Как найти центр масс твердого тела

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 июля 2022 года; проверки требуют 3 правки.

Центр масс (тж. центр ине́рции) — геометрическая точка, положение которой определяется распределением массы в теле, а перемещение характеризует движение тела или механической системы как целого[1]. Радиус-вектор данной точки задаётся формулой

{displaystyle {vec {r}}_{c}=left(int rho ({vec {r}})dVright)^{-1}int rho ({vec {r}}){vec {r}}dV,}

где {displaystyle rho ({vec {r}})} — зависящая от координат плотность, а интегрирование осуществляется по объёму тела. Центр масс может оказаться как внутри, так и вне тела.

Использование понятия центра масс, а также системы координат, связанной с центром масс, удобно во многих приложениях механики и упрощает расчёты. Если на механическую систему не действуют внешние силы, то её центр масс движется с постоянной по величине и направлению скоростью.

Джованни Чева применял рассмотрение центров масс к решению геометрических задач, в результате были сформулированы теоремы Менелая и теоремы Чевы[2].

В случае систем материальных точек и тел в однородном гравитационном поле центр масс совпадает с центром тяжести, хотя в общем случае это разные понятия.

Центр масс в классической механике[править | править код]

Определение[править | править код]

Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом[3]:

{vec  r}_{c}={frac  {sum limits _{i}m_{i}{vec  r}_{i}}{sum limits _{i}m_{i}}},

где {vec  r}_{c} — радиус-вектор центра масс, {vec  r}_{i} — радиус-вектор i-й точки системы, {displaystyle m_{i}} — масса i-й точки.

Для случая непрерывного распределения масс:

{vec  r}_{c}={1 over M}int limits _{V}rho ({vec  r}){vec  r}dV,
M=int limits _{V}rho ({vec  r})dV,

где M — суммарная масса системы, V — объём, rho  — плотность.
Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Если система состоит не из материальных точек, а из протяжённых тел с массами M_{i}, то радиус-вектор центра масс такой системы R_{c} связан с радиус-векторами центров масс тел R_{{ci}} соотношением[4]:

{vec  R}_{c}={frac  {sum limits _{i}M_{i}{vec  R}_{{ci}}}{sum limits _{i}M_{i}}}.

Действительно, пусть даны несколько систем материальных точек с массами {displaystyle M_{1},M_{2},...M_{N}.} Радиус-вектор {displaystyle {vec {R}}_{c_{n}}} n-ной системы:

{displaystyle {vec {R}}_{c_{n}}={frac {sum limits _{i_{n}}m_{i_{n}}{vec {r}}_{i_{n}}}{sum limits _{i_{n}}m_{i_{n}}}}={frac {sum limits _{i_{n}}m_{i_{n}}{vec {r}}_{i_{n}}}{M_{n}}}, n=1,2,...N.}
{displaystyle {vec {R}}_{c}={frac {sum limits _{n}left({frac {sum limits _{i_{n}}m_{i_{n}}{vec {r}}_{i_{n}}}{M_{n}}}cdot M_{n}right)}{sum limits _{n}M_{n}}}={frac {sum limits _{i}M_{i}{vec {R}}_{ci}}{sum limits _{i}M_{i}}}.}

При переходе к протяженным телам с непрерывным распределением плотности в формулах будут интегралы вместо сумм, что даст тот же результат.

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

Примеры[править | править код]

Центры масс плоских однородных фигур
  • У отрезка — середина.
  • У многоугольников :
    • У параллелограмма — точка пересечения диагоналей.
    • У треугольника — точка пересечения медиан (центроид).
  • У правильного многоугольника — центр поворотной симметрии.
  • У полукруга — точка, делящая перпендикулярный радиус в отношении {displaystyle {frac {4}{3pi }}} от центра круга.

Координаты центра масс однородной плоской фигуры можно вычислить по формулам (следствие из теорем Паппа — Гульдина):

x_{s}={frac  {V_{y}}{2pi S}} и y_{s}={frac  {V_{x}}{2pi S}}, где V_{x},V_{y} — объём тела, полученного вращением фигуры вокруг соответствующей оси, S — площадь фигуры.
Центры масс периметров однородных фигур
  • Центр масс сторон треугольника находится в центре вписанной окружности дополнительного треугольника (треугольника с вершинами, расположенными в серединах сторон данного треугольника). Эту точку называют центром Шпикера. Это означает то, что если стороны треугольника сделать из тонкой проволоки одинакового сечения, то центр масс (барицентр) полученной системы будет совпадать с центром вписанной окружности дополнительного треугольника или с центром Шпикера.

Использование[править | править код]

Понятие центра масс широко используется в физике, в частности, в механике.

Движение твёрдого тела можно рассматривать как суперпозицию движения центра масс и вращательного движения тела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы все законы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.

Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называется системой центра масс (Ц-система), или системой центра инерции. В ней полный импульс замкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения.

Центр масс в релятивистской механике[править | править код]

В случае высоких скоростей (порядка скорости света) (например, в физике элементарных частиц) для описания динамики системы применяется аппарат СТО. В релятивистской механике (СТО) понятия центра масс и системы центра масс также являются важнейшими понятиями, однако, определение понятия меняется:

{vec  r}_{c}={frac  {sum limits _{i}{vec  r}_{i}E_{i}}{sum limits _{i}E_{i}}},

где {vec  r}_{c} — радиус-вектор центра масс, {vec  r}_{i} — радиус-вектор i-й частицы системы, {displaystyle E_{i}} — полная энергия i-й частицы.

Данное определение относится только к системам невзаимодействующих частиц. В случае взаимодействующих частиц в определении должны в явном виде учитываться импульс и энергия поля, создаваемого частицами[5].

Во избежание ошибок следует понимать, что в СТО центр масс характеризуется не распределением массы, а распределением энергии. В курсе теоретической физики Ландау и Лифшица предпочтение отдается термину «центр инерции». В западной литературе по элементарным частицам применяется термин «центр масс» (англ. center-of-mass): оба термина эквивалентны.

Скорость центра масс в релятивистской механике можно найти по формуле:

{vec  v}_{c}={frac  {c^{2}}{sum limits _{i}E_{i}}}cdot sum limits _{i}{vec  p}_{i}.

Смежные понятия[править | править код]

Центр масс vs. барицентр[править | править код]

Движение космических тел вокруг барицентра.

Термин «центр масс» синонимичен одному из значений понятия барицентр (от др.-греч. βαρύς — тяжёлый + κέντρον — центр), однако последнее применяется преимущественно в задачах астрофизики и небесной механики. Под барицентром подразумевается общий для нескольких небесных тел центр масс, вокруг которого эти тела движутся. Примером может выступить совместное движение планеты и звезды (см. рис.) или компонент двойных звёзд. Центр масс (барицентр) в таком случае находится на отрезке длины l, соединяющем тела массами m_1 и m_2, на удалении {displaystyle s=m_{2}l/(m_{1}+m_{2})} от тела m_1.

Другое значение слова барицентр относится, скорее, к геометрии, нежели к физике; в этом значении выражение для координаты барицентра отличается от формулы для центра масс отсутствием плотности (как если бы всегда было {displaystyle rho =} const).

Центр масс vs. центр тяжести[править | править код]

Центр тяжести (в данном случае = центр масс), демонстрация

Центр масс тела не следует путать с центром тяжести.

Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести (действующих на систему) равен нулю. Например, в системе, состоящей из двух одинаковых масс, соединённых несгибаемым стержнем, и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести системы будет смещён к тому концу стержня, который находится ближе к планете (ибо вес P = m·g зависит от параметра гравитационного поля g), и, вообще говоря, даже расположен вне стержня.

В однородном гравитационном поле центр тяжести всегда совпадает с центром масс. В некосмических задачах гравитационное поле обычно может считаться постоянным в пределах объёма тела, поэтому на практике эти два центра почти совпадают.

По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (поскольку реального гравитационного поля нет, то и учёт его неоднородности не имеет смысла). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.

См. также[править | править код]

  • Классическая механика
  • Теоретическая механика
  • Теорема о движении центра масс системы
  • Неваляшка
  • Барицентр
  • Центроид треугольника

Примечания[править | править код]

  1. Тарг С. М.  Центр инерции (центр масс) // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1999. — Т. 5: Стробоскопические приборы — Яркость. — С. 624—625. — 692 с. — 20 000 экз. — ISBN 5-85270-101-7.
  2. G. Ceva, De lineis rectis se invicem secantibus, statica constructio Milan, 1678
  3. Журавлёв, 2001, с. 66.
  4. Фейнман Р., Лейтон Р., Сэндс М.  Выпуск 2. Пространство. Время. Движение // Фейнмановские лекции по физике. — М.: Мир, 1965. — 164 с. — С. 68.
  5. Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.

Литература[править | править код]

  • Бобылёв Д. К. Центр, в физике // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Журавлёв В. Ф.  Основы теоретической механики. 2-е изд. — М.: Физматлит, 2001. — 320 с. — ISBN 5-94052-041-3..

Механика
абсолютно твёрдого тела.

Вращательное
движение абсолютно твёрдого тела.

План

1.
Центр масс абсолютно твёрдого тела,
центр инерции, движение центра масс,
теорема о движении центра масс

2.
Кинетическая энергия вращающегося
тела. Момент инерции материальной точки
и тела

3.
Момент инерции сплошного диска

4.
Момент силы

Момент
импульса

5.
Уравнение вращательного движения
твёрдого тела

6.
Гироскопы

1.
Центр масс твёрдого тела, центр инерции,
движение центра масс.

Разбив
тело на элементарные массы

его можно представить как сумму
материальных точек;

– радиус вектор, определяемый положением
этой элементарной массы.

Центр
масс твёрдого тела – точка с
радиусом-вектором

=
;

Можно
показать, что для системы материальных
точек выполняется уравнение:


=
;


суммарный
импульс;
сумма
всех сил. Продифференцируем

по
t;
найдём скорость центра масс:


=


=


=


= =
;


и

– скорость и импульс частицы.



импульс системы.

Полный
импульс системы можно представить в
виде произведения массы на системы на
скорость движения центра масс:


=
m;
тогда

=
m;

По
третьему закону Ньютона:

m
=
;
m
=
;

Теорема
о движении центра масс твёрдого тела

Центр
масс твёрдого тела движется так, как
двигалась бы материальная точка с
массой, равной массе тела, под действием
всех приложенных сил (центр масс совпадает
с центром тяжести тела в однородном
поле сил тяжести).

Уравнение
даёт возможность установить движение
центра масс твёрдого тела, если известна
масса тела и действующие на него силы.

2
Кинетическая энергия вращающегося
тела. Момент инерции материальной точки
твёрдого тела.

Мысленно
разобьём тело, вращающееся вокруг
неподвижной оси с угловой скоростью

на элементарнее массы
;

– расстояние от массы до оси;

– линейная скорость
i-той
массы.

,
,
,
модуль.

Тогда
кинетическая энергия
i-той
точки:

=
;

=;

=

=

=
;

Моментом
инерции
i-той
массы тела относительно оси вращения
называется произведение массы материальной
точки на квадрат её расстояния от оси
вращения.

=;

Момент
инерции твёрдого тела относительно оси
вращения складывается из суммы моментов
инерции всех материальных точек,
составляющих тело относительно этой
оси.

Y=
;

Тогда:

=


=
;

Момент
инерции играет роль массы при вращательном
движении, то есть это мера инертности
тела.

Y=
=
;

3
Момент
инерции сплошного диска.

Рисунок

Y=dm;

ρ
– поверхностная плотность(кг/м
3)

возьмём
тонкое кольцо:

dm=ρds;

ds=2πrdr
→ dm=
ρ2πrdr;

Y==2πρ=2πρ│R/0
=│R/0
=
=
;

Сплошной
цилиндр

=
;

Кольцо,
полый цилиндр

Y=
m;

4
Момент силы, момент импульса.

Момент
силы относительно точки опоры можно
представить в виде векторного произведения
радиус-вектора точки приложения силы
на силу.

=
[×];

Вектор

направлен

плоскости,
в которой лежат

и
,
а направление вектора 
по правилу правого винта.

||=
rF
||;

Когда
сила приложена к одной из точек твёрдого
тела, вектор

характеризует способность силы вращать
тело вокруг точки
О,
относительно которой он берётся. Поэтому
момент силы называется также вращающим
моментом.

×];


=
[
]
+ []
= [×];


=
[×]=
;

Момент
импульса материальной точки относительно
точки О называется векторная величина:

=[×],

где

– радиус-вектор, определяющий положение
частицы относительно точки
О
, а
=
– импульс частицы.

||=
rP;

Вектор

перпендикулярен плоскости, в которой
лежат вектора

и
,
а направление его по правилу правого
винта

L=Yw
по
аналогии с
P=mv

5
Уравнение вращательного движения
твёрдого тела.

Продифференцируем
по
t
=[×]:


=
[×]
+ [×]
;

=
;


=
,

,


= 0;


=
[×];


=
;

Производная
по времени момента импульса материальной
точки О равна моменту действующей силы
относительно точки О .

Для
системы материальных точек:

|
=
|;

Для
твёрдого тела как и для системы
материальных точек: производная момента
импульса по времени равна суммарному
моменту внешних сил, действующих на
тело.


=∑
внешн.;

Это
уравнение динамики вращательного
движения твёрдого тела относительно
неподвижной оси.

d
=
dt;

Изменение
момента импульса равно импульсу момента
всех сил


=M;


=
M;


=
M;

M=Yξ;
L=Yw;

M=

= Y
= Yξ;

Поступательное
движение

Вращательное
движение

=

=

a=;
=
;
=

ξ=

=

m

Y=m

Eк.r=

Eк=

=
ma
2

=[×]

P=m

=
[×]

=

=

6
Гироскоп

Гироскопом
(волчёк) называется симметричное тело,
вращающееся с большой скоростью вокруг
оси симметрии

У
симметричного тела направление

совпадает с

.

Гироскоп
вращается относительно
z
сила

втечение
dt
.

Момент
импульса

получает приращение:
d=dt
,
где

– момент силы

относительно точки
О.

Новое
значение момента импульса равно
+d
.

Наряду
с прецессией, возникает нутация оси,
размахи у быстро вращающихся волчков
малы, ею пренебрегают.

Когда
угловая скорость вращения волчка
становится меньше определённой величины,
он теряет устойчивость и падает.

У
медленно вращающегося волчка нутация
зыбка. На морских судах и винтовыз
самолётах имеется много вращающихся
частей: вал двигателя, ротор турбины…

При
разворотах судна и качке на подшипники
действует гироскопическая сила, это
учитывают.

Угловая
скорость прецессии оказывается
пропорциональной величине внешнего
момента силы.

Гироскоп
(от греческого гирос – круг ) – быстро
вращающееся симметричное тело, ось
вращения которого может изменять своё
направление в пространстве.

Гироскоп
обладает рядом интересны свойств,
наблюдаемых у небесных тел, роторов
турбин, установленных на судах и т.д…

Свойства
гироскопа проявляются при  выполнении
двух условий: 1) ось вращения должна
иметь возможность менять направление
в пространстве. 2) угловая скорость
вращения гироскопа много больше скорости
оси при изменении направления.

Гироскопический
эффект используют в технике (использование
кардановой подвески).

При
свободной оси гироскоп обладает двумя
основными свойствами:

  1. Если
    ось вращения направить на какую-нибудь
    звезду, то при любых случайных толчках
    она будет продолжать указывать на эту
    звезду, меняя свою ориентацию относительно
    других осей.

  2. Под
    действием силы, стремящейся изменить
    положение оси, она будет отклоняться
    внаправлении перпендикулярном действию
    силы, при этом возникает вращение с
    постоянной угловой скоростью –
    прецессия.

Содержание:

  1. Центр масс
  2. Центр параллельных сил
  3. Центр тяжести
  4. Центры тяжести некоторых плоских однородных фигур
  5. Центр тяжести дуги окружности
  6. Центр тяжести кругового сектора
  7. Центр тяжести кругового сегмента
  8. Центр тяжести треугольника
  9. Центр тяжести трапеции
  10. Примеры решения задач на тему: Центр масс
  11. Способы определения координат центра тяжести тела
  12. Метод симметрии
  13. Метод разбиения
  14. Метод дополнения
  15. Экспериментальные способы
  16. Центры тяжести некоторых однородных тел
  17. Центр тяжести дуги окружности
  18. Центр тяжести треугольника
  19. Центр тяжести сектора

Центр масс – это геометрическая точка, положение которой определяется распределением массы в теле, а перемещение характеризует движение тела или механической системы как целого.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Центр масс

Центр масс – это некоторое положение, определяемое относительно объекта или системы объектов и это среднее положение всех частей системы, взвешенное в соответствии с их массами.

Центр параллельных сил

Если на тело действует система параллельных сил Центр массЦентр масс,…, Центр масс, то точка Центр масс, через которую проходит равнодействующая Центр масс этой системы сил, называется центром параллельных сил (рис.9.1).

Центр масс

Координаты центра параллельных сил определяются по зависимостям:

Центр масс

Центр масс

где Центр масс – координаты точек приложения сил Центр масс.

Центр параллельных сил имеет ту особенность, что через него обязательно будет проходить линия действия равнодействующей при вращении линий действия всех сил системы вокруг точек их приложения на один и тот же угол в одну и ту же сторону. Модули сил при вращении не должны меняться.

Центр тяжести

Если твердое тело находится возле поверхности Земли, то на каждую материальную часть этого тела действует сила тяжести­ Центр масс, которая направлена к центру Земли. Поскольку размеры тела небольшие по сравнению с размерами Земли, то образованную систему сил можно рассматривать как параллельную. Равнодействующая этой параллельной системе сил Центр масс, которая равна их сумме, называется тяжестью тела, а центр этой системы – точка Центр масс называется центром тяжести тела (рис.9.2).

Координаты центра тяжести твердого тела можно определить как координаты центра параллельных сил:

Центр масс

Центр масс

где Центр масс – сила тяжести элементарной частицы тела;

Центр масс – тяжесть тела;

Центр масс – координаты центра тяжести;

Центр масс – координаты элементарной частицы тела.

Если тело однородное, то есть удельный вес не меняется по объему Центр масс, то:

Центр масс

где Центр масс – объем тела;

Центр масс – объем элементарной частицы.

Тогда формулы для определения координат центра тяжести твердого тела приобретут вид:

Центр масс

Положение центра тяжести однородного тела зависит только от формы объема, что занимает тело, и называется центром тяжести этого объема.

Если однородное тело имеет форму тонкой пластины, то его можно рассматривать как материальную плоскую фигуру. В этом случае положение центра тяжести плоской фигуры определяется двумя координатами Центр масс и Центр масс и зависит от формы площади фигуры:

Центр масс

где Центр масс – площадь элементарной части плоской фигуры;

Центр масс – площадь плоской фигуры.

Центр тяжести однородной пластины называется центром тяжести плоской фигуры.

Если выбранный элементарный объем Центр масс (площадь элементарной площадки в плоском случае) направить к нулю, то формулы для вычисления координат центра тяжести приобретут интегральный вид:

а) для однородного твердого тела:

Центр масс

где Центр масс – объем тела, интегрирование выполняется по всему объему тела;

б) для однородной поверхности:

Центр масс

где Центр масс – площадь поверхности, интегрирование выполняется по всей поверхности тела;

в) для однородной плоской фигуры, лежащей в плоскости xy:

Центр масс

г) для однородной линии:

Центр масс

где Центр масс – длина линии, интегрирование выполняется по всей длине линии.

Центры тяжести некоторых плоских однородных фигур

Для упрощения определения центра тяжести используются следующие вспомогательные правилами:

1. Если тело имеет плоскость симметрии, то центр тяжести лежит на этой плоскости.
2. Если тело симметрично относительно оси, то центр тяжести лежит на этой оси.
3. Если тело симметрично относительно точки, то центр тяжести лежит в центре симметрии.
4. Если тело состоит из нескольких частей, центры тяжести которых можно определить, то центр тяжести такого тела находят как центр тяжести нескольких материальных точек, а именно тех, в которых расположены весы каждой отдельной части тела.

Центр тяжести дуги окружности

Центр тяжести дуги окружности Центр масс (рис.9.3) лежит на ее оси симметрии и на расстоянии Центр масс от центра окружности:

Центр масс

где Центр масс – радиус окружности;

Центр масс – половина центрального угла, опирающегося на дугу Центр масс.

Центр масс

Центр тяжести кругового сектора

Центр тяжести кругового сектора лежит на оси симметрии и имеет координаты:

Центр масс

где Центр масс – радиус окружности;

Центр масс – половина центрального угла сектора.

Центр масс

Центр тяжести кругового сегмента

Центр тяжести кругового сегмента лежит на оси симметрии сегмента и имеет координаты:

Центр масс

где Центр масс – радиус окружности;

Центр масс – половина центрального угла сегмента.

Центр масс

Центр тяжести треугольника

Центр тяжести треугольника (рис. 9.6) лежит в точке пересечения его медиан – на расстоянии 1/3 каждой медианы от соответствующего основания треугольника.

Центр масс

Центр тяжести трапеции

Центр тяжести трапеции (рис.9.7) с основаниями Центр масс и Центр масс и высотой Центр масс лежит на прямой Центр масс, которая соединяет середины основ.

Центр масс

Расстояния Центр масс и Центр масс центра тяжести Центр масс площади трапеции от ее основ определяются по формулам:

Центр масс

Наиболее распространенный способ определения положения центра тяжести однородного тела сложной формы заключается в том, что его разбивают на такие части, положение центров тяжести которых известно, или может быть легко определено.

Например, однородную плоскую фигуру (рис.9.8) разбивают на три части 1,2 и 3, положения центров тяжести которых, Центр масс можно определить.

Центр масс

Координаты центра тяжести фигуры Центр масс определяются по формулам:

Центр масс

где Центр масс – координаты центра тяжести Центр масс первой части плоской фигуры;

Центр масс – площадь первой части и т.п.

Этим способом удобно пользоваться и при определении положения центра тяжести плоской фигуры, из которой вырезана некоторая часть (рис.9.9).

Центр масс

В этом случае площадь плоской фигуры можно записать в виде разницы площадей сплошной фигуры 1 (площадь положительная) и вырезанной части 2 (площадь отрицательная), то есть Центр масс .

Координаты центра тяжести фигуры равны:

Центр масс

где Центр масс – координаты центра тяжести сплошной фигуры 1, площадь которой равна Центр масс;

Центр масс – координаты центра тяжести вырезанной части 2, площадь которой равна – Центр масс.

Первый из этих методов имеет название “метод разбиения”, второй – “метод дополнения”, или “метод отрицательных масс”. В общем случае формулы для определения центра тяжести плоской фигуры имеют вид:

Центр масс

где Центр масс – площадь всей фигуры.

Примеры решения задач на тему: Центр масс

Задача № 1

Найти центр тяжести двутаврового профиля, размеры которого в сантиметрах указаны на рис.9.10.

Решение. Поскольку форма сечения имеет ось симметрии, ось Центр масс направим вдоль оси симметрии, а ось Центр масс перпендикулярно ей.

В силу симметричности профиля относительно оси Центр масс центр тяжести будет лежать на этой оси, то есть Центр масс

Линиями Центр масс и Центр масс поделим профиль на три прямоугольника 1, 2 и 3.

Запишем уравнение для определения абсциссы центра тяжести площади:

Центр масс

где Центр масс – абсциссы центров тяжести прямоугольников 1, 2, 3;

Центр масс – площади этих прямоугольников.

Центр масс

Поскольку центры тяжести прямоугольников Центр масс и Центр масс лежат на пересечении их диагоналей, то (рис.9.10):

Центр масс

Площади этих прямоугольников соответственно равны:

Центр масс

Тогда: 

Центр масс

Таким образом, центр тяжести фигуры лежит в точке Центр масс с координатами: Центр масс

Ответ: Центр масс

Задача № 2

Найти координаты центра тяжести поперечного пересечения разностороннего угольника (рис.9.11), полки которого имеют ширину Центр масс и толщину Центр масс

Центр масс

Решение. Разделим пересечение линией Центр масс на два прямоугольника Центр масс и Центр масс, центры тяжести которых лежат на пересечении соответствующих диагоналей.

Запишем формулы для координат Центр масс и Центр масс центра тяжести пересечения:

Центр масс

где Центр масс и Центр масс – координаты центров тяжести прямоугольников 1 и 2;

Центр массЦентр масс – площади прямоугольников 1 и 2.

С рис.9.11 видим, что

Центр масс

Тогда: 

Центр масс

Ответ: Центр масс

Задача № 3

Определить положение центра тяжести плоской фигуры (рис.9.12), ограниченной полуокружностью Центр масс радиуса Центр масс и двумя прямыми равной длины Центр масс и Центр масс, причем Центр масс

Центр масс

Решение. Данная площадь имеет ось симметрии, вдоль которой направим ось Центр масс. Поскольку центр тяжести площади Центр масс лежит на оси симметрии, то Центр масс

Разделим площадь Центр масс линией Центр масс на две части: полуокружность Центр масс и равнобедренный треугольник Центр масс.

Абсцисса центра тяжести площади Центр масс будет равняться:

Центр масс

где Центр масс – координата центра тяжести половины круга Центр масс;

Центр масс – координата центра тяжести треугольника Центр масс;

Центр массЦентр масс – площади половины круга и треугольника.

Для определения Центр масс воспользуемся приведенными в разделе 9.3.2 координатами центра тяжести кругового сектора

Центр масс

В случае половины круга Центр масс

Центр масс

Площадь половины круга равна:

Центр масс

Центр тяжести треугольника лежит на пересечении его медиан (раздел 9.3.4). Поскольку треугольник Центр масс равнобедрен, то линия Центр масс будет его медианой и расстояние Центр масс будет равняться третьей части от Центр масс:

Центр масс

Площадь треугольника Центр масс равна:

Центр масс

Подставив найденные значения Центр массЦентр массЦентр масс и Центр масс в уравнение для Центр масс, получим:

Центр масс

Ответ: Центр масс

Задача № 4

Найти координаты центра тяжести квадратной пластины с вырезом в виде сегмента радиуса Центр масс (рис.9.13), если

Центр масс

Центр масс

Решение. Осью симметрии рассматриваемой фигуры будет диагональ Центр масс прямоугольника Центр масс

Поэтому направим ось Центр масс вдоль этой линии, а ось Центр масс – перпендикулярно (рис.9.13).

Центр тяжести пластины будет лежать на оси Центр масс, то есть Центр масс

Площадь фигуры Центр масс можно представить как разницу площадей квадрата Центр масс (положительная площадь) и сектора Центр масс (отрицательная площадь).

Абсцисса центра тяжести фигуры будет равняться:

Центр масс

где Центр масс – абсцисса центра тяжести квадрата Центр масс;

Центр масс – абсцисса центра тяжести сектора Центр масс;

Центр масс и Центр масс – площади квадрата и сектора.

Для квадрата Центр масс получим:

Центр масс

Как следует из рис. 9.13, Центр масс равняется

Центр масс

где Центр масс – расстояние от точки Центр масс к центру тяжести кругового сектора Центр масс.

Для кругового сектора (раздел 9.3.2) получим:

Центр масс

Поскольку Центр масс и Центр масс, то 

Центр масс

Таким образом, абсцисса Центр масс равняется:

Центр масс

Площадь кругового сектора Центр масс:

Центр масс

Подставив значение Центр массЦентр массЦентр масс и Центр масс в формулу для Центр масс, получим:

Центр масс

Ответ:  Центр масс

Задача № 5

Найти координаты центра тяжести площади, ограниченной (рис.9.14) правой веткой параболы Центр масс, осью Центр масс и прямой Центр масс

Центр масс

Решение. На расстоянии Центр масс от оси Центр масс выделяем элементарную площадку Центр масс шириной Центр масс (заштрихованная область).

Площадь выделенной элементарной площадки будет равняться:

Центр масс

Площадь фигуры, что ограничена заданными линиями:

Центр масс

Поскольку точка Центр масс представляет собой пересечение параболы Центр масс и прямой Центр масс, то Центр масс

Отсюда: 

Центр масс

Тогда:

Центр масс

Абсцисса центра тяжести

Центр масс

Для определения координаты Центр масс выделим элементарную площадку Центр масс шириной Центр масс на расстоянии Центр масс от оси Центр масс.

Площадь выделенной площадки:

Центр масс

Ордината центра тяжести:

Центр масс

Тогда: 

Центр масс

Ответ: Центр масс

Способы определения координат центра тяжести тела

Существует несколько способов определения координат центра тяжести тел. среди них различают: метод симметрии, метод разбиения и дополнения, экспериментальные способы.

Рассмотрим последовательно эти способы.

Метод симметрии

Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, или на оси симметрии, или в центре симметрии.

Таким образом, центр тяжести однородных симметричных тел, таких как кольца,
прямоугольные пластины, прямоугольные параллелепипеды, шары и другие тела, которые
имеют центр симметрии, расположенный в геометрических центрах (центры симметрии) этих тел.

Метод разбиения

Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести нетрудно определяется, то координаты центра тяжести всего тела можно определить непосредственно по формулам выше. Причем количество слагаемых в числителе каждого из указанных выражений будет равно количеству частей, на которое разбивается тело.

Приведем пример определения центра тяжести тела методом разбиения его на отдельные тела, центры тяжести которых известны.

Пример:

Определить координаты центра тяжести однородной пластины. Размеры в
мм заданные на рис. 1.64

Центр масс

Решение.

Выберем оси координат x и y. Разбиваем пластину на отдельные прямоугольные части. Для каждого прямоугольника проводим диагонали, точки пересечения которых c1, c2 и c3 соответствуют центрам веса каждого прямоугольника. В принятой системе координат нетрудно получить значение координат этих точек. А именно: c(–1,1), c(1,5), c(5,9). Площади каждого тела соответственно равны: I — s1 = 4 см2; II — s2 = 20 см2; III — s3 = 12 см2. Площадь всей пластины равна: S = s1 + s2 + s3 = 36 см2.

Для определения координат центра тяжести заданной пластины используем выражение выше. Подставив значения всех известных величин в уравнения, получим

Центр масс

По вычисленным значениям координат центра тяжести пластины можно обозначить точку C на рисунке. Как видим, центр тяжести (геометрическая точка) пластины расположен за ее пределами.

Метод дополнения

Способ, о котором говорится далее, является некоторым случаем способа разбиения. Он может применяться к телам, которые имеют вырезы, полости, причем без учета выреза, или вырезанной части тела положение центра тяжести тела известно. Рассмотрим пример применения такого метода.

Пример. Определить положение центра тяжести круглой пластины радиусом R, имеет круговое отверстие радиуса r (рис. 1.65). Расстояние C1C2 = a.

Центр масс

Решение.

Как видно из рисунка, центр тяжести пластины находится на оси симметрии пластины x, то есть на прямой, проходящей через точки C1 и C2. Таким образом, для определения положения центра тяжести этой пластины необходимо вычислить только одну координату xC, поскольку вторая координата yравна нулю. Покажем оси координат x, y. Примем, что пластина состоит из двух тел — с полного круга (без учета выреза) и тела,
образовано вырезом. В принятой системе координаты x для указанных тел будут равны: x= 0; x2 = C1C2 = a. Площади тел равны: Центр массОбщая площадь всего тела будет равна физической разницы между площадями первого и второго тел, а именно
Центр масс Для определения неизвестной координаты центра тяжести
заданной пластины используем первое уравнение выражения.

Подставив значения всех известных величин в это уравнение, получим

Центр масс

Таким образом, значение координаты xC отрицательное, а потому, поскольку вторая координата 0 yC = 0, то центр тяжести пластины C размещен на оси слева от точки C1.

Экспериментальные способы

Эти способы нашли широкое применение при отыскании положения центра тяжести тел сложных форм и конфигураций, для которых другие способы почти непригодны вследствие громоздкости и сложности. К таким телам, в первую очередь, следует отнести комбайны, тракторы, сложные сельскохозяйственные машины и орудия. При применении экспериментальных способов отыскания положения
центра тяжести наиболее широко используют метод подвешивания и метод взвешивания тел.

При применении метода подвешивания тело на тросе подвешивают за различные его точки. Направление троса, будет давать каждый раз направление силы веса тела. Тогда точка пересечения этих направлений и дает положение центра тяжести тела.

Использование второго метода — взвешивание требует измерения веса всего тела, а также отдельных его частей. Рассмотрим пример применения этого метода.

Пример.

Определим продольную координату центра тяжести трактора, у которого продольная база составляет l (рис. 1.66).

Центр масс

Решение.

Сначала поставим на платформу весов задние колеса трактора, как это показано на рисунке. Итак, определяем силу давления задних колес на платформу, или реакцию Центр масс. Аналогично определяем вес переднего моста, или реакцию Центр масс. Вполне понятно, что сумма этих реакций равна общему весу трактора, а именно:

Q = RA + RB.

Теперь составим алгебраическую сумму моментов всех сил относительно точки A. Она равна

Центр масс

Откуда определяем продольную координату центра тяжести:

xCЦентр масс.

Для определения поперечной координаты центра тяжести трактора необходимо знать реакции левых колес (переднего и заднего) и правых, а также поперечную базу трактора. Дальше аналогичным выражением определяется эти координаты центра тяжести.

Центры тяжести некоторых однородных тел

Определим далее координаты центров тяжести некоторых простых однородных тел.

Центр тяжести дуги окружности

Рассмотрим дугу AB окружности радиусом R, в которой центральный угол OAB равен 2α (радиан) (рис. 1.67). Покажем оси координат x, y начало которых разместим в точке O. Вследствие того, что дуга имеет ось симметрии Ox, то центр ее тяжести будет расположен именно на этой оси (yC = 0). Остается только вычислить координату xC.

Центр масс

Используем для вычисления этой координаты первое уравнение выражения, а именно

Центр масс

Определим составляющие, которые необходимо подставить в это уравнение. Для этого выделим на дуге AB элемент M M1 длиной dl, равной:

dl = R · dφ.

Если φ — угол, определяющий положение элемента M M1 на дуге AB, то координата x элемента M M1 будет равна:

x = Rcosφ.

Общая длина дуги AB равна:

L = 2α · R.

Подставим эти значения в первое уравнение выражения. При этом считается, что интеграл в числителе данного выражения должен быть определенным по всей длине дуги. Будем иметь:

Центр масс

Центр масс

Таким образом, координата xC будет равняться

xC = Центр масс.

Центр тяжести треугольника

Есть произвольный треугольник, вершины которого в принятой системе координат Oxy соответствуют точкам с координатами A1 (x1y1), A2 (x2, y2), A3 (x3, y3) (рис. 1.68). Если провести прямые, которые будут параллельны основе A1A3 и провести их достаточное количество, то вся площадь треугольника будет состоять из полос бесконечно малой ширины, центры тяжести которых будут размещены посередине каждой полосы, а потому и центр тяжести треугольника будет расположенный на его медиане. А если провести линии, параллельные другой стороне треугольника, то и в этом случае центр тяжести будет размещен на соответствующей медиане. Таким образом, совершенно очевидно, что центр тяжести треугольника C будет расположен в точке пересечения его медиан.

Определим координаты этой точки. По курсу аналитической геометрии известно, что точка пересечения медиан треугольника в принятой системе координат определяется такими зависимостями

Центр масс

где x1, x2, …, y3  — координаты вершин треугольника.

Полезно также знать, что

Центр масс

Центр масс

Центр тяжести сектора

Рассмотрим круговой сектор OAB радиуса R, центральный угол которого равен 2α (радиан) (рис. 1.69). Центр тяжести сектора, вполне очевидно, лежит на оси его симметрии, то есть на биссектрисе угла AOB. Эту биссектрису примем за ось x и найдем на этой оси положение центра C. Разобьем площадь сектора на бесконечно большое число элементарных секторов с центральными углами ∆φ.

Будем рассматривать каждый сектор как треугольник с основанием R · ∆φ и высотой R. Центр тяжести каждого треугольника расположен на расстоянии Центр масс от центра сектора. Таким образом, центры тяжести всех треугольников расположены на дуге A´B´. Итак, если 0 ∆φ → 0, то центры тяжести образуют дугу AB, тогда необходимо найти центр тяжести дуги A´B´. Используем формулу, по которой определяется центр тяжести дуги окружности радиусом r:

Центр масс

Центр масс

Тогда учитывая, что

Центр масс

Будем иметь

Центр масс

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика материальной точки
  24. Динамика механической системы
  25. Динамика плоского движения твердого тела
  26. Динамика относительного движения материальной точки
  27. Динамика твердого тела
  28. Кинематика простейших движений твердого тела
  29. Общее уравнение динамики
  30. Работа и мощность силы
  31. Обратная задача динамики
  32. Поступательное и вращательное движение твердого тела
  33. Плоскопараллельное (плоское) движение твёрдого тела
  34. Сферическое движение твёрдого тела
  35. Движение свободного твердого тела
  36. Сложное движение твердого тела
  37. Сложное движение точки
  38. Плоское движение тела
  39. Статика твердого тела
  40. Равновесие составной конструкции
  41. Равновесие с учетом сил трения
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки
Автор статьи

Андрей Геннадьевич Блохин

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Сущность понятия «центр масс»

Понятие “центр масс” широко используется в физике для решения задач, связанных с движением тел. Например, математический маятник удобно представить себе как подвешенное на нити тело, вся масса которого сконцентрирована в единой точке. В законе всемирного тяготения тоже речь идет о расстоянии не между телами, а между центрами тел, под каковыми подразумеваются именно центры масс, а не геометрические центры.

Определение 1

Центр масс – точка, характеризующая размещение и движение исследуемой системы как единого целого.

Признаком центра масс является то, что если тело подвесить, закрепив за эту точку, оно останется в покое, т.е. не будет раскачиваться или вращаться относительно этого центра. В простейшем случае, если речь идет о симметричном теле с равномерной плотностью, центр масс находится на пересечении осей симметрии рассматриваемого тела. Например, если взять линейку длиной 30 см, то ее центр масс будет расположен на отметке “15 см”. Подложив карандаш под эту отметку, легко привести линейку в положение равновесия.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

На практике далеко не все тела, центр масс которых нужно найти, являются симметричными и однородными по плотности. Более того, многие исследуемые объекты представляют собой системы из нескольких тел с различными геометрическими и химическими характеристиками. Для расчетов их разбивают на элементарные фрагменты и производят вычисления поэтапно.

Нахождение координат центра масс

Определение 2

Центр масс двух тел с точечными массами $m_1$ и $m_2$ и координатами на координатной прямой $x_1$ и $x_2$ находится в точке, делящей расстояние между этими телами на отрезки с длинами обратно пропорциональными массам рассматриваемых тел.

Отсюда следует, что чем массивнее тело в такой элементарной системе, тем ближе оно к общему центру масс.

Расстояние между точечными телами равно:

$Delta x = x_2 – x_1$

Пропорция между массами и расстояниями, согласно определению:

$frac{l_1}{l_2} = frac{m_2}{m_1}$,

«Как найти координаты центра масс» 👇

где $l_1$, $l_2$ – расстояния от соответствующих тел до центра масс.

Выразив, длины через координаты

$l_1 = x_c – x_1; l_2 = x_2 – x_c$,

центр масс можно определить как

$x_c = frac{m_1 cdot x_1 + m_2 cdot x_2}{m_1 + m_2}$.

где $x_c$ – координата центра тяжести.

Разложив любую сложную систему на множество элементарных тел с точечными массами, можно обобщить изложенный принцип в виде формулы (для оси абсцисс):

$x_c = frac{sumlimits^N_{i=1}{m_i cdot x_i}}{sumlimits^N_{i=1}{m_i}}$

В большинстве случаев центр масс требуется найти не на координатной прямой, а в двух- или трехмерной системе координат. Для дополнительных осей координаты центра масс ($y_c$, $z_c$) находят по аналогичному принципу.

Замечание 1

Центр тяжести системы тел представляет собой точку, подобную центру масс, но рассчитывается не для масс, а для весов (обусловленных гравитацией сил), действующих на точечные тела, входящие в систему. Центр тяжести определяется так же, как и центр масс, если размеры системы малы в сравнении с радиусом планеты Земля. Он в большинстве случаев с достаточной для практики точностью совпадает с центром масс рассматриваемой системы.

Пример 1

Найти центр масс двух линеек, изготовленных из одинакового материала, одинаковой толщины и ширины, левые концы линеек совмещены. Длины линеек – 10 и 30 см. Толщиной линеек можно пренебречь.

Поскольку толщиной можно пренебречь, найти нужно лишь координату центра масс по оси $x$.

Разобьем мысленно систему на два отрезка. Первый – где толщина линеек складывается. Его координаты – $[0, 10]$. Второй отрезок – где длинная линейка продолжается одна. Его координаты – $[10, 30]$. Примем за единицу измерения массу одного погонного сантиметра линейки. Тогда масса второго фрагмента:

$m_2 = 30 – 10 = 20$

На каждый сантиметр первого фрагмента приходится вдвое больше массы, поскольку там сложены две линейки:

$m_1 = 10 cdot 2 = 20$

Центры масс отрезков находятся на их осях симметрии, т.е. на середине длины каждого:

$x_{c1} = frac{10}{2} = 5$;

$x_{c2} = 10 + frac{20}{2} = 20$

Подставим значения в формулу:

$x_c = frac{m_1 cdot x_1 + m_2 cdot x_2}{m_1 + m_2}$

$x_c = frac{20 cdot 5 + 20 cdot 20}{20 +20} = frac{100 + 400}{40} = 12, 5$

Ответ: центр масс находится на расстоянии 12,5 см от левого конца системы линеек.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Центр тяжести (центр масс):

Любое твердое тело можно представить как состоящее из множества материальных точек, на каждую из которых действует сила тяжести.

Центр тяжести – геометрическая точка абсолютно твердого тела, через которую проходит равнодействующая всех сил тяжести, действующих на данное тело при любом его положении в пространстве.

На каждую точку тела в поле сил тяжести действует сила, а на все тело – равнодействующая этих сил. Точка приложения равнодействующей называется центром тяжести тела.

Центр масс (центр инерции) – точка, характеризующая распределение масс в теле или системе тел. Представляется она как материальная точка, в которой сосредоточена вся масса системы и на которую действуют все приложенные к системе  внешние силы.

При определенных условиях положение центра тяжести тела совпадает с положением центра его масс.

Положение центра масс тела в однородном поле тяжести совпадает с положением его центра тяжести.

При небольших размерах тел возле поверхности Земли поле сил тяжести можно считать однородным, а силы, действующие на каждую точку тела, – параллельными.

Чтобы сила тяжести не вызывала движения, необходимо соблюдать определенные условия.

 Положение центра масс тела в однородном поле тяжести | совпадает с положением его центра тяжести.

Если тело закреплено в одной точке, например подвешено или лежит на опоре и пребывает в покое, то центр тяжести и точка опоры лежат на одной вертикали: сила тяжести, действующая на тело, уравновешивается реакцией точки опоры.

Если тело закреплено в одной точке (подвешено или лежит на опоре) и пребывает в покое, то центр тяжести и точка опоры лежат на одной вертикали.

Рассмотрим примеры определения центра тяжести (центра масс) тел правильной несложной геометрической формы.

1. Найдем центр тяжести однородного стержня (рис. 2.48). Разделим стержень на несколько одинаковых небольших объемов (в нашем случае на пять слева и справа от середины стержня). Если добавить две параллельные силы, которые действуют на объемы 1 и 1′, то их равнодействующая будет расположена в точке О – середине стержня.

Центр тяжести в физике - формулы и определение с примерами

Аналогично и для пар сил 2-2′, 3-3′ и т. д. На основании этого можно сделать вывод: центр тяжести однородного стержня 99 расположен в точке О — середине стержня.

Центр тяжести однородного стержня расположен в середине стержня.

2. Пользуясь рассмотренным выше приемом, можно установить, что центр тяжести однородного круга совпадает с его центром (рис. 2.49).

Центр тяжести в физике - формулы и определение с примерами

Таким образом, в однородных телах, имеющих центр симметрии (прямоугольник или круглая пластинка, шар, цилиндр и т. д.), центр тяжести совпадает с центром симметрии. Центр тяжести может находиться и вне тела, например у кольца или спичечной коробки, мяча или пустого стакана.

Центр тяжести однородного круга совпадает с его центром.

Центр тяжести однородного треугольника находится в точке пересечения его медиан.

3. Найдем центр тяжести однородного треугольника (рис. 2.50), представим, что вся площадь треугольника поделена на узкие поло-
сы, параллельные любой из сторон треугольника, например АВ. Центр тяжести каждой такой полосы, как однородного стержня, находится в ее середине. Центр тяжести всего треугольника лежит где-то на медиане CD, которая проходит через середины всех отрезков, параллельных стороне АВ.

Если поделить треугольник на отрезки, параллельные стороне СВ, то с учетом предыдущих вычислений можно сделать вывод: центр тяжести треугольника будет лежать на медиане АЕ. На обеих медианах центр тяжести может лежать лишь в том случае, если он совпадает с точкой их пересечения О.

4. Чтобы найти центр тяжести плоской фигуры, надо ее подвесить за какую-нибудь точку 1; тогда фигура развернется так, что ее центр тяжести окажется на вертикали, которая проходит через точку подвеса (рис. 2.51).

Центр тяжести в физике - формулы и определение с примерами

Отметив направление этой вертикали, подвесим фигуру за другую точку 2. И в этом случае фигура развернется так, чтобы центр тяжести находился на вертикали, проходящей через новую точку подвеса. Отметим направление и этой вертикали.

Центр тяжести плоской фигуры расположен в точке О пересечения вертикалей, проведенных через две любые точки подвеса.

Когда нужно определить центр сил тяжести сложных фигур, необходимо исходить из того, что сила тяжести равна сумме сил тяжести частей тела и всегда приложена к центру этих сил.

  • Заказать решение задач по физике

Центр тяжести тела и центр масс тела

Когда мы рассматривали опыты с подвешенными телами, находящимися в равновесии, точка приложения сил натяжения была нам известна. А где приложена сила тяжести? В какой точке? Из этих опытов следует только то, что точка приложения силы тяжести при равновесии лежит на линии действия силы натяжения подвеса. Но это позволяет решить задачу о нахождении точки приложения силы тяжести экспериментальным путем. Если подвешивать плоское тело в разных точках (рис. 151), то линии действия сил натяжения пересекутся в одной точке С. Эта точка и будет точкой приложения силы тяжести. Она называется центром тяжести. Подобным образом можно определить положение центра тяжести не только плоского тела, но и любого другого.

Центр тяжести в физике - формулы и определение с примерами
Рис. 151

Очевидно, что положение центра тяжести тел правильной формы можно указать, не выполняя описанный опыт. Так, например, центр тяжести однородного шара находится в его геометрическом центре, поскольку любой диаметр является осью симметрии шара. Центр тяжести круглого диска также находится в его геометрическом центре, как и центр тяжести обруча или кольца, и т. д. Последний пример показывает, что центр тяжести тела может находиться вне тела.

Положение центра тяжести тела можно и вычислить. Предварительно рассмотрим следующий опыт. Пусть тело состоит из двух шаров массами m1 и m2, насаженных на стержень (рис. 152, а). Если масса стержня значительно меньше масс шаров, то ею можно пренебречь. На каждый из шаров действуют силы тяжести, приложенные в их центре тяжести. Для того чтобы система находилась в равновесии, призму надо расположить так, чтобы линия действия силы реакции призмы проходила через центр тяжести этой системы — точку С. В этом случае суммарный момент сил относительно точки C равен нулю, т. е. выполняется условие:

Центр тяжести в физике - формулы и определение с примерами

или

Центр тяжести в физике - формулы и определение с примерами
Следовательно, центр тяжести делит расстояние между двумя грузами в отношении, обратном отношению их масс. Соотношение (1) можно получить и иначе. Поскольку момент сил тяжести равен нулю, то он должен быть равен нулю и относительно любой горизонтальной оси, проходящей, например, через точку О. Иначе тело вращалось бы вокруг этой оси. Обозначим расстояние между точками C и О через а. Тогда алгебраическая сумма моментов всех сил, действующих на тело, относительно точки О примет вид:
Центр тяжести в физике - формулы и определение с примерами

Центр тяжести в физике - формулы и определение с примерами
Рис. 152

Поскольку F=(m1 + m2)g, то после несложных преобразований получим соотношение (1). Такой подход позволяет находить положение центра тяжести аналитически.

Направим ось Ox вдоль стержня (рис. 152, б). Выберем начало отсчета в произвольной точке О. тогда координаты точек приложения сил соответственно будут х1, хс и х2. Запишем условие моментов относительно точки О:

Центр тяжести в физике - формулы и определение с примерами

Отсюда

Центр тяжести в физике - формулы и определение с примерами

При выводе этой формулы было использовано значение силы F = (m1 + m2) g. Таким образом, центр тяжести этой системы тел отстоит от точки О на расстоянии хс, определенном формулой (2).

Напомним, что выражение (2) является следствием правила моментов при равновесии тела, но в правой части отсутствует ускорение свободного падения. В него входят только координаты центра тяжести тел и их массы, поэтому точка, координата которой определяется формулой (2), называется центром масс тела. Следует отметить, что центр масс и центр тяжести совпадают, если тело находится в однородном гравитационном поле.

Понятие центра масс является более общим, чем понятие центра тяжести. Центр масс является характеристикой тела или системы тел, важной не только для задач, где речь идет о силе тяжести, но и для решения других физических проблем.

Если произвольное тело можно разбить на n элементов, массы которых m1, m2…,    mn, и если известны координаты центров масс этих элементов x1, x2…,   xn относительно выбранной системы координат, то координата центра масс тела вычисляется по формуле:

Центр тяжести в физике - формулы и определение с примерами

Естественно, что такие же соотношения можно записать и для ус и zc. Для примера вычислим положение центра масс столярного угольника. Он состоит из деревянного бруска 1 и деревянной линейки 2, соединенных под прямым углом (рис. 153). Положим, что масса бруска 1 в два раза больше массы линейки (m1 = 2m2). Так как линейка и брусок — однородные параллелепипеды, то центры масс находятся в их геометрических центрах. Очевидно, что центр масс угольника находится где-то на линии, соединяющей центры масс бруска (C1) и линейки (C2).

Выберем наиболее оптимальным образом систему координат, как показано на рисунке. Тогда координаты центра масс бруска: х1 = 0, y1 =Центр тяжести в физике - формулы и определение с примерами, а координаты центра масс линейки: Центр тяжести в физике - формулы и определение с примерамиy2 = 0 .
По формуле (3):    .

Центр тяжести в физике - формулы и определение с примерами

Центр тяжести в физике - формулы и определение с примерами

Таким образом, центр масс угольника находится вне тела.

Главные выводы:

  1. Центр тяжести — точка, в которой приложена сила тяжести.
  2. Центр масс симметричных однородных тел находится в их геометрическом центре.
  3. Координаты центра масс тела можно вычислить по формуле (3).
  • Импульс тела в физике
  • Замкнутая система в физике
  • Реактивное движение в физике
  • Освоение космоса – история, этапы и достижения с фотографиями
  • Международная система единиц СИ
  • Математика – язык физики
  • Законы Ньютона в физике
  • Гравитационные силы в физике

Добавить комментарий