, поскольку вторая координата 0 yC = 0, то центр тяжести пластины C размещен на оси x слева от точки C1.
Экспериментальные способы
Эти способы нашли широкое применение при отыскании положения центра тяжести тел сложных форм и конфигураций, для которых другие способы почти непригодны вследствие громоздкости и сложности. К таким телам, в первую очередь, следует отнести комбайны, тракторы, сложные сельскохозяйственные машины и орудия. При применении экспериментальных способов отыскания положения
центра тяжести наиболее широко используют метод подвешивания и метод взвешивания тел.
При применении метода подвешивания тело на тросе подвешивают за различные его точки. Направление троса, будет давать каждый раз направление силы веса тела. Тогда точка пересечения этих направлений и дает положение центра тяжести тела.
Использование второго метода — взвешивание требует измерения веса всего тела, а также отдельных его частей. Рассмотрим пример применения этого метода.
Пример.
Определим продольную координату центра тяжести трактора, у которого продольная база составляет l (рис. 1.66).
Решение.
Сначала поставим на платформу весов задние колеса трактора, как это показано на рисунке. Итак, определяем силу давления задних колес на платформу, или реакцию . Аналогично определяем вес переднего моста, или реакцию . Вполне понятно, что сумма этих реакций равна общему весу трактора, а именно:
Q = RA + RB.
Теперь составим алгебраическую сумму моментов всех сил относительно точки A. Она равна
Откуда определяем продольную координату центра тяжести:
xC = .
Для определения поперечной координаты центра тяжести трактора необходимо знать реакции левых колес (переднего и заднего) и правых, а также поперечную базу трактора. Дальше аналогичным выражением определяется эти координаты центра тяжести.
Центры тяжести некоторых однородных тел
Определим далее координаты центров тяжести некоторых простых однородных тел.
Центр тяжести дуги окружности
Рассмотрим дугу AB окружности радиусом R, в которой центральный угол OAB равен 2α (радиан) (рис. 1.67). Покажем оси координат x, y начало которых разместим в точке O. Вследствие того, что дуга имеет ось симметрии Ox, то центр ее тяжести будет расположен именно на этой оси (yC = 0). Остается только вычислить координату xC.
Используем для вычисления этой координаты первое уравнение выражения, а именно
Определим составляющие, которые необходимо подставить в это уравнение. Для этого выделим на дуге AB элемент M M1 длиной dl, равной:
dl = R · dφ.
Если φ — угол, определяющий положение элемента M M1 на дуге AB, то координата x элемента M M1 будет равна:
x = Rcosφ.
Общая длина дуги AB равна:
L = 2α · R.
Подставим эти значения в первое уравнение выражения. При этом считается, что интеграл в числителе данного выражения должен быть определенным по всей длине дуги. Будем иметь:
Таким образом, координата xC будет равняться
xC = .
Центр тяжести треугольника
Есть произвольный треугольник, вершины которого в принятой системе координат Oxy соответствуют точкам с координатами A1 (x1, y1), A2 (x2, y2), A3 (x3, y3) (рис. 1.68). Если провести прямые, которые будут параллельны основе A1A3 и провести их достаточное количество, то вся площадь треугольника будет состоять из полос бесконечно малой ширины, центры тяжести которых будут размещены посередине каждой полосы, а потому и центр тяжести треугольника будет расположенный на его медиане. А если провести линии, параллельные другой стороне треугольника, то и в этом случае центр тяжести будет размещен на соответствующей медиане. Таким образом, совершенно очевидно, что центр тяжести треугольника C будет расположен в точке пересечения его медиан.
Определим координаты этой точки. По курсу аналитической геометрии известно, что точка пересечения медиан треугольника в принятой системе координат определяется такими зависимостями
где x1, x2, …, y3 — координаты вершин треугольника.
Полезно также знать, что
Центр тяжести сектора
Рассмотрим круговой сектор OAB радиуса R, центральный угол которого равен 2α (радиан) (рис. 1.69). Центр тяжести сектора, вполне очевидно, лежит на оси его симметрии, то есть на биссектрисе угла AOB. Эту биссектрису примем за ось x и найдем на этой оси положение центра C. Разобьем площадь сектора на бесконечно большое число элементарных секторов с центральными углами ∆φ.
Будем рассматривать каждый сектор как треугольник с основанием R · ∆φ и высотой R. Центр тяжести каждого треугольника расположен на расстоянии от центра сектора. Таким образом, центры тяжести всех треугольников расположены на дуге A´B´. Итак, если 0 ∆φ → 0, то центры тяжести образуют дугу AB, тогда необходимо найти центр тяжести дуги A´B´. Используем формулу, по которой определяется центр тяжести дуги окружности радиусом r:
Тогда учитывая, что
Будем иметь
Услуги по теоретической механике:
- Заказать теоретическую механику
- Помощь по теоретической механике
- Заказать контрольную работу по теоретической механике
Учебные лекции:
- Статика
- Система сходящихся сил
- Момент силы
- Пара сил
- Произвольная система сил
- Плоская произвольная система сил
- Трение
- Расчет ферм
- Расчет усилий в стержнях фермы
- Пространственная система сил
- Произвольная пространственная система сил
- Плоская система сходящихся сил
- Пространственная система сходящихся сил
- Равновесие тела под действием пространственной системы сил
- Естественный способ задания движения точки
- Центр параллельных сил
- Параллельные силы
- Система произвольно расположенных сил
- Сосредоточенные силы и распределенные нагрузки
- Кинематика
- Кинематика твердого тела
- Движения твердого тела
- Динамика материальной точки
- Динамика механической системы
- Динамика плоского движения твердого тела
- Динамика относительного движения материальной точки
- Динамика твердого тела
- Кинематика простейших движений твердого тела
- Общее уравнение динамики
- Работа и мощность силы
- Обратная задача динамики
- Поступательное и вращательное движение твердого тела
- Плоскопараллельное (плоское) движение твёрдого тела
- Сферическое движение твёрдого тела
- Движение свободного твердого тела
- Сложное движение твердого тела
- Сложное движение точки
- Плоское движение тела
- Статика твердого тела
- Равновесие составной конструкции
- Равновесие с учетом сил трения
- Колебания материальной точки
- Относительное движение материальной точки
- Статические инварианты
- Дифференциальные уравнения движения точки под действием центральной силы и их анализ
- Динамика системы материальных точек
- Общие теоремы динамики
- Теорема об изменении кинетической энергии
- Теорема о конечном перемещении плоской фигуры
- Потенциальное силовое поле
- Метод кинетостатики
- Вращения твердого тела вокруг неподвижной точки
Справочник статей
- Во-первых, решение центра тяжести неправильных многоугольников
- 1.1 Метод расчета треугольника центра тяжести
- 1.2 Метод расчета площади треугольника
- 1.3 Метод расчета площади полигона
- 1.4 Метод расчета центра тяжести неправильного многоугольника
Во-первых, решение центра тяжести неправильных многоугольников
1.1 Метод расчета треугольника центра тяжести
Пусть положение трех вершин треугольника будет
A
(
x
1
,
y
1
)
A(x_1,y_1)
,
B
(
x
2
,
y
2
)
B(x_2,y_2)
,
C
(
x
3
,
y
3
)
C(x_3,y_3)
Тогда
△
A
B
C
△ABC
Центр гравитации
G
G
Координаты
x
=
x
1
+
x
2
+
x
3
3
,
y
=
y
1
+
y
2
+
y
3
3
x=frac{x_1+x_2+x_3}{3}, y=frac{y_1+y_2+y_3}{3}
1.2 Метод расчета площади треугольника
Рассчитайте площадь треугольника, используяВекторный продуктТаким образом, на следующем рисунке, принимая точку P в качестве начала координат,
A
(
x
1
,
y
1
)
A(x_1,y_1)
,
B
(
x
2
,
y
2
)
B(x_2,y_2)
。
к
A
A
,
B
B
И координатное происхождение
P
P
состоящий из
△
A
B
C
△ABC
Площадь
S
=
P
B
⃗
×
P
A
⃗
2
=
x
2
y
1
−
x
1
y
2
2
S=frac{vec{PB}times vec{PA}}{2}=frac{x_2y_1-x_1y_2}{2}
1.3 Метод расчета площади полигона
В случае многоугольников мы можем разделить многоугольники на несколько треугольников и решить их отдельно. Итак, где мы можем установить эту точку разделения $ P $? Вот вывод: точка разделения может быть установлена внутри многоугольника или снаружи.
Почему эту точку разделения можно установить снаружи? Мы можем обобщить на случай многоугольников простой случай треугольника. за
△
A
B
C
△ABC
Мы устанавливаем точку разделения в точке вне ее $ P $,
△
A
B
C
△ABC
Зона
S
S
за
S
=
1
2
(
P
B
⃗
×
P
C
⃗
+
P
C
⃗
×
P
A
⃗
+
P
A
⃗
×
P
B
⃗
)
S=frac{1}{2}(vec{PB}times vec{PC}+vec{PC}times vec{PA}+vec{PA}times vec{PB})
set
P
(
x
0
,
y
0
)
,
P(x_0,y_0),
A
(
x
1
,
y
1
)
A(x_1,y_1)
,
B
(
x
2
,
y
2
)
B(x_2,y_2)
,
C
(
x
3
,
y
3
)
C(x_3,y_3)
△
A
B
C
△ABC
Зона
S
S
Может быть написано как
S
=
1
2
(
x
1
y
2
−
x
2
y
1
+
x
2
y
3
−
x
3
y
2
+
x
3
y
1
−
x
1
y
3
)
S=frac{1}{2}left ( x_1y_2-x_2y_1+x_2y_3-x_3y_2+x_3y_1-x_1y_3right )
В это время вы можете найти внешнюю точку
P
P
Это не имеет значения, это связано только с координатами вершин.
1.4 Метод расчета центра тяжести неправильного многоугольника
Нерегулярные фигуры, как правило, не имеют понятия центральной точки, поэтому центр тяжести можно использовать только вместо центральной точки. Вот формула:
Плоский многоугольник
X
X
Может быть разбит на
n
n
Ограниченная простая графика
X
1
,
X
2
,
…
,
X
n
X_1,X_2,…,X_n
, Центр тяжести этих простых фигур
G
i
G_i
С площадью
S
i
S_i
Тогда координаты центра тяжести этого плоского многоугольника
G
(
x
,
y
)
G(x,y)
за
x
=
∑
n
i
=
1
G
i
x
S
i
∑
i
=
1
n
S
i
,
y
=
∑
n
i
=
1
G
i
y
S
i
∑
i
=
1
n
S
i
x=frac{sum_{n}^{i=1}G_{ix}S_i}{sum_{i=1}^{n} S_i},y=frac{sum_{n}^{i=1}G_{iy}S_i}{sum_{i=1}^{n} S_i}
- Расчет центра тяжести неправильного многоугольника
def get_gravity_point(points):
"""
@brief Получить центр тяжести многоугольника
@param points The points
@return The center of gravity point.
"""
if len(points) <= 2:
return list()
area = Decimal(0.0)
x, y = Decimal(0.0), Decimal(0.0)
for i in range(len(points)):
lng = Decimal(points[i][0])
lat = Decimal(points[i][1])
nextlng = Decimal(points[i-1][0])
nextlat = Decimal(points[i-1][1])
tmp_area = (nextlng*lat - nextlat*lng)/Decimal(2.0)
area += tmp_area
x += tmp_area*(lng+nextlng)/Decimal(3.0)
y += tmp_area*(lat+nextlat)/Decimal(3.0)
x = x/area
y = y/area
return [float(x), float(y)]