Алгоритмы поиска объема и центра масс многогранника
Время на прочтение
6 мин
Количество просмотров 4.1K
Наверное, все знают этот алгоритм, но от меня «власти скрывали». Нашел его словесное описание на третьей странице поисковика в архиве автопереводов англоязычного форума. Мне кажется, его подробное описание (и с кодом) достойно хабростатьи.
Итак, например вам надо генерировать мобов для игрушки и где-то в процессе отсеивать тех, кто не стоит на ногах. Для этого нужно найти центр масс моба (а это почти то же самое, что найти его объем) и убедиться, что он находится где-то над ногами моба.
Моб — это многогранник, для простоты считаем, что многогранник состоит только из треугольников (в алгоритме внутри сидит формула площади Гаусса, так что можно расширить его для любого многогранника, но зачем…). Кроме того, многогранник должен не иметь самопересечений и ограничивать замкнутый объем, как и положено приличным многогранникам.
(ну типа такого)
Маленький UPD, поясняющий, почему на КДПВ правый моб Не Ок, а левый Ок:
Правая картинка не Ок потому что моб завалится вперед, т.к. его центр масс вынесен за площадь опоры. Площадь опоры стоящего на поверхности многоугольника определяется как минимальный многоугольник, внутри которого окажутся все точки, находящиеся на поверхности. В левом случае площадь опоры сдвинута под центр масс и больше (т.к. динозаврские лапы больше), а на правой картинке сама площадь меньше и ближе к хвосту.
Соотношение опорной площади и центра масс будет примерно такое:
Сразу начну с кода поиска объема (Python, входные данные — список точек и матрица переходов):
немного кода
def RecSetDirsTriangles(para, Connects, TR):
"""рекурсивная функция, которая принимает на вход ребро и по нему выбирает направление треугольника"""
#1.найти треугольник включающий пару, убедиться, что такого еще нет
for i in range(0,len(Connects)):
if i != para[0] and i != para[1] and Connects[i][para[0]] and Connects[i][para[1]]: #вот этот треугольник!
fl = 1
for T in TR:
if i in T and para[1] in T and para[0] in T:
fl = 0 #этот треугольник уже обработан
break
if fl: #найден треугольник!
TR += [(para[1],para[0],i)]
Recc((para[0], i) , Connects, TR)
Recc((i, para[1]) , Connects, TR)
def FindV(dots, Connects):
"""ищем объем. Входные данные - dots список вершин многогранника вида [x, y, z], Connects - квадратная матрица, Connects[i][j]=1 если есть связь между вершинами i, j, иначе =0 """
#1. сделать треугольники с упорядоченными вершинами
TR = []
for i in range(1,len(Connects)):#выбираем первый треугольник с нулевой точкой и еще каким-то
if Connects[i][0]:
for j in range(i+1, len(Connects)):
if Connects[0][j] and Connects[i][j]:
TR += [(0,i,j)]
break
RecSetDirsTriangles((0,i),Connects, TR)
break
print("найдено треугольников: ", len(TR))
#2. посчитать площадь базы и объем усеченной призмы
V = 0
for T in TR:
'''Гаус рулит: x1y2 x2y3 x3y1 x2y1 x3y2 x1y3'''
S = 0.5 * (dots[T[0]][0]*dots[T[1]][1] + dots[T[1]][0]*dots[T[2]][1] + dots[T[2]][0]*dots[T[0]][1] - dots[T[1]][0]*dots[T[0]][1] - dots[T[2]][0]*dots[T[1]][1] - dots[T[0]][0]*dots[T[2]][1])
#S может быть + или - в зависимости от того, как направлен треугольник
V += S*(dots[T[0]][2] + dots[T[1]][2] + dots[T[2]][2])/3 #объем усеченной призмы считается просто...
return math.fabs(V)
Суть алгоритма — считаем объемы фигур, которые образуют «падающие» на плоскость xy грани многогранника. Для этого надо знать площадь проекции треугольника и знак, с которым надо суммировать объем фигуры (усеченнной призмы). На самом деле, если заранее упорядочить треугольники, и объем и знак сводятся к одному вычислению.
Поэтому первым делом рекурсивная функция собирает треугольники из входных данных. Собирает таким образом, чтобы при взгляде «снаружи» на многогранник, направления обхода треугольников были одинаковыми (в идеале против часовой стрелки; если взять направления по часовой стрелке, то результат получится правильным, но отрицательным — поэтому в ретурн отдается модуль объема).
Добиться этого очень просто — берем какой-то треугольник (точки a1, a2, a3), ищем его соседей и перечисляем две совпавшие вершины в обратном порядке (например, так: a2, a1, b1).
Получается что-то вроде этого:
Теперь, если мы спроецируем такой треугольник на плоскость xy, то порядок обхода для проекции «верхнего» треугольника будет совпадать с изначально выбранным, а порядок обхода для проекци «нижнего» треугольника поменяет свое направление. Как следствие, поменяет знак и площадь этого треугольника, вычисленная по формуле Гаусса. Здесь «нижний» треугольник — понятие условное — имеется ввиду, что объем непосредственно под ним не входит в объем многогранника. «Нижний» треугольник у невыпуклого многогранника может быть выше «верхнего».
После этих предварительных действий, чтобы вычислить полный объем многогранника, надо просто сложить (с учетом знака, который получается «сам собой») все объемы усеченных призм, собранных из граней и проекций этих граней на плоскость xy. А объемы призм считаются как произведение площади (по Гауссу, со знаком) и среднего арифметического z-координат вершин треугольника.
Если многогранник пересекается плоскостью xy, то при вычислении объема, все знаки скомпенсируют друг друга и результат остается правильным (надо только брать высоты призмы без модуля).
(как-то так выглядит «верхняя» усеченная призма)
С поиском центра масс все приблизительно также. Аналогично надо найти центры масс для каждой усеченной призмы и просуммировать покоординатно, умножая на объем призмы (предполагается, что масса распределена равномерно по объему и можно одно заменить другим). Чтобы найти центр масс усеченной призмы, придется посчитать центры масс двух тетраэдеров (+1 функция) и одной обычной призмы. Алгоритм так же «не портится», если многогранник пересекает плоскость xy (а здесь могла бы быть репродукция Магритта).
(вот эти два тетраэдера, обозначены красным и рыжим, вместе с треугольной призмой (ниже красного тетраэдера) образуют искомую усеченную призму. Нам надо найти центры масс и объемы всех трех фигур. Обозначения примерно соответствуют обозначениям в коде)
Код, который считает то и то:
чуть больше кода
def RecSetDirsTriangles(para, Connects, TR):
#1.найти треугольник включающий пару, убедиться, что такого еще нет
for i in range(0,len(Connects)):
if i != para[0] and i != para[1] and Connects[i][para[0]] and Connects[i][para[1]]: #вот этот треугольник!
fl = 1
for T in TR:
if i in T and para[1] in T and para[0] in T:
fl = 0
break
if fl: #найден треугольник!
TR += [(para[1],para[0],i)]
Recc((para[0], i) , Connects, TR)
Recc((i, para[1]) , Connects, TR)
def TetrV(mas):#dot1, dot2, dot3, dot4):
"""объем тетраэдера по вершинам"""
M = np.zeros((3,3),float)
for i in range(1,4):
for j in range(0,3):
M[i-1][j] = mas[i][j] - mas[0][j]
#print(M)
return math.fabs(np.linalg.det(M)/6)
def FindVandCM(dots, Connects):
"""ищем объем и центр масс многогранника"""
#1. сделать треугольники с упорядоченными вершинами
TR = []
for i in range(1,len(Connects)): #выбираем первый треугольник с нулевой точкой и еще каким-то
if Connects[i][0]:
for j in range(i+1, len(Connects)):
if Connects[0][j] and Connects[i][j]:
TR += [(0,i,j)]
break
RecSetDirsTriangles((0,i),Connects, TR)
break
print("найдено треугольников: ", len(TR))
#2. посчитать площадь базы, объем усеченной призмы и вклад в центр масс каждого
V = 0
CM = [0, 0, 0]
for T in TR:
'''Гаус рулит: x1y2 x2y3 x3y1 x2y1 x3y2 x1y3'''
S = 0.5 * (dots[T[0]][0]*dots[T[1]][1] + dots[T[1]][0]*dots[T[2]][1] + dots[T[2]][0]*dots[T[0]][1] - dots[T[1]][0]*dots[T[0]][1] - dots[T[2]][0]*dots[T[1]][1] - dots[T[0]][0]*dots[T[2]][1])
#S может быть + или - в зависимости от того, как направлен треугольник
V += S*(dots[T[0]][2] + dots[T[1]][2] + dots[T[2]][2])/3 #объем усеченной призмы считается просто...
#c центром масс я так просто не отделаюсь
c1 = ((dots[T[0]][0] + dots[T[1]][0] + dots[T[2]][0])/3, (dots[T[0]][1]+ dots[T[1]][1]+ dots[T[2]][1])/3) #центральная точка проекции треугольника
hm = min([dots[T[0]][2] , dots[T[1]][2] , dots[T[2]][2]])
hM = max([dots[T[0]][2] , dots[T[1]][2] , dots[T[2]][2]])
indM = [dots[T[0]][2] , dots[T[1]][2] , dots[T[2]][2]].index(hM)
indm = [dots[T[0]][2] , dots[T[1]][2] , dots[T[2]][2]].index(hm)
V3 = S * hm
if indM == indm: #горизонтальный прямоугольник!
CM[0] += V3*c1[0]
CM[1] += V3*c1[1]
CM[2] += V3*hm/2
continue
L = [0,1,2]
L.remove(indM)
L.remove(indm)
indmidle = L[0]
dots1 = [dots[T[0]], dots[T[1]], dots[T[2]], (dots[T[indM]][0], dots[T[indM]][1] , hm)] #верхний тетраэдер
V1 = TetrV(dots1)
if S < 0:
V1 = -V1
V2 = S * ( dots[T[indmidle]][2] - hm)/3
#V3 = S * hm
CM[0] += V1*((dots[T[0]][0] + dots[T[1]][0] + dots[T[2]][0] + dots[T[indM]][0])/4) + V2*((dots[T[0]][0] + dots[T[1]][0] + dots[T[2]][0] + dots[T[indmidle]][0])/4) + V3*c1[0]
CM[1] += V1*((dots[T[0]][1] + dots[T[1]][1] + dots[T[2]][1] + dots[T[indM]][1])/4) + V2*((dots[T[0]][1] + dots[T[1]][1] + dots[T[2]][1] + dots[T[indmidle]][1])/4) + V3*c1[1]
CM[2] += V1*((dots[T[0]][2] + dots[T[1]][2] + dots[T[2]][2] + hm)/4) + V2*((dots[T[0]][2] + dots[T[1]][2] + dots[T[2]][2] + hm)/4) + V3*hm/2
CM[0] = CM[0]/V
CM[1] = CM[1]/V
CM[2] = CM[2]/V
return (math.fabs(V), CM)
Кусок алгоритма, где считаются направления треугольников и используются для понимания внешнего и внутреннего объема — это очень сильный ход, его много как можно применить при работе с многогранниками. Например, если надо посчитать направление нормалей «наружу» — достаточно знать направление «против часовой стрелки» для одной грани — и вуаля!
(угадай фильм!)
Как найти Центроид фигуры?
Центроид треугольника находится в точке пересечения его медиан. Если у фигуры есть центр симметрии, то он является ее центроидом. Если фигура имеет ось симметрии, то её центроид лежит на этой оси. Центроид фигуры из двух частей, лежит на отрезке, соединяющем центроиды этих частей.
Как определить Центроид?
Центроид четырёх точек (вершин четырёхугольника) Центроид (барицентр или центр масс) вершин произвольного четырёхугольника лежит в точке пересечения 3-х отрезков: 1-й отрезок соединяет середины диагоналей, два другие — середины противополежащих сторон. Точка пересечения делит все три отрезка пополам.
Что пересекается в центре треугольника?
Центроид треугольника (также барицентр треугольника и центр тяжести треугольника) — точка пересечения медиан в треугольнике.
Что такое Центроид графа?
centroid) называется такая вершина дерева , после удаления которой дерево разбивается на несколько поддеревьев , таких что для каждого : , то есть размер каждого поддерева не превосходит половины размера исходного дерева.
Как найти центр сложной фигуры?
Вычисляешь массу каждого треугольника (если тело однородно, то m/M=s/S, где m и M массы, а s и S площади каждого треугольника и всей фигуры). Затем считаешь каждый центр масс материальной точкой и находишь для этих материальных точек центр тяжести.
Как найти центр многогранника?
Чтобы найти координаты центра (ну или еще говорят центра тяжести) многоугольника, нужно сложить соответствующие координаты его вершин и разделить на число вершин.
Как найти геометрический центр треугольника?
Отметьте точку пересечения двух медиан. Эта точка является центром тяжести треугольника. Центр тяжести находится на пересечении трех медиан, но так как медианы всегда пересекаются в одной точке, можно работать только с двумя медианами.
Где находится центр масс Солнечной системы?
В Солнце сосредоточена подавляющая часть всей массы системы (около 99,866 %), оно удерживает своим тяготением планеты и прочие тела, принадлежащие к Солнечной системе.
Что проходит через центр окружности?
Точки касания окружностей Веррьера (полувписанных окружностей) со сторонами лежат на прямой, которая проходит через центр вписанной окружности (инцентр) (См.
На чем лежит центр вписанной окружности?
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла. Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех его сторон.
Как работает алгоритм Дейкстры?
Алгоритм работает пошагово — на каждом шаге он «посещает» одну вершину и пытается уменьшать метки. Работа алгоритма завершается, когда все вершины посещены. Инициализация. Метка самой вершины a полагается равной 0, метки остальных вершин — бесконечности.
Как определить центр графа?
Центр (или центр Жордана) графа — это множество всех вершин с минимальным эксцентриситетом. То есть множество всех вершин A, для которой максимальное расстояние d(A,B) до других вершин B минимально. Эквивалентно, это множество вершин с эксцентриситетом, равным радиусу графа.
Как найти координаты центра тяжести круга?
Круг. Так как круг имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии. Полукруг. Полукруг имеет одну ось симметрии, то центр тяжести лежит на этой оси.
Как найти положение центра тяжести системы?
Способы определения координат центра тяжести
- Аналитический (путем интегрирования).
- Метод симметрии. …
- Экспериментальный. …
- Разбиение. …
- Дополнение (Метод отрицательных площадей или объемов).
Как найти геометрический центр сложной фигуры?
Вычисляешь массу каждого треугольника (если тело однородно, то m/M=s/S, где m и M массы, а s и S площади каждого треугольника и всей фигуры). Затем считаешь каждый центр масс материальной точкой и находишь для этих материальных точек центр тяжести.
Как вычислить центр тяжести фигуры?
Существует 5 способов:
- Аналитический (путем интегрирования).
- Метод симметрии. Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.
- Экспериментальный. …
- Разбиение. …
- Дополнение (Метод отрицательных площадей или объемов).
Как найти центр масс в треугольнике?
Отметьте точку пересечения двух медиан. Эта точка является центром тяжести треугольника. Центр тяжести находится на пересечении трех медиан, но так как медианы всегда пересекаются в одной точке, можно работать только с двумя медианами.
Центроид треугольника — точка пересечения его медиан
В математике барице́нтр, или геометри́ческий центр, двумерной фигуры — это среднее арифметическое положений всех точек данной фигуры. Определение распространяется на любой объект в n-мерном пространстве. Радиус-вектор барицентра в трёхмерном случае вычисляется как
- ,
где интегрирование выполняется по объёму тела. Другое название барицентра в этом значении — центроид.
Неформально, геометрический барицентр есть точка равновесия фигуры, вырезанной из картона, в предположении, что картон имеет постоянную плотность, а внешнее гравитационное поле однородно.
В физике термин «барицентр» — синоним понятия «центр масс», используемый, в основном, в задачах космической механики. Центр масс объекта является средним арифметическим всех его точек с учётом локальной плотности массы. Для физических объектов с постоянной плотностью центр масс совпадает с барицентром фигуры той же формы.
Ниже барицентр рассматривается в математическом (геометрическом) смысле, о барицентре в физике см. статью Центр масс.
Свойства[править | править код]
Геометрический барицентр выпуклого объекта всегда лежит внутри объекта. Невыпуклый объект может иметь барицентр, лежащий вне фигуры. Барицентр кольца или миски, например, лежат вне фигуры.
Если барицентр известен, он является фиксированной точкой группы изометрии симметрий фигуры. Барицентр объекта лежит на пересечении всех его гиперплоскостей симметрии. Барицентры многих фигур (правильного многоугольника, правильного многогранника, цилиндра, прямоугольника, ромба, окружности, сферы, эллипса, эллипсоида, суперэллипса, суперэллипсоида и т. д.) можно найти исходя исключительно из этого принципа.
В частности, барицентром треугольника является точка пересечения его медиан (см. рисунок). Барицентром параллелограмма является точка пересечения его диагоналей, но это неверно для других четырёхугольников.
Барицентр объекта с трансляционной симметрией не определён (или лежит вне пространства фигуры), поскольку сдвиг не имеет фиксированной точки.
Центроид треугольника[править | править код]
- Барицентр треугольника называется центроидом и лежит на пересечении трёх медиан, также лежит на прямой Эйлера (проходящей и через другие ключевые точки, включая ортоцентр и центр описанной окружности)[1][2].
- Если в вершины треугольника поместить равные массы, то центр масс (барицентр) полученной системы будет совпадать с центроидом. Более того, центр масс треугольника с равномерно распределённой массой также находится в центроиде.
- [3].
- Сумма квадратов сторон треугольника равна утроенной сумме квадратов расстояний от центроида до вершин треугольника:
- [3].
- Центр масс сторон треугольника совпадает с центром вписанной окружности дополнительного треугольника (треугольника с вершинами, расположенными в серединах сторон данного треугольника). Эту точку называют центром Шпикера. Если стороны треугольника сделать из тонкой проволоки одинакового сечения, то центр масс (барицентр) полученной системы будет совпадать с инцентром дополнительного треугольника, или с центром Шпикера.
- О других свойствах центроида треугольника смотрите ниже.
Минимаксные свойства центроида треугольника[править | править код]
- Центроид или точка пресечения медиан треугольника является единственной точкой треугольника такой, что проведенные через неё три чевианы разделяют своими концами стороны треугольника на шесть отрезков. При этом произведение длин трёх из этих шести отрезков, не имеющих общих концов, максимально[4].
- Центроид или точка пересечения трёх медиан является точкой, для которой сумма квадратов расстояний до вершин треугольника принимает наименьшее значение (теорема Лейбница).
Центроид четырёх точек (вершин четырёхугольника)[править | править код]
Центроид (барицентр или центр масс) вершин произвольного четырёхугольника лежит в точке пересечения 3-х отрезков: 1-й отрезок соединяет середины диагоналей, два другие — середины противолежащих сторон. Точка пересечения делит все три отрезка пополам.
Четыре отрезка, каждый из которых соединяет вершину четырёхугольника с центроидом треугольника, образованного оставшимися тремя вершинами, пересекаются в одной точке (центроиде вершин четырёхугольника) и делятся ею в отношении 3:1, считая от вершины.
Центр масс вершин четырёхугольника не обязан совпадать с центром масс самого четырёхугольника как плоской фигуры.
Определение местоположения барицентра[править | править код]
Определение местоположения барицентра однородной плоской фигуры методом отвеса[править | править код]
Барицентр однородной плоской фигуры, такой как фигура (a) на рисунке, можно найти экспериментально с использованием отвеса и булавки путём нахождения центра масс тонкой пластины однородной плотности, имеющей ту же форму. Пластина удерживается булавкой, вставленной ближе к периметру так, чтобы пластина могла свободно вращаться. Отмечаем на пластине прямую, которую образует отвес, прикреплённый к булавке (b). Проделываем то же самое с другим положением булавки. Пересечение двух прямых даст барицентр (c).
Этот метод можно распространить (в теории) на вогнутые фигуры, когда барицентр лежит вне их, а также тела (постоянной плотности), но положение линии отвеса придётся отмечать каким-то иным способом.
Определение местоположения барицентра выпуклой двумерной фигуры методом балансировки[править | править код]
Барицентр выпуклой двумерной фигуры можно найти путём балансировки на меньшей фигуре, например, на вершине узкого цилиндра. Барицентр будет находиться где-то внутри области контакта этих фигур. В принципе, последовательным уменьшением диаметра цилиндра можно получить местоположение барицентра с любой точностью. На практике потоки воздуха делают это невозможным, однако используя наложение областей балансировки и усреднение, можно получить нужную точность.
Определение местоположения барицентра для конечного множества точек[править | править код]
Барицентр конечного множества из точек в находится по формуле
- [5].
Полученная точка такая, что сумма квадратов расстояний между ней и точками множества является минимальной.
Определение местоположения барицентра с помощью геометрического разложения[править | править код]
(b) Разложение фигуры на простые элементы
(c) Барицентры элементов объекта
Барицентр плоской фигуры можно вычислить, разделив её на конечное число более простых фигур , найдя положение барицентров и площадей каждой части, а затем вычислив
Дыры в фигуре , наложения частей, или части, выступающие за фигуру, можно рассматривать как фигуры с отрицательной площадью . А именно, знак площади нужно выбирать так, чтобы сумма знаков для всех частей, включающих точку , была равна 1, если принадлежит , и 0 в противном случае.
Например, фигуру (a) на рисунке легко разделить на квадрат и треугольник с положительным знаком, круглое отверстие с отрицательным (b).
Барицентр каждой части легко найти в любом списке барицентров простых фигур (c). Затем вычисляется барицентр фигуры, как средневзвешенное трёх точек. Горизонтальное положение барицентра, считая от левого края фигуры, равно
Вертикальное положение вычисляется аналогично.
Та же формула применима для любого трёхмерного объекта, только обозначают уже объёмы частей тела , а не площади. Формула верна также для пространства любой размерности при замене площади -мерными мерами частей.
Определение местоположения барицентра интегрированием[править | править код]
Барицентр подмножества X пространства можно вычислить с помощью интеграла
где интегрирование ведётся по всему пространству , а g является характеристической функцией подмножества, принимающей 1 внутри X и 0 вне его[6]. Заметим, что знаменатель равен мере множества X. Формула неприменима к множеству нулевой меры, а также к множествам, для которых интеграл расходится.
Другая формула для вычисления координат барицентра:
где Gk является k-й координатой G, а Sk(z) — мера пересечения X с гиперплоскостью, определяемой уравнением xk = z. Снова знаменатель — это мера множества X.
Для плоской фигуры координатами барицентра будут
где A — площадь фигуры X, Sy(x) — длина пересечения[неизвестный термин] X с вертикальной прямой с абциссой x, Sx(y) — аналогичная величина при обмене осей.
Определение местоположения барицентра для области, ограниченной графиками непрерывных функций[править | править код]
Координаты барицентра области, ограниченной графиками непрерывных функций и , таких что на интервале , , задаются выражениями
- [6].
- [7]
где — площадь области (вычисляемая по формуле )[8][9].
Определение местоположения барицентра объекта, имеющего форму буквы L[править | править код]
Метод нахождения барицентра фигуры, имеющей форму буквы L.
- Фигуру делят на два прямоугольника (см. фигуру (2) на рисунке). Находят барицентры A и B этих двух прямоугольников как пересечение диагоналей. Рисуют отрезок AB, соединяющий барицентры. Барицентр фигуры должен лежать на этом отрезке AB.
- Делят фигуру на два прямоугольника другим способом (см. фигуру (3) на рисунке). Находят барицентры C и D этих двух прямоугольников. Проводят отрезок CD, соединяющий барицентры. Барицентр фигуры должен лежать на отрезке CD.
- Поскольку барицентр должен лежать как на отрезке AB, так и на отрезке CD, очевидно, что он является точкой пересечения этих двух отрезков — точкой O. Точка O не обязана лежать внутри фигуры.
Барицентры треугольника и тетраэдра[править | править код]
Точка пересечения медиан (барицентр) делит каждую медиану в отношении 2:1. То есть, расстояние от стороны до барицентра равно 1/3 длины проведённой к стороне высоты
В прямоугольном треугольнике расстояние от одного катета до барицентра равно 1/3 длины другого катета
Барицентр треугольника совпадает с пересечением медиан. Барицентр разбивает каждую медиану в отношении 2:1, то есть барицентр находится на расстоянии ⅓ от стороны до противоположной вершины (см. рисунок). Его декартовыми координатами является среднее координат трёх вершин. То есть, если вершинами треугольника являются , и , то координаты барицентра вычисляются по формуле
- .
Таким образом, барицентр имеет барицентрические координаты .
В трилинейных координатах барицентр можно получить одним из эквивалентных способов[10]:
Барицентр является также физически центром масс треугольника, сделанного из однородного листового материала, а также, если вся масса сконцентрирована в вершинах и одинаково разделена между ними. Если же масса распределена равномерно вдоль периметра, то центр масс лежит в точке Шпикера (инцентре серединного треугольника), который (в общем случае) не совпадает с центроидом всего треугольника.
Площадь треугольника равна 3/2 длины любой стороны, умноженной на расстояние от центроида до стороны[11].
Центроид треугольника лежит на прямой Эйлера между его ортоцентром и центром его описанной окружности , ровно вдвое ближе ко второму, чем к первому:
- .
Кроме того, для инцентра и центра девяти точек , мы имеем
- ,
- ,
- ,
- ,
- .
Аналогичными свойствами обладает тетраэдр — его барицентр является пересечением отрезков, соединяющих вершины с барицентрами противоположных граней. Эти отрезки делятся барицентром в отношении 3:1. Результат может быть обобщён на любой -мерный симплекс. Если вершины симплекса обозначить и рассматривать вершины как вектора, центроид равен
- .
Геометрический барицентр совпадает с центром масс, если масса равномерно распределена по всему симплексу или сосредоточена в вершинах как равных масс.
Изогональным сопряжением центроида треугольника является точка пересечения его симедиан.
Барицентр тетраэдра[править | править код]
Тетраэдр является телом в трёхмерном пространстве, имеющим четыре треугольника в качестве граней. Отрезок, соединяющий вершину тетраэдра с барицентром противоположной грани, называется медианой, а отрезок, соединяющий середины двух противоположных сторон, называется бимедианой. Таким образом, имеется четыре медианы и две бимедианы. Эти шесть отрезков пересекаются в барицентре тетраэдра[12]. Барицентр тетраэдра лежит посередине между точкой Монжа и центром описанной сферы. Эти точки задают прямую Эйлера тетраэдра, являющуюся аналогом прямой Эйлера треугольника.
Барицентр многоугольника[править | править код]
Барицентром самонепересекающегося замкнутого многоугольника, заданного вершинами , , , , является точка , где
- ;
и где является площадью многоугольника (со знаком):
- [13].
В этой формуле предполагается, что вершины пронумерованы вдоль периметра многоугольника. Кроме того, вершина считается той же самой, что и .
Заметим, что если точки пронумерованы по часовой стрелке, площадь , вычисленная выше, будет отрицательной, но координаты барицентра подкорректируют этот случай.
Барицентры конуса и пирамиды[править | править код]
Барицентр конуса или пирамиды расположен на отрезке, соединяющем вершину тела с барицентром основания. Для целого конуса или пирамиды барицентр находится на расстоянии 1/4 от основания к вершине. Для поверхности конуса или пирамиды (боковая поверхность без внутренности и без основания) центроид находится на 1/3 расстояния от основания до вершины.
См. также[править | править код]
- Центр масс
- Центроид треугольника
- Центр тяжести
- Центр Чебышева[en]
- Среднее Фреше[en]
- k-means
- Список барицентров
- Теоремы Паппа — Гульдина
- Замечательные точки треугольника
Примечания[править | править код]
- ↑ Altshiller-Court, 1925, с. 101.
- ↑ Kay, 1969, с. 18,189,225–226.
- ↑ 1 2 Altshiller-Court, 1925, с. 70–71.
- ↑ Зетель, 1962.
- ↑ Protter, Morrey, 1970, с. 520.
- ↑ 1 2 Protter, Morrey, 1970, с. 526.
- ↑ Protter, Morrey, 1970, с. 527.
- ↑ Protter, Morrey, 1970.
- ↑ Larson, Hostetler, Edwards, 1998, с. 458–460.
- ↑ Encyclopedia of Triangle Centers Архивная копия от 19 апреля 2012 на Wayback Machine by Clark Kimberling. The centroid is indexed as X(2).
- ↑ Johnson, 2007, с. 173.
- ↑ Kam-tim, Suk-nam, 1994, с. 53–54.
- ↑ Bourke, 1997.
Литература[править | править код]
- Зетель, С. И. Новая геометрия треугольника. Пособие для учителей. — 2-е изд/. — М. : Учпедгиз, 1962. — С. 12.
- Leung Kam-tim, Suen Suk-nam. Vectors, matrices and geometry. — Hong Kong University Press, 1994.
- Nathan Altshiller-Court. College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. — 2nd. — New York: Barnes & Noble, 1925.
- Paul Bourke. Calculating the area and centroid of a polygon. — 1997.
- Roger A. Johnson. Advanced Euclidean Geometry. — Dover, 2007.
- David C. Kay. College Geometry. — New York: Holt, Rinehart and Winston, 1969.
- Roland E. Larson, Robert P. Hostetler, Bruce H. Edwards. Calculus of a Single Variable. — 6th. — Houghton Mifflin Company, 1998.
- Murray H. Protter, Charles B. Morrey Jr. College Calculus with Analytic Geometry. — 2nd. — Reading: Addison-Wesley, 1970.
Ссылки[править | править код]
- Characteristic Property of Centroid at cut-the-knot
- Barycentric Coordinates at cut-the-knot
- Interactive animations showing Centroid of a triangle and Centroid construction with compass and straightedge
- Experimentally finding the medians and centroid of a triangle at Dynamic Geometry Sketches, an interactive dynamic geometry sketch using the gravity simulator of Cinderella.
Какой самый быстрый способ найти «визуальный» центр многоугольника неправильной формы?
Мне нужно найти точку, которая является визуальным центром многоугольника неправильной формы. Под визуальным центром я подразумеваю точку, которая визуально находится в центре большой области многоугольника. Приложение должно поместить метку внутри многоугольника.
Вот решение, которое использует внутреннюю буферизацию:
Если это нужно использовать, каков эффективный и быстрый способ найти буфер? Если какой-либо другой путь должен быть использован, что это за путь?
Хорошим примером действительно жестких многоугольников является гигантская буква U (написанная Arial Black или Impact или другим подобным шрифтом).
12 ответов
Я нашел очень хорошее решение для этого в MapBox, которое называется Polylabel . Полный исходный код также доступен на их Github .
По сути, он пытается найти визуальный центр многоугольника, как сказал Т. Остин.
Некоторые детали предполагают, что это может быть практическим решением:
К сожалению, вычисление [идеального решения] является сложным и медленно. Опубликованные решения проблемы требуют либо Ограниченная триангуляция Делоне или вычисление прямого скелета как этапы предварительной обработки — оба из которых медленные и подвержены ошибкам.
В нашем случае нам не нужно точное решение — мы готовы обменять некоторую точность, чтобы получить больше скорости Когда мы размещаем ярлык на карта, более важно, чтобы она была вычислена в миллисекундах, чем быть математически совершенным.
Краткое примечание об использовании. Исходный код прекрасно работает для Javascript из коробки, однако, если вы собираетесь использовать его с «нормальным» многоугольником, вам следует заключить его в пустой массив, так как функции здесь принимают GeoJSONPolygons , а не нормальные полигоны, т.е.
Вы изучали формулу центроида?
Если центроид многоугольника находится внутри многоугольника, используйте его, иначе:
1) Протяните линию от центроида через многоугольник, разделяя многоугольник на две половины равной площади
2) «Визуальный центр» — это точка на полпути между ближайшей точкой, где линия касается периметра, и следующей точкой, пересекающей периметр в направлении, удаляющемся от центроида
Вот несколько фотографий, чтобы проиллюстрировать это:
Вычислите центральную позицию (x, y) каждого ребра многоугольника. Вы можете сделать это, найдя разницу между положениями концов каждого края. Возьмите среднее значение каждого центра в каждом измерении. Это будет центр многоугольника.
Я не говорю, что это самый быстрый, но он даст вам точку внутри многоугольника. Рассчитайте прямой скелет . Точка, которую вы ищете, находится на этом скелете. Например, вы можете выбрать тот, который имеет наименьшее нормальное расстояние до центра ограничительной рамки.
Как насчет нахождения «вписанной окружности» многоугольника (самого большого круга, который в нем помещается), а затем центрирования метки в центре этого? Вот несколько ссылок, с которых можно начать:
Скорее всего, это не будет работать идеально на каждом полигоне; у многоугольника, который выглядел как C, была бы метка в несколько непредсказуемом месте. Но преимущество заключается в том, что метка всегда будет перекрывать сплошную часть многоугольника.
Если я понимаю смысл статьи, на которую вы ссылались (кстати, довольно интересная проблема), эта техника «внутренней буферизации» в некоторой степени аналогична моделированию рассматриваемой формы из куска сахара, который растворяется кислотой края в. (например, при увеличении буферного расстояния остается меньше исходной формы) Последний оставшийся бит является идеальным местом для размещения метки.
Как это сделать в алгоритме, к сожалению, мне не очень понятно .
Я думаю, что если вы разбили многоугольник обратно на его вершины, а затем применили функцию для нахождения наибольшего выпуклого корпуса, а затем нашли центр на этом выпуклом корпусе, он бы близко совпадал с «кажущимся» центром.
Поиск наибольшего выпуклого корпуса с учетом вершин: посмотрите под абзацем Простой многоугольник.
Усредните вершины выпуклой оболочки, чтобы найти центр.
Не могли бы вы поместить метку в наивном центре (возможно, ограничительной рамки), а затем переместить ее на основе пересечений локальных ребер многоугольника и BB метки? Перемещение по нормали пересекающихся ребер, и, если несколько ребер пересекаются, суммировать их нормали для движения?
Просто угадай здесь; в такой ситуации я, вероятно, попытался бы решить итеративно, если производительность не слишком важна.
Сейчас не так много времени, чтобы разработать или проверить это, но я постараюсь сделать больше, когда у меня будет шанс.
Используйте центроиды в качестве основного метода. Проверьте, находится ли центроид внутри многоугольника; если нет, проведите линию от до ближайшей точки и на другой стороне многоугольника. В средней части сечения этой линии, расположенного внутри многоугольника, разместите метку.
Поскольку точка, ближайшая к центроиду, скорее всего, ограничивает довольно большую область, я думаю, что это может дать результаты, аналогичные вкраплениям Киралессы. Конечно, это может привести в бешенство, если у вас есть многоугольник с отверстиями. В этом случае, окружности, вероятно, будут намного лучше. С другой стороны, по умолчанию используется метод центроида (быстрый?) Для типичных случаев.
Эта проблема, вероятно, была бы аналогична нахождению «центра масс» в предположении равномерной плотности.
РЕДАКТИРОВАТЬ: этот метод не будет работать, если у многоугольника есть «дыры»
Вы можете использовать метод Center of Mass (или Center of Gravity), который используется в гражданском строительстве, вот полезная ссылка из Википедии:
Как найти центр многоугольника
Понятие «центр тяжести многоугольника» можно интерпретировать тремя различными способами:
- Масса находится только в вершинах, причем каждая вершина «весит» одинаково
- Масса равномерно распределена по границе многоугольника
- Масса равномерно распределена по области, ограниченной многоугольником.
Рассмотрим все три интерпретации в порядке возрастания сложности алгоритма.
1. Масса находится только в вершинах, причем каждая вершина весит одинаково
В этом случае координаты центра тяжести выражаются по формулам:
Таким образом для нашего частного случая имеем:
2. Масса равномерно распределена по границе многоугольника
В этом случае масса ребра пропорциональна его длине. Таким образом каждое ребро мы можем заменить на точечную массу (пропорциональную длине ребра). Затем применяя те же формулы для определения центра тяжести получаем:
Ниже представлена программа, реализующая описанный алгоритм:
3. Масса равномерно распределена по области, ограниченной многоугольником.
Этот случай уже не является столь тривиальным, как два предыдущих. Для построения алгоритма понадобится следующий факт:
Предложение 1
Пусть фигура Ф есть объединение двух других фигур Ф1 и Ф2 (пересекающихся только по границе).
Тогда центр тяжести фигуры Ф выражается так:
(Это утверждение очевидно следует из определения центра тяжести произвольной фигуры и свойства аддитивности интеграла)
Кроме того для треугольника центр тяжести определяется так:
Разобьем наш многоугольник на треугольники. Для каждого треугольника найдем его центр тяжести (Xci, Yci) и площадь (Si). После этого, согласно Предложению 1, координаты центра тяжести многоугольника можно найти следующим образом:
Остается вопрос, как разбить многоугольник на треугольники. Если многоугольник выпуклый, а вершины перечислены в порядке обхода по или против часовой стрелки, то достаточно просто найти одну точку внутри многоугольника (Xm,Ym), а затем разбить многоугольник на N следующих треугольников:
Если же многоугольник выпуклый, но вершины перечислены не в порядке обхода, то их придется упорядочить. Сделать это можно, например, отсортировав вершины по углу между положительной полуосью ОХ и вектором (Xi-Xm, Yi-Ym).
Невыпуклый многоугольник всегда можно разбить на несколько выпуклых. А затем, применив описанный алгоритм для каждой выпуклой части, и используя Предложение 1, найти центр тяжести всего многоугольника. Задача о разбиении произвольного многоугольника на выпуклые части является самостоятельной задачей, которая рассмотрена в соответствующем разделе. Поэтому представленная ниже реализация алгоритма работает только для выпуклых многоугольников.
Ниже представлен пример реализации описанного алгоритма на языке С для нахождения центра тяжести выпуклого многоугольника, вершины которого перечислены в порядке обхода по или против часовой стрелки:
Алгоритмы поиска объема и центра масс многогранника
Наверное, все знают этот алгоритм, но от меня «власти скрывали». Нашел его словесное описание на третьей странице поисковика в архиве автопереводов англоязычного форума. Мне кажется, его подробное описание (и с кодом) достойно хабростатьи.
Итак, например вам надо генерировать мобов для игрушки и где-то в процессе отсеивать тех, кто не стоит на ногах. Для этого нужно найти центр масс моба (а это почти то же самое, что найти его объем) и убедиться, что он находится где-то над ногами моба.
Моб — это многогранник, для простоты считаем, что многогранник состоит только из треугольников (в алгоритме внутри сидит формула площади Гаусса, так что можно расширить его для любого многогранника, но зачем. ). Кроме того, многогранник должен не иметь самопересечений и ограничивать замкнутый объем, как и положено приличным многогранникам.
(ну типа такого)
Маленький UPD, поясняющий, почему на КДПВ правый моб Не Ок, а левый Ок:
Правая картинка не Ок потому что моб завалится вперед, т.к. его центр масс вынесен за площадь опоры. Площадь опоры стоящего на поверхности многоугольника определяется как минимальный многоугольник, внутри которого окажутся все точки, находящиеся на поверхности. В левом случае площадь опоры сдвинута под центр масс и больше (т.к. динозаврские лапы больше), а на правой картинке сама площадь меньше и ближе к хвосту.
Соотношение опорной площади и центра масс будет примерно такое:
Сразу начну с кода поиска объема (Python, входные данные — список точек и матрица переходов):
Суть алгоритма — считаем объемы фигур, которые образуют «падающие» на плоскость xy грани многогранника. Для этого надо знать площадь проекции треугольника и знак, с которым надо суммировать объем фигуры (усеченнной призмы). На самом деле, если заранее упорядочить треугольники, и объем и знак сводятся к одному вычислению.
Поэтому первым делом рекурсивная функция собирает треугольники из входных данных. Собирает таким образом, чтобы при взгляде «снаружи» на многогранник, направления обхода треугольников были одинаковыми (в идеале против часовой стрелки; если взять направления по часовой стрелке, то результат получится правильным, но отрицательным — поэтому в ретурн отдается модуль объема).
Добиться этого очень просто — берем какой-то треугольник (точки a1, a2, a3), ищем его соседей и перечисляем две совпавшие вершины в обратном порядке (например, так: a2, a1, b1).
Получается что-то вроде этого:
Теперь, если мы спроецируем такой треугольник на плоскость xy, то порядок обхода для проекции «верхнего» треугольника будет совпадать с изначально выбранным, а порядок обхода для проекци «нижнего» треугольника поменяет свое направление. Как следствие, поменяет знак и площадь этого треугольника, вычисленная по формуле Гаусса. Здесь «нижний» треугольник — понятие условное — имеется ввиду, что объем непосредственно под ним не входит в объем многогранника. «Нижний» треугольник у невыпуклого многогранника может быть выше «верхнего».
После этих предварительных действий, чтобы вычислить полный объем многогранника, надо просто сложить (с учетом знака, который получается «сам собой») все объемы усеченных призм, собранных из граней и проекций этих граней на плоскость xy. А объемы призм считаются как произведение площади (по Гауссу, со знаком) и среднего арифметического z-координат вершин треугольника.
Если многогранник пересекается плоскостью xy, то при вычислении объема, все знаки скомпенсируют друг друга и результат остается правильным (надо только брать высоты призмы без модуля).
(как-то так выглядит «верхняя» усеченная призма)
С поиском центра масс все приблизительно также. Аналогично надо найти центры масс для каждой усеченной призмы и просуммировать покоординатно, умножая на объем призмы (предполагается, что масса распределена равномерно по объему и можно одно заменить другим). Чтобы найти центр масс усеченной призмы, придется посчитать центры масс двух тетраэдеров (+1 функция) и одной обычной призмы. Алгоритм так же «не портится», если многогранник пересекает плоскость xy (а здесь могла бы быть репродукция Магритта).
(вот эти два тетраэдера, обозначены красным и рыжим, вместе с треугольной призмой (ниже красного тетраэдера) образуют искомую усеченную призму. Нам надо найти центры масс и объемы всех трех фигур. Обозначения примерно соответствуют обозначениям в коде)
Код, который считает то и то:
Кусок алгоритма, где считаются направления треугольников и используются для понимания внешнего и внутреннего объема — это очень сильный ход, его много как можно применить при работе с многогранниками. Например, если надо посчитать направление нормалей «наружу» — достаточно знать направление «против часовой стрелки» для одной грани — и вуаля!
(угадай фильм!)
Содержание:
Известно, что фигуры делятся на плоские и пространственные, в зависимости от того, расположена фигура только на плоскости или в пространстве. До сих пор мы на уроках геометрии, в основном, изучали свойства плоских фигур. В конце 9 класса мы рассмотрели свойства некоторых пространственных фигур: призмы, пирамиды, цилиндра, конуса и шара (рис.1). В планиметрии изучают свойства плоских фигур, а в стереометрии – свойства пространственных фигур. Стереометрия (от греческого “stereos” – “пространственный”, “metreo” – “измеряю”).
Предметы, изображенные на рисунке 2, как символы пространственных тел, дают представление о них. Все предметы окружающего нас мира имеют три измерения, их форма похожа на какую-нибудь геометрическую фигуру. Вы познакомились с такими фигурами в конце 9 класса. Теперь начинаем системное изучение курса стереометрии. Сначала вкратце напомним некоторые сведения об элементах пространственных фигур.
Определение многогранника
Многогранник – это пространственное тело, ограниченное плоскими многоугольниками.
Плоские многоугольники называют гранями многогранника, их вершины – вершинами многогранника, а стороны – ребрами многогранника.
Отрезок, соединяющий две вершины, не принадлежащие одной грани, называют диагональю многогранника (рис. 3).
Границу многогранника называют его поверхностью. Многогранник делит пространство на две части. Одну из них, бесконечную, называют внешней областью, а ограниченную часть внутренней областью многогранника.
Если многогранник расположен по одну сторону от плоскости, проходящей через любую его грань, то многогранник называют выпуклым многогранником. Например, куб – выпуклый многогранник. На рисунке 4 изображен многогранник, не являющийся выпуклым. Позже мы будем изучать простейшие многогранники: призмы и пирамиды.
Многогранник, две грани которого, являются равными многоугольниками, а остальные – параллелограммами, называют призмой (рис. 5). Равные грани называют основаниями, а параллелограммы боковыми гранями многогранника (рис. 6).
По числу сторон в основании многогранники разделяют на треугольные, четырехугольные и т.д. n-угольные призмы.
На рисунке 5.а изображена треугольная призма на рисунке 5.6 – четырехугольная призма
Если боковая грань призмы перпендикулярна основанию, то ее называют прямой призмой, если не перпендикулярна, то наклонной призмой.
Если основания прямой призмы являются правильными многоугольниками, то его называют правильной (рис. 8).
Призма, основанием которой является параллелограмм, называют параллелепипедом (рис. 9). Параллелепипеды, как и призмы, могут быть прямыми и наклонными. Прямой параллелепипед с прямоугольным основанием называют прямоугольным параллелепипедом (рис. 10). Ясно, что все грани прямоугольного параллелепипеда будут прямоугольниками.
Три ребра прямоугольного параллелепипеда, исходящие из одной вершины, называют его измерениями.
Прямоугольный параллелепипед с равными измерениями называется кубом. Ясно, что гранями куба являются равные квадраты.
Многогранник, одна из граней которого является многоугольником, а остальные – треугольниками, называют пирамидой. Многоугольник называют основанием, а треугольники – боковыми гранями. На рисунке 12 изображена пятиугольная пирамида TABCDE. Пятиугольник ABCDE – основание пирамиды, треугольники А ТВ, BTC, CTD, DTE и ЕТА – ее боковые грани, а Т – ее вершина.
По числу сторон основания различают треугольные, четырехугольные и т.д. n-угольные пирамиды.
На рисунке 13 изображена треугольная, а на рисунке 14-четырехугольная пирамида.
Если основанием пирамиды является правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, перпендикулярен любой прямой, проведенной в плоскости основания через этот центр, то сс называют правильной пирамидой.
Высоту боковой грани, опущенную из вершины правильной пирамиды, называют апофемой. На рисунке 14 изображена правильная пирамида APQRS. Отрезок АВ является апофемой этой пирамиды.
Теорема 1.1. В правильной пирамиде: а) боковые грани; б) боковые ребра; в) апофемы равны между собой.
Доказательство: Пусть правильная пирамида, а О центр ее основания (рис. 15).
а) Отрезки являются радиусами, описанной в правильный многоугольник окружности, поэтому они равны между собой.
Так как в прямоугольных треугольниках равны по два катета, то они равны между собой. Тогда их гипотенузы также будут равными:
б) Так как боковые ребра правильной пирамиды равны между собой, то её боковые грани являются равнобедренными треугольниками. А в силу того, что основания этих треугольников являются сторонами правильного многоугольника, то и они равны между собой.
Следовательно, боковые грани пирамиды равны по трем сторонам.
в) Так как боковые грани правильной пирамиды равны, то апофемы, проведенные из вершины Q, также равны между собой.
Следовательно, в правильной пирамиде апофемы равны между собой.□
Теорема 1.2. Площадь боковой поверхности правильной пирамиды равна произведению полупериметра основания на ее апофему.
Доказательство: Пусть . правильная пирамида (рис. 15). Площадь боковой поверхности пирамиды равна сумме площадей ее боковых граней. А ее боковые грани – это равные между собой равнобедренные треугольники. В свою очередь, высоты этих треугольников – это также равные между собой апофемы:
Построение многогранников и их простейших сечений
При решении геометрических задач очень важно построить правильный чертеж. Часто считают правильный чертеж – “половиной решения”. Правильное построение стереометрических чертежей считается достаточно сложной, ответственной, а иногда и трудной работой, так как стереометрические фигуры имеют три измерения и их нужно изобразить на плоскости, на странице тетради. Неправильный чертеж может привести к неверному решению или к тупику.
Построение призмы выполняют в следующем порядке (рис. 11). Сначала строят одно из оснований в виде многоугольника. Затем из каждой вершины многоугольника проводят параллельные и равные друг другу отрезки, то есть образующие призмы. Концы этих отрезков последовательно соединяют. Получают второе основание призмы. На чертеже невидимые ребра призмы чертят штрих-пунктирной линией.
Построение пирамиды выполняют в таком же порядке (рис. 12). Сначала строят основание в виде многоугольника. Затем отметив вершину пирамиды, соединяют эту точку с каждой вершиной основания. На чертеже невидимые ребра пирамиды чертят пунктирной линией.
Правильный чертеж можно построить только при правильном представлении взаимного расположения пространственных геометрических фигур. Если одной из пространственных фигур является многогранник, а другой плоскость, то необходимо построить их сечение. Займемся построением таких сечений.
Пусть многогранник пересекает некоторая плоскость. Геометрическая фигура, являющаяся многоугольником, вершины которого – это точки пересечения многогранника и плоскости, называют сечением многогранника.
Секущая плоскость пересекает поверхность многогранника по отрезкам, а сечение многогранника состоит из одного или нескольких многоугольников. На рисунке 13 изображено сечение пятиугольной призмы, являющееся семиугольником. Сечение на рисунке 14, полученное пересечением рамы плоскостью, состоит из двух четырехугольников.
Чтобы изобразить сечение многогранника, нужно отметить общие точки его граней и секущей плоскости.
Пример №1
Построим сечение треугольной пирамиды QABC, которая пересекает ее ребра АВ, AQ и CQ в точках К, L М соответственно (рис. 15).
Решение:
Построение. Секущая плоскость а имеет с гранью AQB пирамиды две общие точки: К и L. Следовательно секущая плоскость пересекает эту грань по отрезку KL.
Аналогично, так как секущая плоскость а имеет с гранью AQC пирамиды две общие точки М и L, поэтому она пересекает эту грань по отрезку ML.
Секущая плоскость а имеет с гранью ABC пирамиды одну общую точку К. Найдем точку, в которой эта плоскость пересекается с ребром ВС. Продолжив прямые LMи АС, принадлежащие этой плоскости, найдем их точку пересечения X. Точка X лежит также в плоскостях AQC и ABC.
Секущая плоскость а имеет с гранью ABC пирамиды две общие точки: К vi X. Тогда секущая плоскость пересекает эту грань по отрезку КХ.
Точка N пересечения прямой КХ и ребра ВС также принадлежит плоскости а.
Следовательно, плоскость а пересекает грань ABC по отрезку KN, а грань BQC по отрезку MN.
Четырехугольник KLMN является сечением пирамиды плоскостью а. Каждый из отрезов KL и KN называют следом плоскости а на гранях ABQ и ABC соответственно.
Пример №2
Построим сечение треугольной пирамиды OKLMN, полученное пересечением плоскости b с ребром пирамиды OL в точке А и прямой к, лежащей в основании пирамиды KLMN (рис. 16).
Решение:
Построение. Найдем точку пересечения прямых LM и к. Так как эта точка лежит на прямой к, то она принадлежит и плоскости р. Подобно этому, так как эта точка лежит на прямой LM, то она принадлежит и грани LOM. Точка А принадлежит обеим этим плоскостям. Поэтому плоскость Р псрссскаст плоскость LOM по прямой АХ, а грань LOM по отрезку АВ. Точка В является точкой пересечения прямых АХ и ОМ.
Точно также, определяем точки У и D пересечения плоскости р и ребра OLK и отрезка AD. Затем определяем точки Z и С и прямые DC и ВС. В результате, полученный четырехугольник ABCD является искомым сечением.
Пример №3
Точки А, В и С лежат на разных ребрах четырехугольной призмы. Найдем сечение призмы плоскостью ABC (рис. 17).
Решение:
Искомое сечение зависит от того, на каких ребрах четырехугольной призмы и как расположены точки А, В и С. На рисунке 17 изображен наиболее простой случай, когда точки А, В и С расположены на ребрах, исходящих из одной вершины.
Построение сечения в случае, изображенном на рисунке 18, считается более сложным. Оставшиеся случаи сечений приведены на рисунках 19 и 20. Как видите, сечение может быть треугольником, четырехугольником, пятиугольником и шестиугольником. Построение этих сечений выполните самостоятельно.
Многогранные углы и многогранники
С двугранным углом вы познакомились в 10 классе. Геометрическую фигуру, состоящую из двух полуплоскостей (грани) а и b с общей их ограничивающей прямой АВ (ребро) называют двугранным углом (рис. 1) и обозначают (а b).
Начертим лучи РR и РQ, проходящие через произвольную точку Р на рёбре двугранного угла и перпендикулярные ему. Угол QPR -называют линейным углом двугранного угла (рис. 2).
Двугранные углы также как и плоские углы делят по величине на острые, прямые и тупые (рис. 3). Также как и плоские углы двугранные углы могут быть смежными и вертикальными (рис. 4).
Полуплоскость, делящую двугранный угол на два равных двугранных угла, называют биссектором (рис. 5).
Пример №4
Из точек А и В, лежащих на гранях двугранного угла, линейный угол которого равен 60°, к его рёбру проведены перпендикуляры АА1 и ВВ1 (рис. 6). Найдите длину отрезка АВ, если АА1 = 12, ВВ1 = 10 и А1В1 = 13.
Решение:
Проведем прямые и Полученный четырёхугольник – параллелограмм. Прямая будет перпендикулярна плоскости треугольника , так как она перпендикулярна двум лежащим на ней прямым и . Тогда и прямая ВС будет перпендикулярна этой плоскости.
Следовательно, треугольник АВС – прямоугольный.
По теореме косинусов:
А по теореме Пифагора:
Ответ:
В пространстве три исходящих из одной точки луча a, b и с образуют три плоских угла (ab), (bс) и (ас) (рис.7). Фигуру (abc), полученную из этих плоских углов, называют трёхгранным углом.
Плоские углы трёхгранного угла называют его гранями, их стороны
– рёбрами, а общую вершину – вершиной трёхгранного угла.
Двугранные углы, образованные гранями трехгранного угла, называют двугранными углами трёхгранного угла.
Три плоских угла (ab), (bс) и (ас) называют также плоскими углами трёхгранного угла.
Плоские углы трёхгранного угла обозначают соответственно , , (рис. 8), для них выполняется неравенство треугольника, т. е. любой из них меньше суммы двух других углов:
Аналогично определяется понятие многогранного угла (рис. 9).
Многогранники в геометрии
Если вы заметили, то до сих пор мы изучали в качестве пространственных фигур свойства ряда тел, в частности многогранников. Эти пространственные фигуры называются телами, поскольку их можно представить в виде части пространства, занятой каким-либо телом и ограниченной поверхностью. Напомним некоторые понятия, касающиеся многогранников.
Многогранником называют тело, ограниченное плоскими многоугольниками (рис. 10).
Если многоугольник расположен по одну сторону от плоскости каждой грани, то его называют выпуклым многогранником. На рисунке 10 изображён выпуклый, а на рисунке 11 не выпуклый многогранник. Обозначим число граней произвольного выпуклого многогранника Y, число его вершин U, число его рёбер Q. Заполним следующую таблицу для известных нам многогранников:
Из таблицы получаем, что для любого многогранника. Известно, что это соотношение верно для любого выпуклого многогранника. Это доказал в 1752 году швейцарский математик Леонард Эйлер.
Теорема Эйлера. Для любого выпуклого многогранника имеет место соотношение: Y + U – Q = 2, где Y– число граней, U – число вершин, Q – число рёбер многогранника.
Примем её без доказательства. Из нее вытекают следующие следствия. Докажите их самостоятельно, используя теорему Эйлера.
1 следствие. Число плоских углов многогранника в два раза больше числа его рёбер.
2 следствие. Число плоских углов многогранника чётно.
3 следствие. Если в каждой вершине многогранника сходится одно и тоже число рёбер , то справедливо равенство U = 2Q.
4 следствие. Если все грани многогранника являются равными n-угольниками, то справедливо равенство Y = 2Q.
5 следствие. 360° (Y- Q)-сумма всех плоских углов многогранника.
Выпуклый многогранник называют правильным, если его грани
являются равными правильными многоугольниками и в каждой вершине многогранника сходится одно и то же число рёбер. Известно всего пять видов правильных многогранников (проверьте это самостоятельно). Это следующие многогранники:
Исторические сведения:
Все правильные многогранники были известны в Древней Греции. XIII книга знаменитых «Начал» Евклида посвящена правильным многогранникам. Их чаще называют телами Платона. Великий ученых Древней Греции Платон (424-347 гг. до н.э.) в своём идеалистическом изображении мира сравнивает четыре таких тела с 4 элементами вселенной: тетраэдр – пламя, декаэдр – земля, октаэдр – воздух, икосаэдр – вода. А пятый многогранник – додекаэдр называет знаком строения всей вселенной («пятой основой»).
В XVIII веке в теорию многогранников внёс ощутимый вклад Леонард Эйлер (1707-1783) о связи вершин, граней и сторон в выпуклом многоугольнике, изданная в 1758 году и её доказательство упорядочили мир всевозможных многогранников.
Многогранники в высшей математике
Плоскости в пространстве могут располагаться различным образом.
Плоскости, располагаясь в пространстве различным образом, образуют так называемые пространственные фигуры- многогранники.
Многогранником называется тело, поверхность которого состоит из конечного числа плоских многоугольников, которые называются гранями. У многогранника не менее 4 граней. Отрезки, по которым пересекаются грани, называются рёбрами, а точки в которых пересекаются рёбра, называются вершинами. Отрезок, соединяющий две вершины не лежащие в одной грани, называется диагональю.
Призма — многогранник, две грани которого являются конгруэнтными многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами.
Пирамида —это многогранник, одна грань которого многоугольник, а остальные грани – треугольники с общей вершиной.
Призма и пирамида называется по форме многоугольника, лежащего в основании.
Многогранники бывают двух видов: выпуклые и вогнутые. Если многогранник целиком расположен по одну сторону от плоскости каждой его грани, то он является выпуклым. У выпуклого многогранника две произвольным образом взятые точки, соединённые отрезком, располагаются во внутренней области.
Многогранники А и В – выпуклые, С и D – вогнутые.
Выпуклый многогранник, все грани которого являются конгруэнтными правильными многоугольниками, и в каждой его вершине сходится одинаковое число рёбер, называется правильным. Эти фигуры так же называют платоновыми телами. Например, куб является правильным многогранником. Различают пять видов Платоновых тел: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.
Призмы
Два конгруэнтных многоугольника, расположенных в параллельных плоскостях и совпадающих при параллельном переносе, и все отрезки, которые соединяют соответствующие точки многоугольников, образуют фигуру, которая называется призмой. Многоугольники называются основаниями призмы, а отрезки прямых, соединяющих соответственные вершины, называются боковыми рёбрами призмы. Часть плоскости, проходящей через боковые рёбра призмы, называется боковыми гранями призмы. Боковые грани призмы параллелограммы. У каждого параллелограмма две стороны соответствуют сторонам основания, а две другие являются боковыми рёбрами. Если боковые рёбра перпендикулярны плоскости основания, то призма называется прямой призмой, если не перпендикулярны, то призма называется наклонной призмой.
Боковые грани правильной призмы прямоугольники. Если в основании прямой призмы лежит правильный многоугольник, то призма называется правильной.
Если в основании призмы лежит – угольник, то она называется -угольной призмой, -угольная призма имеет: 2 вершин, + 2 граней, 2 рёбер. Призма, в основании которой лежит параллелограмм, называется параллелепипедом. Противоположные грани параллелепипеда параллельны и конгруэнтны. Параллелепипед, в основании которого лежит прямоугольник, называется прямоугольным параллелепипедом. На рисунке показан прямоугольный параллелепипед . Рёбра, выходящие из одной вершины прямоугольного параллелепипеда, называются измерениями параллелепипеда.
Расстояние между основаниями призмы называется высотой. Боковые рёбра прямой призмы являются её высотами.
Прямая, соединяющая две вершины призмы не принадлежащие одной грани, называется диагональю призмы.
Изобразите на изометрической бумаге прямоугольный параллелепипед с измерениями 5x3x2.
Выберите точку вершины призмы и от неё начертите отрезки: на 2 единицы вниз, на 5 единиц влево и 3 единицы вправо.
Из каждой вершины параллелограмма начертите отрезки длинной 2 еденицы.
Начертите параллелограмм – верхнее основание призмы.
Последовательно соедините концы отрезков. Не забудьте невидимые рёбра изобразить пунктиром.
Многогранники и их виды с различных сторон
При помощи кубов можно получать различные конструкции. Их называют кубоиды. Виды кубоидов с различных сторон (план) или наоборот, сборка конструкции кубоида по плану имеет большое практическое значение.
Практическая работа. Ниже представлены вид сверху, вид сбоку и вид спереди конструкции фигуры, по которым построена сама фигура и её изображение на изометрической бумаге. Для примера представлено изображение фигуры сверху, сбоку и спереди. Составьте различные конструкции из кубов и изобразите их на изометрической бумаге.
Для изображения трёхмерных фигур удобно использовать изометрическую бумагу. Например, рёбра куба равные единице равны единице расстояния между точками. Получить изображение куба можно отметив вершины и соединив их. Аналогичным образом строятся все кубы из которых состоит кубоид.
Площадь поверхности призмы
Исследование 1. Изобразим развёртку прямоугольного параллелепипеда с измерениями а, b, с.
Поверхность параллелепипеда состоит из 6 попарно конгруэнтных прямоугольников и чтобы вычислить площадь полной поверхности, надо вычислить площади его граней.
Грани Площади 1.Правая и левая:
2.Нижняя и верхняя:
2. Передняя и задняя
Сумма площадей всех граней:
Площадь полной поверхности прямоугольного параллелепипеда с длиной а, шириной b и высотой с вычисляется но формуле .
Исследование 2. Площадь боковой и полной поверхности прямой треугольной призмы.
1.Вычислите площадь боковой и полной поверхности прямой треугольной призмы с высотой И сторонами основания а, b , с.
2.Начертим развёртку призмы.
3.Боковая поверхность призмы состоит из трёх прямоугольников. Сумма площадей этих прямоугольников составляет площадь боковой поверхности. Площадь боковой поверхности:
,
где Р – периметр основания.
4.Чтобы найти площадь полной поверхности, надо найти площади оснований. В нашем случае основание треугольное. Значит, для данной призмы площадь полной поверхности равна сумме площадей двух треугольников и площади боковой поверхности. Здесь площадь треугольника может быть вычислена по формуле Герона.
Исследование 3. Основаниями наклонной призмы являются два прямоугольника со сторонами 10 х 20. Две боковые грани (левая и правая) являются конгруэнтными прямоугольниками с длинами 10 и 18, две оставшиеся грани (передняя и задняя) являются параллелограммами со сторонами 20 и 18 и острым углом 30°. Найдите площадь полной поверхности.
Для того, чтобы найти площади передней и задней поверхностей призмы, являющимися параллелограммами, найдём высоту.
Сумма площадей передней и задней граней: 2 • 20 • 9 = 360 (кв.ед.)
Сумма площадей правой и левой граней: 2 – 10- 18 = 360 (кв.ед.)
Сумма площадей основания: 2 • 20 • 10 = 400 (кв.ед.)
Площадь полной поверхности: 360 + 360 + 400 = 1120 (кв.ед.)
Площадь боковой поверхности прямой призмы
Площадь боковой поверхности прямой призмы равна произведению периметра основания многоугольника на высоту (боковое ребро).
Здесь Р показывает периметр основания, а высоту призмы.
Площадь полной поверхности призмы
Площадь полной поверхности призмы равна сумме площадей основания и боковой поверхности.
Площадь полной поверхности прямой призмы вычисляется по формуле:
Пример №5
Вычислим площадь полной поверхности прямой призмы.
а)Найдём площадь полной поверхности прямой призмы, в основании которой лежит прямоугольный треугольник .
б) Найдём площадь полной поверхности прямой призмы в основании которой лежит трапеция.
Сечение призмы плоскостью
Исследование. Кусок сыра имеет форму прямой призмы. Как нужно разрезать сыр, чтобы полученный ломтик имел форму:
а)прямоугольника
Кусок сыра спереди и сбоку имеет форму прямоугольника. Разрезав сыр по вертикали, получим ломтик прямоугольной формы. б)треугольника
Кусок сыра сверху имеет форму треугольника. Разрезав сыр по горизонтали получим ломтик треугольной формы. в)трапеции
Кусок сыра сбоку имеет вид прямоугольника. Разрезав сыр под определённым углом получим ломтик в форме трапеции.
При сечении призм плоскостью в результате на ней остаётся след, определяющий форму сечения. На рисунке изображены сечения плоскостью прямоугольного параллелепипеда.
Сечение плоскостью параллельной основаниям.
Сечение -прямоугольник.
Сечение плоскостью перпендикулярной основаниям.
Сечение -прямоугольник.
Сечение плоскостью под определённым углом к плоскости основания через противоположные грани.
Сечение -параллелограмм.
Сечение плоскостью под определённым углом к плоскости основания через рёбра из одной вершины.
Сечение -треугольник.
Будьте внимательны! Сечение плоскостью не означает отсечённую часть. Сечение – это след, который остаётся при сечении на плоскости. Плоскость, перпендикулярная боковым рёбрам призмы, называется перпендикулярным сечением. Сечением призмы, параллельное основанию является многоугольник, конгруэнтный основанию.
Сечение, проходящее через боковые рёбра, не принадлежащие одной грани, называется диагональным сечением призмы.
Количество диагональных сечении -угольной призмы равно:
Так как каждое диагональное сечение призмы является параллелограммом, то количество диагоналей -угольной призмы равно: ( – 3) .
Площадь боковой поверхности призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра: Так как в прямой призме перпендикулярное сечение конгруэнтно основанию, то вместо периметра перпендикулярного сечения используется периметр основания. При помощи перпендикулярного сечения можно найти площадь боковой поверхности наклонной призмы. Площадь боковой поверхности наклонной призмы можно найти, вычислив площадь каждой боковой грани в отдельности и сложив их.
Пример №6
Основанием наклонной призмы является равнобедренный треугольник. Грань АСА’С’ – прямоугольник. Если АА’ = 12 см, АВ = ВС = 8 см, АС = 6 см и а = 30°, найдём площадь боковой поверхности.
Решение: Площадь боковой поверхности призмы: Перпендикулярным сечением призмы является треугольник DEF.
Решение задачи более удобно провести на чертеже представленном в открытом виде. DE и FE равны катетам лежащим напротив угла 30° и следовательно они равны 4 см. Периметр перпендикулярного сечения DEF равен
Пирамида
Одна грань пирамиды многоугольник, все остальные грани – треугольники. Треугольники с общей вершиной являются боковыми гранями, многоугольник – основанием. Общие стороны боковых граней называются рёбрами. Общая вершина для боковых граней, состоящих из треугольников, называется вершиной пирамиды.
Перпендикуляр, опущенный из вершины пирамиды на её основание, называется высотой пирамиды. Правильной называется пирамида, в основании которой лежит правильный многоугольник и основание высоты пирамиды совпадает с центром этого многоугольника.
Высота, проведённая из вершины правильной пирамиды на основание боковой грани (треугольника), называется апофемой.
Пирамида называется по форме многоугольника, лежащего в основании. Например, треугольная пирамида, четырёхугольная пирамида и т.д.
Боковые рёбра правильной пирамиды конгруэнтны. Боковые грани правильной пирамиды конгруэнтные равнобедренные треугольники. Правильная треугольная пирамида ещё называется тетраэдром. Tetra в переводе с греческого четыре, т.е. 4 грани (каждая в форме треугольника).
В частном случае пирамиду можно изобразить следующим образом:
1.Начертите параллелограмм и его диагонали.
2.Из точки пересечения диагоналей восстановите перпендикуляр. 3.Вершину перпендикуляра соедините с вершинами параллелограмма.
Боковую поверхность правильной пирамиды можно найти как сумму площадей конгруэнтных треугольников.
Например, на рисунке площадь боковой поверхности правильной шестиугольной пирамиды равна сумме площадей 6 конгруэнтных треугольников, из которых состоит боковая поверхность.
Площадь боковой поверхности правильной пирамиды
Площадь боковой поверхности правильной пирамиды равна полупроизведению периметра многоугольника, лежащего в основании, и апофемы.
Здесь Р – периметр основания,
– апофема пирамиды.
Площадь полной поверхности пирамиды равна сумме площадей основания и боковой поверхности.
Пример №7
Сторона основания правильной шестиугольной пирамиды равна 6 см. Найдём площадь полной поверхности, если апофема равна 9 см.
Решение:
Дано: а = 6 см, han. = 9 см
Найдите: = ?
Чтобы найти площадь основания, сначала надо найти апофему основания .
Центральный угол правильного шестиугольника: 360° : 6 = 60°
Тогда = 30°.
Пример №8
Боковые рёбра правильной треугольной пирамиды равны 10 см, а высота 6 см. Найдём площадь полной поверхности.
Решение:
Дано: АD = 10 см, DO = 6 см
Найдите: = ?
Чтобы найти боковую поверхность пирамиды, надо найти периметр основания и апофему. Для этого достаточно найти одну сторону правильного треугольника.
Из
Известно что (объясните); т.к. АЕ оставляет 8(см),
то АЕ = 12 (см). Так как углы равны (объясните).
Найдем апофему из
Сечение пирамиды плоскостью. Усечённая пирамида
Плоскость, параллельная плоскости основания и пересекающая ее боковые ребра, отсекает от нее подобную пирамиду. Другая часть представляет собой многогранник, которой называется усечённой пирамидой. Параллельные грани усечённой пирамиды называются её основаниями, остальные грани – боковой поверхностью. Отрезок перпендикуляра между плоскостями основания называется высотой усечённой пирамиды. Если пирамида правильная, то сечение плоскостью также является правильным многоугольником и усечённая пирамида также является правильной. Боковые грани правильной усечённой пирамиды конгруэнтные трапеции.
Высота этой трапеции являются апофемой правильной усечённой пирамиды.
Площадь боковой поверхности правильной усечённой пирамиды вычисляется по формуле: , здесь Р1 и Р2 – периметры оснований правильной усечённой пирамиды,
– апофема. Площадь полной поверхности усечённой пирамиды находится как, сумма площадей верхнего и нижнего оснований и боковой поверхности
Плоскость, проходящая через два боковых ребра, не принадлежащих одной грани усечённой пирамиды, называется диагональным сечением.
Этапы построения усечённой пирамиды.
1)Постройте многоугольник основания. 2)Из центра многоугольника постройте перпендикуляр определённой длины и соедините вершины многоугольника с вершиной перпендикуляра.
3)На любом ребре пирамиды выберите точку, постройте отрезки, параллельные , сторонам основания, и начертите другое основание. Сотрите боковые рёбра от вершины, до меньшего основания.
Многогранники и их изображения
В предыдущих классах мы в основном изучали планиметрию — геометрию на плоскости. Теперь, зная свойства плоских геометрических фигур, приступаем к изучению стереометрии (греч. стереос — пространственный) — раздела геометрии, в котором исследуются свойства не только плоских, но и пространственных геометрических фигур, т. е. таких, не все точки которых лежат в одной плоскости: например, параллелепипед и пирамида (рис. 1, а); шар и цилиндр (рис. 1, б).
Представление о пространственных геометрических фигурах дают окружающие нас предметы, если принимать во внимание только их форму и размеры, не интересуясь всеми остальными свойствами: цветом, массой и т. д. Например, апельсин, капля воды в невесомости дают представление о шаре; спичечный коробок и многие жилые дома имеют форму параллелепипеда; усыпальницы египетских фараонов построены в форме пирамиды (рис. 1, в).
Точки и прямые были основными фигурами в планиметрии. Наряду с ними в стереометрии в качестве основных рассматриваются и плоскости. Представление о части плоскости дает поверхность оконного стекла, гладкая поверхность письменного стола или мраморной плитки.
В стереометрии, как и в планиметрии, используются общематематические понятия «принадлежать» или «лежать на», «множество», «число» и т. д.
В пространстве имеется бесконечно много плоскостей, и на каждой из них справедливы аксиомы планиметрии и следствия из них. Поэтому в дальнейшем, рассматривая фигуры, лежащие в какой-либо плоскости, будем пользоваться всеми свойствами этих фигур и теоремами, доказанными в планиметрии. Кроме того, отметим, что признаки равенства и подобия треугольников, изученные в планиметрии, справедливы и для треугольников, лежащих в разных плоскостях.
В стереометрии большую роль играют пространственные представления, развитию которых способствуют различные изображения фигур. Доказательства теорем стереометрии и решения задач сопровождаются изображениями плоских и пространственных фигур на плоскости рисунка (в тетради или на доске). За изображение фигуры принимается фигура, подобная ее проекции на некоторую плоскость, и выбирается такое изображение, которое дает верное представление о форме фигуры, является удобным для изучения ее свойств. При этом некоторые невидимые части фигуры для большей наглядности изображаются штриховой линией (рис. 2, а, б, в).
Перечислим простейшие правила построения изображений фигур.
- За изображение отрезка принимается отрезок. Середина отрезка изображается серединой его изображения; точка, делящая отрезок в отношении изображается точкой, делящей его изображение в отношении
- Параллельные прямые (отрезки) изображаются параллельными прямыми (отрезками).
- В качестве изображения любого треугольника можно принять произвольный треугольник.
Из правил 2 и 3 следует, что за изображение квадрата, прямоугольника, ромба, параллелограмма можно принять произвольный параллелограмм. В дальнейшем будем этим пользоваться, выполняя изображения фигур.
Многогранники
Ранее уже отмечалось, что одним из объектов изучения стереометрии являются пространственные фигуры, к которым относятся и многогранники. Дадим описание многогранников.
Многогранник представляет собой геометрическое тело, ограниченное конечным числом плоских многоугольников, любые два из которых, имеющие общую сторону, не лежат в одной плоскости; сами многоугольники называются гранями, их стороны — ребрами многогранника, а их вершины — вершинами многогранника.
Понятие геометрического тела и определение многогранника будут даны позже, а сейчас отметим, что наглядное представление о геометрическом теле дает часть пространства, которую занимает какое-либо физическое тело.
Фигура, образованная всеми гранями многогранника, называется его поверхностью (полной поверхностью), а сумма площадей всех его граней — площадью (полной) поверхности.
Представление о многогранниках дают кристаллы различных минералов, встречающихся в природе. Например, бриллиант представляет собой алмаз, ограненный должным образом, т. е. имеющий форму определенного многогранника. Другими примерами моделей многогранников с достаточной точностью служат книжные полки, шкафы, строящиеся дома и т. д. Как видим, в окружающем нас пространстве есть множество разнообразных предметов, имеющих форму многогранников.
На рисунках 3, а, б, в и 4, а даны изображения некоторых многогранников.
А вот многоугольники, изображенные на рисунке 4, б, в, не ограничивают части пространства, а следовательно, не образуют поверхность одного многогранника.
Многогранник называется выпуклым, если он лежит по одну сторону от плоскости каждой своей грани. Если это условие не выполняется, то многогранник называется невыпуклым. Выпуклые многогранники изображены на рисунках 3, а, б, в. Многогранник, изображенный на рисунке 4, а, невыпуклый.
Дадим описание некоторых выпуклых многогранников.
Куб, параллелепипед
Куб — это многогранник, имеющий шесть граней, которые являются равными квадратами. Стороны квадратов называются ребрами куба, а вершины — вершинами куба. На рисунке 5, a, б даны изображения куба. Изображение на рисунке 5, а является более наглядным.
Заметим, что шесть равных квадратов в пространстве могут быть расположены так, что они не будут гранями одного куба, например, как показано на рисунке 5, в.
Параллелепипед — это многогранник, у которого шесть граней и каждая из них — параллелограмм.
Стороны параллелограммов называются ребрами параллелепипеда, а их вершины — вершинами параллелепипеда. Две грани параллелепипеда называются противолежащими, если они не имеют общего ребра, а имеющие общее ребро называются смежными.
Иногда какие-нибудь две противолежащие грани параллелепипеда выделяются и называются основаниями, тогда остальные грани — боковыми гранями, а их стороны, соединяющие вершины оснований параллелепипеда, — его боковыми ребрами.
Прямой параллелепипед — это такой параллелепипед, у которого боковые грани — прямоугольники.
Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники. Представление о форме прямоугольного параллелепипеда дают спичечный коробок, строительный кирпич или каждая из моделей, которые получаются при распиливании на две части модели куба, сделанной из дерева, как показано на рисунке 6, а.
Заметим, что всякий прямоугольный параллелепипед является прямым параллелепипедом, но не любой прямой параллелепипед есть прямоугольный. Основанием прямого параллелепипеда может служить параллелограмм, не являющийся прямоугольником. Представление о прямом, но не прямоугольном параллелепипеде дает, например, комната, в которой пол и потолок имеют форму ромба, не являющегося квадратом.
Изображения параллелепипеда даны на рисунке 6, б, в.
Если основаниями параллелепипеда служат параллелограммы то он обозначается При этом на рисунке вершины параллелепипеда обозначены так, что отрезки являются его боковыми ребрами (рис. 6, в).
Две вершины параллелепипеда, не принадлежащие одной грани, называются противолежащими. На рисунке 7, а отмечены противолежащие вершины О к F параллелепипеда.
Отрезок, соединяющий противолежащие вершины параллелепипеда, называется диагональю параллелепипеда. У параллелепипеда всего четыре диагонали. На рисунках 7, б изображены две диагонали параллелепипеда.
Призма и пирамида
Призма (n-угольная) — это многогранник, у которого две грани — равные n-угольники, а остальные n граней — параллелограммы. Равные n-угольники называются основаниями, а параллелограммы — боковыми гранями, призмы.
Прямая призма — это такая призма, у которой боковые грани — прямоугольники.
Представление о форме прямой призмы дают, например, модели, которые получаются в результате распиливания деревянного бруска, имеющего форму прямоугольного параллелепипеда, вдоль ребра, как показано на рисунке 8, а. При этом получаются две модели, одна из которых представляет собой модель прямой пятиугольной призмы, а другая — модель прямой треугольной призмы.
Правильная n-угольная призма — это призма, у которой все боковые грани — прямоугольники, а ее основания — правильные га-угольники.
Сумма площадей боковых граней призмы называется площадью ее боковой поверхности (обозначается ).
Сумма площадей всех граней призмы называется площадью поверхности призмы (обозначается ).
Если основания призмы есть «-угольники то она обозначается На изображении призмы вершины обозначаются так, что отрезки являются ее боковыми ребрами. На рисунке 8, б изображена треугольная призма, а на рисунке 8, в — четырехугольная, основания которой — четырехугольники а ее боковые ребра — отрезки
Пирамида (n-угольная) — это многогранник, у которого одна грань — какой-нибудь n-угольник, а остальные n граней — треугольники с общей вершиной; n-угольник называется основанием; треугольники, имеющие общую вершину, называются боковыми гранями, а их общая вершина называется вершиной пирамиды. Стороны граней пирамиды называются ее ребрами, а ребра, сходящиеся в вершине, называются боковыми.
Пирамида, вершина которой — точка S, а основание — n-угольник обозначается
Сумма площадей боковых граней пирамиды называется площадью боковой поверхности пирамиды (обозначается ).
Сумма площадей всех граней пирамиды называется площадью поверхности пирамиды (площадь поверхности обозначается ).
Правильная n-угольная пирамида — это такая пирамида, основание которой — правильный n-угольник, а все боковые ребра равны между собой.
У правильной пирамиды боковые грани — равные друг другу равнобедренные треугольники.
Треугольная пирамида называется тетраэдром, если все ее грани — равные правильные треугольники. Тетраэдр является частным случаем правильной треугольной пирамиды.
Заметим, что не всякая правильная треугольная пирамида является тетраэдром.
На рисунке 9, а дано изображение правильной четырехугольной пирамиды SABCD. Пространственные фигуры, изображенные на рисунке 9, б, в, не являются пирамидами, так как указанные треугольники и четырехугольник не ограничивают части пространства.
В дальнейшем, если дано изображение какого-либо многогранника, иногда будем говорить, что дан многогранник.
Аксиомы стереометрии
В первом параграфе уже отмечалось, что в стереометрии основными фигурами являются точки, прямые и плоскости. Как и в планиметрии, точки обозначаются заглавными латинскими буквами А, В, С,…, а прямые — строчными латинскими буквами а, в, с,…, или двумя заглавными латинскими буквами АВ, СЕ и т. д., плоскости — строчными буквами греческого алфавита и т. д.
Если точка А лежит на прямой а (в плоскости ), то говорят, что прямая а (плоскость ) проходит через точку А, и пишут:
Если точка В не принадлежит прямой а (плоскости ), то говорят, что прямая а (плоскость ) не проходит через точку В, и записывают:
Например, на рисунке 18, а, б изображены точки А и О, лежащие на прямой , и точки В и М, которые не лежат в плоскости , где — плоскость, в которой лежит грань куба (рис. 18, а, б).
Свойства геометрических фигур в пространстве устанавливаются путем логических рассуждений на основе некоторых утверждений (аксиом), которые принимаются без доказательств.
Часть аксиом, используемых в стереометрии, известны уже из курса планиметрии. Здесь сформулируем только три аксиомы о взаимном расположении точек, прямых и плоскостей, которые являются специфически пространственными.
А 1. Через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.
Плоскость, проходящую через точки А, В и С, не лежащие на одной прямой, обозначают ABC или (ABC).
Например, на рисунке 19, а, б изображена треугольная пирамида DABC. Плоскость проходит через точки А, В и С; через точки С, В и D проходит плоскость CBD.
На аксиоме А 1 основано устройство штативов некоторых измерительных приборов. Острия ножек штатива расположены в одной плоскости, поэтому измерительный прибор занимает устойчивое положение.
А 2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
Если каждая точка прямой а лежит в плоскости , то говорят, что прямая а лежит в плоскости или плоскость проходит через прямую а, и пишут
На рисунке 20, а, б — плоскость, проходящая через точки A, D и С. Прямая AD лежит в плоскости , а прямые в плоскости не лежат. Плоскость не проходит через прямую AD.
Если прямая а и плоскость а имеют только одну общую точку О, то говорят, что они пересекаются в точке О, и пишут:
На рисунке 20, а, б изображена прямая которая пересекает плоскость в точке С, а прямая — в точке D
А 3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
Если прямая а — общая прямая плоскости и плоскости , то говорят, что эти плоскости пересекаются по прямой а, и пишут:
Например, на рисунке 21, — плоскость, проходящая через вершины A, D и С четырехугольной пирамиды TABCD. Прямая CD лежит в каждой из плоскостей и TDC (точки С и D лежат в каждой из этих плоскостей, значит, по аксиоме А 2 прямая CD общая для плоскостей и TDC), следовательно, указанные плоскости пересекаются по прямой CD т. е.
Пример №9
— куб. Точки P и T — середины ребер и соответственно. Докажите, что прямая РТ лежит в плоскости
Доказательство:
1)Так как то по аксиоме А 2 точка
2)Поскольку
3) Таким образом, следовательно, (аксиома А 2) (рис. 22, а, б).
Пример №10
Плоскости и пересекаются по прямой а, а прямая Ь, лежащая в плоскости, пересекается с плоскостью . Докажите, что прямые а и b пересекаются.
Доказательство:
Пусть прямая b и плоскость пересекаются в точке X (рис. 24, а, б). Так как прямая b лежит в плоскости , то каждая ее точка, а следовательно, и точка X лежит в этой плоскости. Таким образом, точка X — общая точка плоскостей и . Плоскости и пересекаются по прямой а, поэтому на этой прямой лежат все общие точки плоскостей и (аксиома А 3), а значит, и точка X лежит на прямой а. Таким образом, точка X лежит на каждой прямой а и b, т. е. прямые а и b пересекаются в точке X.
Пример №11
Дан куб Точки Т и О — середины отрезков соответственно. Найдите длину отрезка ТО, если ребро куба а (рис. 24, а).
Решение:
1)Точка Т есть точка пересечения диагоналей грани т. е. середина отрезка . Следовательно, отрезок ТО — средняя линия треугольника (рис. 24, б).
2)В треугольнике длина гипотенузы
3)Отрезок TO — средняя линия треугольника
Следовательно,
Ответ:
Пример №12
Найдите расстояние от вершины В куба до точки пересечения диагоналей грани если ребро куба равно а (рис. 25, а, б).
Решение:
1)Треугольник — равносторонний, так как его стороны — диагонали равных квадратов:
(рис. 25, б).
2)Точка О — середина отрезка (диагонали квадрата точкой пересечения делятся пополам), следовательно, отрезок ВО есть медиана треугольника
3)Так как треугольник равносторонний, то его медиана ВО является и высотой:
4)В треугольнике
Следствия из аксиом
Из курса планиметрии мы уже знаем, что утверждение, справедливость которого обосновывается путем логических рассуждений, называется теоремой, а само обоснование — доказательством. Докажем некоторые следствия из аксиом. Доказать теорему — значит путем рассуждений обосновать, что она следует из некоторых аксиом или ранее доказанных теорем. Очевидность не является критерием справедливости теорем, поэтому в процессе доказательств, обращаясь к рисункам, необходимо одновременно следить за правильностью рассуждений, чтобы быть уверенными в справедливости сделанных выводов.
Теорема 1. Через прямую и не лежащую на ней точку проходит единственная плоскость.
Доказательство:
I.Докажем, что такая плоскость существует.
1)Пусть точка А не лежит на прямой
2)Отметим на прямой b две точки Т и С.
3)Точки А, Т и С не лежат на одной прямой, следовательно, по аксиоме А 1 через эти точки проходит некоторая плоскость (рис. 37).
4)Точки Т и С прямой b лежат в плоскости а, значит, по аксиоме А 2 плоскость а проходит через точку А и прямую (см. рис. 37).
II.Докажем единственность этой плоскости.
1) Допустим, что существует еще одна плоскость проходящая через точку А и прямую b
2) Так как плоскость проходит через прямую b, а точки Т и С лежат на прямой b, то плоскость проходит через точки А, Т и С, не лежащие на одной прямой.
3) По аксиоме А 1 существует только одна плоскость, проходящая через точки А, Т и С, не лежащие на одной прямой. Следовательно, плоскость совпадает с плоскостью а.
Теорема доказана.
Например, пусть — параллелепипед (рис. 38, а, б). Через прямую AD и точку В проходит единственная плоскость которая совпадает с плоскостью ABD, проходящей через точки А, В и D. Действительно, точки А и D лежат в плоскости ABD, следовательно, прямая AD лежит в этой плоскости (аксиома А 2). Плоскость ABD проходит через точку В и прямую AD, следовательно, она совпадает с плоскостью , так как по теореме 1 такая плоскость единственная.
Через прямую AD и точку Б, проходит единственная плоскость . Плоскости и пересекаются по прямой AD (см. рис. 38, а, б).
Теорема 2. Через две пересекающиеся прямые проходит единственная плоскость.
Доказательство:
I. Докажем, существование плоскости.
1)Пусть прямые а и b пересекаются в точке — некоторая точка на прямой b, не совпадающая с точкой О (рис. 39).
2)Тогда по теореме 1 существует плоскость а, проходящая через точку Е и прямую
3) Точки О и Е прямой b лежат в плоскости а, следовательно, по аксиоме А 2 плоскость а проходит через прямую b. Таким образом, существует плоскость а, проходящая через прямые а и b.
II. Докажем, что такая плоскость единственная.
1)Допустим, что существует еще одна плоскость проходящая через прямые а и b.
2)Точка Е лежит на прямой b, следовательно, плоскость проходит через точку Е и прямую а. По теореме 1 через точку Е и прямую а проходит единственная плоскость, значит, плоскость совпадает с плоскостью
Теорема доказана.
Например, пусть — параллелепипед (рис. 40, а, б). Через прямые AD и DC проходит единственная плоскость , через прямые проходит единственная плоскость
Плоскости пересекаются по прямой
В заключение подчеркнем, что в силу теорем 1 и 2 возможны еще два способа задания плоскости: а) существует единственная плоскость, проходящая через прямую и не принадлежащую ей точку; б) существует единственная плоскость, проходящая через две пересекающиеся прямые.
Построение сечений многогранников плоскостью
Для решения задач по стереометрии часто необходимо умение строить на рисунке сечения многогранников (например, пирамиды, параллелепипеда, куба, призмы) некоторой плоскостью. Поясним, что понимается под сечением.
Секущей плоскостью пирамиды (призмы, параллелепипеда, куба) называется такая плоскость, по обе стороны от которой есть точки данной пирамиды (призмы, параллелепипеда, куба).
Сечением пирамиды (призмы, параллелепипеда, куба) называется фигура, состоящая из всех точек, которые являются общими для пирамиды (призмы, параллелепипеда, куба) и секущей плоскости.
Секущая плоскость пересекает грани пирамиды (параллелепипеда, призмы, куба) по отрезкам, поэтому сечение есть многоугольник, лежащий в секущей плоскости, сторонами которого являются указанные отрезки.
Например, на рисунке 47, а, б изображен параллелепипед и секущая плоскость Сечением параллелепипеда этой плоскостью служит четырехугольник ABCD. Плоскость в которой лежит одна из граней параллелепипеда, секущей плоскостью для него не является.
Для построения сечения пирамиды (призмы, параллелепипеда, куба), а точнее, его изображения можно построить точки пересечения секущей плоскости с ребрами пирамиды (призмы, параллелепипеда, куба) и соединить каждые две из них, лежащие в одной грани.
Заметим, что последовательность построения вершин и сторон сечения не существенна, но выполнять построение необходимо с учетом аксиом и теорем стереометрии, а также правил изображения фигур. Подчеркнем, что в основе построения сечений многогранников лежит две задачи на построение: а) линии пересечения двух плоскостей; б) точки пересечения прямой и плоскости.
а) Для построения прямой, по которой пересекаются некоторые две плоскости (например, секущая плоскость и плоскость грани многогранника), нужно построить две их общие точки, тогда прямая, проходящая через эти точки, есть линия пересечения плоскостей .
б) Для построения точки пересечения прямой и плоскости а нужно построить точку пересечения прямой и прямой по которой пересекаются плоскость и любая плоскость, содержащая прямую .
Пример №13
На ребрах AD, DC и СВ треугольной пирамиды DABC даны точки Т, О и Е соответственно. Точка О не является серединой ребра DC (рис. 48, а, б, в). Постройте сечение пирамиды плоскостью TOE.
Решение:
1) Проводим отрезки ТО и ОЕ (см. рис. 48, а). (Отрезки ТО и ОЕ лежат в секущей плоскости и в гранях ACD и CBD соответственно, поэтому являются сторонами искомого сечения.)
2)Находим точку в которой пересекаются прямые (см. рис. 48, б). (Прямые АС и ТО лежат в одной плоскости и не являются параллельными, следовательно, пересекаются в точке )
3)Отметим точку пересечения прямых и (см. рис. 48, в). Значит, эти плоскости пересекаются по прямой Прямые лежат в одной плоскости ABC и не параллельны, следовательно, пересекаются в точке )
4)Проводим отрезок (см. рис. 48, в). (Точка лежит в секущей плоскости TOE и на ребре АВ. Следовательно, плоскость TOE пересекает грани АСВ и ABD по отрезкам соответственно.)
Четырехугольник — искомое сечение.
Пример №14
Точка Т — середина ребра DB тетраэдра DABC (рис. 49, а, б). Постройте сечение тетраэдра плоскостью, проходящей через точки А, С и Т. Вычислите радиус окружности, вписанной в это сечение, если длина ребра данного тетраэдра равна 2 см.
Решение:
I. Построим сечение.
Точки Т и С лежат в каждой из плоскостей АТС и DBC, следовательно, плоскость АТС пересекает плоскость DBC по прямой ТС, а, значит, грань DBC — по отрезку ТС. Аналогично получаем, что секущая плоскость АТС пересекает грань ADB по отрезку AT, а каждую из граней ADC и ABC — по отрезку АС. Таким образом, треугольник АТС — искомое сечение данного тетраэдра DABC (см. рис. 49, а, б).
II. Вычислим, радиус окружности.
1) Так как треугольники AT В и СТВ равны
— общая сторона), то т. е. треугольник АТС равнобедренный (рис. 49, в).
2) В прямоугольном треугольнике СТВ ( см, см, длина катета
3) Пусть точка Е — середина отрезка АС, точка О — центр окружности, вписанной в треугольник АТС, а точка К — точка касания окружности и стороны ТС. В прямоугольном треугольнике так как медиана ТЕ, проведенная к основанию, в равнобедренном треугольнике АТС является и высотой, длина катета
4) Имеем – r, где r — радиус вписанной окружности. Треугольники ТЕС и ТКО подобны следовательно, Отсюда найдем радиус окружности:
Заметим, что радиус r можно найти, воспользовавшись
формулой — площадь и полупериметр треугольника АТС соответственно.
Подробное построение сечений многогранников
А) При изучении стереометрии приходится пространственные фигуры показывать на плоских рисунках. Часто на рисунке нужно показать взаимное расположение двух фигур. Если одна из фигур — многогранник, а вторая — плоскость, то их взаимное расположение характеризует та часть многогранника, которая принадлежит рассматриваемой плоскости, или, иными словами, сечение многогранника плоскостью. Плоскость при этом называют секущей плоскостью.
Секущая плоскость пересекает поверхность многогранника по отрезкам, а сечением многогранника плоскостью является один или несколько многоугольников.
На рисунке 106 изображено сечение пятиугольной призмы, которое является семиугольником. Сечение «рамы» плоскостью на рисунке 107 состоит из двух четырёхугольников.
Для построения сечения многогранника достаточно построить общие точки его граней и секущей плоскости.
Пример №15
Построим сечение треугольной пирамиды плоскостью, проходящей через точки и на рёбрах и
Секущая плоскость имеет с плоскостью две общие точки и поэтому прямая принадлежит как секущей плоскости, так и плоскости . Значит, отрезок — линия пересечения грани с плоскостью
Рассуждая аналогично, получаем, что плоскость пересекает грани и по отрезкам и соответственно.
Треугольник — искомое сечение (рис. 108).
Пример №16
Построим сечение треугольной пирамиды плоскостью проходящей через точки рёбер
Секущая плоскость (рис. 109) имеет с гранью две общие точки и поэтому она пересекает эту грань по отрезку
Поскольку точки и — общие точки секущей плоскости и грани то — линия пересечения этих плоскостей.
Грань имеет с секущей плоскостью общую точку Найдём точку, в которой плоскость пересекает ребро Обратим внимание на то, что точка пересечения прямых и принадлежит плоскости плоскости и плоскости А поскольку точки и — общие точки плоскостей и то — прямая, по которой плоскость пересекает плоскость Точка пересечения прямой с ребром принадлежит плоскости Значит, плоскость пересекает грань по отрезку а грань — по отрезку
Четырёхугольник — искомое сечение пирамиды плоскостью
Прямые и называют следами плоскости на плоскостях и соответственно.
Пример №17
Построим сечение пирамиды плоскостью проходящей через точку на ребре и прямую в плоскости основания
Найдём точку (рис. 110), в которой пересекаются прямые и Эта точка принадлежит и секущей плоскости как точка прямой и плоскости грани как точка прямой Точка также принадлежит этим обеим плоскостям. Поэтому плоскость пересекает плоскость по прямой а грань — по отрезку где — точка пересечения прямых и
Аналогично найдём точки и и отрезок по которому плоскость пересекает грань а затем точки и и отрезки и Четырёхугольник — искомое сечение.
Б) — точки на разных рёбрах четырёхугольной призмы. Найдём сечение призмы плоскостью
Построение искомого сечения зависит от того, на каких рёбрах призмы лежат точки Наиболее просто строить сечение в том случае, когда точки лежат на рёбрах, выходящих из одной вершины. Искомое сечение в этом случае — треугольник
Пример №18
Точки расположены так, как показано на рисунке 111. Построим сечение призмы плоскостью
Вначале построим след секущей плоскости на плоскости нижнего основания. Для этого найдём точки и пересечения прямых и которые лежат в секущей плоскости, с плоскостью — точка пересечения прямых и — прямых и Прямая — общая прямая секущей плоскости и плоскости нижнего основания.
Точка пересечения прямой со следом принадлежит и секущей плоскости, и плоскости грани Учитывая, что этим двум плоскостям принадлежит и точка получаем, что прямая — след секущей плоскости на плоскости Значит, плоскость пересекает грань по отрезку а грань — по отрезку
Искомым сечением является четырёхугольник
Видим, что новым элементом в этом решении в сравнении с примером 2 является построение следа секущей плоскости на плоскости основания.
Пример №19
Точки расположены так, как показано на рисунке 112. Построим сечение призмы плоскостью
Вначале построим след секущей плоскости на плоскости нижнего основания. Для этого найдём точки и пересечения прямых и которые лежат в секущей плоскости, с плоскостью — точка пересечения прямых и — прямых и Прямая — общая прямая секущей плоскости и плоскости нижнего основания.
Точка пересечения прямой со следом принадлежит и секущей плоскости, и плоскости грани Учитывая, что этим двум плоскостям принадлежит и точка получаем, что прямая — след секущей плоскости на плоскости Значит, плоскость пересекает грань по отрезку
Найдём точку пересечения прямой и плоскости грани Прямая лежит с прямой в плоскости Точка пересечения этих прямых как точка прямой лежит в секущей плоскости, а как точка прямой — в плоскости Учитывая, что этим двум плоскостям принадлежит точка получаем, что прямая — след секущей плоскости на плоскости Значит, плоскость пересекает грань по отрезку
Искомым сечением является пятиугольник ABCED.
Пример №20
Точки расположены так, как показано на рисунке 113. Построим сечение призмы плоскостью
След секущей плоскости на плоскости основания позволяет последовательно найти точки и его пересечения с гранями и след секущей плоскости — на плоскости Значит, плоскость пересекает грань по отрезку Пусть точка — точка пересечения прямой и плоскости грани Тогда — точка пересечения ребра с секущей плоскостью и след секущей плоскости на грани Поэтому плоскость пересекает грань по отрезку Искомым сечением является шестиугольник
Пример №21
Постройте сечение куба плоскостью (рис. 114). Найдите ребро куба, учитывая, что площадь этого сечения равна
Решение:
Плоскость пересекает грани по отрезкам соответственно. Следовательно, треугольник — искомое сечение.
— правильный, значит,
или
Следовательно, — равнобедренный прямоугольный с прямым углом следовательно,
или
Ответ:
Пример №22
Постройте сечение правильной пирамиды плоскостью, проходящей через боковое ребро и противоположную ему вершину основания. Найдите площадь этого сечения, учитывая, что все рёбра этой пирамиды равны
Решение:
Пусть — правильная пирамида;
— вершины пирамиды, следовательно, — искомое сечение.
так как — квадрат.
В Следовательно,
Ответ:
«Знание только тогда является знанием, когда оно приобретено усилиями своей мысли, а не памятью» (Л. Н. Толстой).
Многограники в геометрии
Геометрия — это настоящая естественная наука, только более простая, а значит, и более совершенная, чем любая другая.
Огюст Конт, французский философ
Среди твердых тел естественного и искусственного происхождения особенно важную роль играют многогранники. Подобно многоугольникам на плоскости, они наглядно демонстрируют, как объединение известных свойств простейших геометрических фигур рождает новые, до сих пор неизвестные факты. Недаром, говоря о всесторонне одаренном человеке, мы часто отмечаем многогранность его таланта.
Для успешного изучения многогранников необходимо восстановить в памяти свойства многоугольников, а также основные теоремы о расположении прямых и плоскостей в пространстве. Именно на этом теоретическом материале базируются основные теоремы данной главы.
Свойства многогранников находят широкое практическое применение в искусстве и строительстве, кристаллографии и компьютерной графике. Выдающийся архитектор XX столетия Ле Корбюзье справедливо отмечал, что шедевры старинной архитектуры появились только благодаря законам геометрии. И значительную часть этих бесценных для практической деятельности человека законов таят в себе именно многогранники.
Двугранные и многогранные углы. многогранник
Понятие двугранного угла рассматривалось нами в курсе геометрии 10 класса. Вспомним, как вводилось это понятие.
Двугранный угол
В планиметрии углом называется фигура, состоящая из двух лучей с общим началом. По аналогии в пространстве можно рассматривать две полуплоскости с общей граничной прямой. Если мы перегнем по прямой лист бумаги, то получим модель такой пространственной фигуры.
Определение:
Двугранным углом называется фигура, состоящая из двух полуплоскостей (граней двугранного угла) с общей граничной прямой (ребром двугранного угла).
На рисунке 73 изображен двугранный угол с гранями и ребром с. Наглядное представление о двугранных углах дают полураскрытая книга или папка, двускатная крыша здания, две соседние стены комнаты и т. д. (рис. 74).
Измерение двугранных углов сводится к измерению углов между лучами, выполнить которое можно с помощью дополнительных построений следующим образом.
Через точку О на ребре данного двугранного угла (рис. 75) проведем плоскость, перпендикулярную ребру угла. Она пересекает грани угла по лучам OA и ОВ, перпендикулярным ребру данного угла. Угол АОВ, образованный этими лучами, называют линейным углом данного двугранного угла. Часто при построении линейного угла двугранного угла плоскость, перпендикулярную ребру, не строят, ограничиваясь проведением
в гранях данного угла лучей с общим началом, перпендикулярных ребру угла.
Очевидно, что двугранный угол имеет множество линейных углов. Покажем, что все линейные углы двугранного угла равны.
Действительно, пусть — линейные углы двугранного угла (рис. 76). Параллельный перенос, который переводит точку в точку , переводит угол в угол . Так как при параллельном переносе величины углов сохраняются, то . Это позволяет дать следующее определение.
Определение:
Градусной мерой двугранного угла называется градусная мера его линейного угла.
Из доказанного следует, что градусная мера двугранного угла не зависит от выбора линейного угла.
Согласно определению угла в планиметрии, градусная мера двугранного угла лежит в пределах от 0° до 180° (случаи, когда грани двугранного угла совпадают или принадлежат одной плоскости, как правило, не рассматриваются). Как и среди углов на плоскости, среди двугранных углов различают острые (меньше 90°), прямые (те, что равны 90°) и тупые (больше 90° и меньше 180°).
Итак, для обоснования градусной меры двугранного угла необходимо построить его линейный угол, то есть указать на гранях данного двугранного угла два луча с общим началом, перпендикулярных ребру угла.
Один из способов построения таких лучей описан в решении следующей задачи.
Пример:
На одной из граней двугранного угла, равного 45°, лежит точка, удаленная на 8 см от ребра угла. Найдите расстояние от этой точки до другой грани угла.
Решение:
Пусть точка А принадлежит грани а данного двугранного угла (рис. 77). Проведем — расстояние от точки А до грани . Проведем — расстояние от точки А до ребра с; по условию АС = 8 см. Отрезок ВС — проекция наклонной АС на плоскость . По теореме о трех перпендикулярах . Значит, угол АСВ — линейный угол двугранного угла; по условию . Из треугольника ABC
Ответ: см.
Говорят, что точка М лежит внутри двугранного угла, если существует линейный угол данного двугранного угла, во внутренней области которого лежит точка М. Так, на рисунке 77 во внутренней области данного двугранного угла лежит любая внутренняя точка отрезка АВ. Множество всех точек, лежащих внутри двугранного угла, называется внутренней областью двугранного угла.
Трехгранный и многогранный углы
Рассмотрим лучи с общим началом Р, не лежащие в одной плоскости (рис. 78). Каждая пара этих лучей определяет плоский угол с вершиной Р, а все они вместе — пространственную фигуру, которая называется трехгранным углом.
Определение:
Трехгранным углом называется фигура, состоящая из трех плоских углов с общей вершиной и попарно общими сторонами, не лежащими в одной плоскости.
На рисунке 78 трехгранный угол с вершиной Р образован плоскими углами (ab), (bс) и (ас). Эти плоские углы называются гранями трехгранного угла, а их стороны — ребрами трехгранного угла. Каждые две грани трехгранного угла определяют полуплоскости, в которых они лежат, причем эти полуплоскости ограничены общей прямой — ребром трехгранного угла. Двугранные углы, образованные такими полуплоскостями, называются двугранными углами трехгранного угла.
Пример: (неравенство треугольника для трехгранного угла)
Любой плоский угол трехгранного угла меньше суммы двух других плоских углов. Докажите.
Решение:
Пусть РА, РВ и PC — ребра трехгранного угла с вершиной Р, а угол АРС — наибольший из плоских углов данного угла (рис. 79). В грани АРС проведем луч РК так, чтобы , и отложим на этом луче отрезок PD, равный РВ. Тогда по двум сторонам и углу между ними, откуда следует, что АВ = AD.
Пусть лучи AD и PC пересекаются в точке Е. Тогда из треугольника ABE по неравенству треугольника АЕ < АВ + BE, или AD + DE
Так как AB=AD, имеем DE
Из теоремы косинусов для этих треугольников следует, что , откуда . Тогда . Но , , поэтому , то есть , что и требовалось доказать.
Аналогично трехгранному углу определяют четырехгранный, пятигранный и вообще -гранный угол при 3. В школьном курсе мы будем рассматривать только выпуклые многогранные углы — углы, лежащие по одну сторону от плоскости любой своей грани или в самой этой плоскости. Например, на рисунке 80 изображен выпуклый пятигранный угол с вершиной Р.
Пример: (о сумме плоских углов выпуклого многогранного угла)
Сумма плоских углов выпуклого многогранного угла меньше 360°. Докажите.
Решение:
Пусть некоторая плоскость пересекает ребра многогранного угла с вершиной Р в точках . Рассмотрим п трехгранных углов с вершинами . Для каждого из этих углов, вследствие неравенства треугольника для трехгранного угла, имеем:
Заметим, что сумма левых частей данных неравенств является суммой углов выпуклого угольника , то есть равна 180° . Сумма правых частей является суммой углов при основаниях треугольников , то есть равна 180°-S, где S — сумма углов этих треугольников при вершине Р, которая и является суммой плоских углов данного многогранного угла. Итак, сложив полученные неравенства, имеем , откуда S<360°.
Многогранник и его виды
Среди пространственных фигур, изучаемых в курсе стереометрии, особое место занимают геометрические тела, или просто тела. Наглядно геометрическое тело можно представить как конечную часть пространства, занятую физическим телом и ограниченную поверхностью.
Поверхность многих предметов, окружающих нас в повседневной жизни, состоит из плоских многоугольников: например, спичечный коробок, скворечник и т. д. (рис. 81). Такие предметы дают представление о многогранниках.
Определение:
Многогранником называется тело, поверхность которого состоит из конечного числа плоских многоугольников.
Плоские многоугольники, из которых состоит поверхность многогранника, называются гранями многогранника. Стороны и вершины этих многоугольников называются соответственно ребрами и вершинами многогранника. Каждое ребро многогранника принадлежит ровно двум его граням. При этом никакие две соседние грани (то есть грани, имеющие общее ребро) не лежат в одной плоскости. Например, многогранник на рисунке 82, а имеет восемь граней, каждая из которых является треугольником, 12 ребер и 6 вершин. Грани многогранника, лежащие в параллельных плоскостях, называются параллельными гранями.
Так же как и многоугольники, многогранники делятся на выпуклые и невыпуклые.
Определение:
Выпуклым многогранником называется многогранник, все точки которого лежат по одну сторону от плоскости каждой его грани или в самой этой плоскости.
В противном случае многогранник называется невыпуклым.
Так, многогранник на рисунке 82, а является выпуклым, а многогранник на рисунке 82, б — невыпуклым (объясните почему). Примерами выпуклых многогранников являются уже известные вам призма, параллелепипед, тетраэдр. В дальнейшем мы будем изучать свойства этих многогранников подробнее.
Двугранный угол, образованный полуплоскостями, в которых лежат соседние грани данного выпуклого многогранника, называется двугранным углом выпуклого многогранника.
Заметим, что данный многогранник лежит во внутренней области этого двугранного угла.
Бели поверхность модели многогранника, изготовленной из плотной бумаги, разрезать по некоторым ребрам и развернуть ее на плоскости, получим многоугольник, который называется разверткой многогранника (или разверткой поверхности многогранника).
На рисунке 83 даны развертки некоторых многогранников: а — правильного тетраэдра, б — четырехугольной пирамиды, в, г — куба.
Площадью полной поверхности (или просто площадью поверхности) многогранника называется сумма площадей всех его граней. Очевидно, что площадь поверхности многогранника равна площади его развертки.
Призма
Рассмотрим два плоских многоугольника, не лежащих в одной плоскости и совмещаемых параллельным переносом (рис. 86). Такой перенос устанавливает соответствие между точками этих многоугольников. Все отрезки, соединяющие соответствующие точки данных плоских многоугольников, образуют многогранник.
Призма и ее элементы
Определение:
Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников.
Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие вершины оснований, — боковыми ребрами призмы. Все грани призмы, которые не являются основаниями, называются боковыми гранями призмы. Призма на рисунке 86 имеет основания , боковые грани и боковые ребра . Основаниями этой призмы являются плоские -угольники, поэтому ее называют -угольной призмой и обозначают . Заметим, что в школьном курсе мы будем рассматривать только призмы, основаниями которых являются выпуклые многоугольники; такие призмы являются выпуклыми многогранниками.
Рассмотрим некоторые свойства призмы.
Так как параллельный перенос является движением и переводит плоскость в параллельную плоскость (или в себя), то основания призмы параллельны и равны.
Кроме того, из определения параллельного переноса следует, что боковые ребра призмы параллельны и равны, а боковые грани призмы — параллелограммы.
Изображение призмы строят по правилам параллельного проектирования. Построение обычно начинают с одного из оснований. Затем из вершин основания проводят параллельные и равные отрезки — боковые ребра призмы. Последовательно соединив концы боковых ребер, получают другое основание призмы. Невидимые ребра изображают штриховыми линиями.
Определение:
Высотой призмы называется перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания. Диагональю призмы называется отрезок, соединяющий две вершины, не принадлежащие одной грани.
Определение:
Прямой призмой называется призма, боковые ребра которой перпендикулярны плоскостям оснований.
Если призма не является прямой, то она называется наклонной призмой.
На рисунке 87, а изображена прямая четырехугольная призма, а на рисунке 87, б — наклонная треугольная призма.
Очевидно, что боковые ребра прямой призмы являются ее высотами, а боковые грани прямой призмы — прямоугольники.
Определение:
Правильной призмой называется прямая призма, основания которой -правильные многоугольники.
На рисунке 88 изображена правильная шестиугольная призма. Все боковые грани правильной призмы — равные прямоугольники.
Боковая и полная поверхности призмы. Решение стереометрических задач на вычисление
Площадью полной поверхности призмы называется сумма площадей всех ее граней, а площадью боковой поверхности — сумма площадей ее боковых граней.
Площадь полной поверхности обычно обозначается , а площадь боковой поверхности — . Очевидно, что для любой призмы , где — площадь основания призмы.
Теорема (формула площади боковой поверхности прямой призмы) Площадь боковой поверхности прямой призмы равна произведению периметра ее основания на высоту:
Доказательство:
Боковые грани прямой призмы — прямоугольники, одна из сторон которых равна соответствующей стороне основания призмы, а соседняя сторона — высоте призмы. Площадь боковой поверхности призмы равна сумме площадей этих прямоугольников. Таким образом, если — стороны основания призмы, то
Теорема доказана.
Формула площади боковой поверхности наклонной призмы будет доказана в § 10.
Пример:
Диагональ правильной четырехугольной призмы равна d и образует с плоскостью основания угол 60°. Найдите площадь боковой поверхности призмы.
Решение:
1. Пусть — данная правильная четырехугольная призма, =d — ее диагональ (рис. 89). Так как правильная призма является прямой, то . Тогда отрезок BD — проекция диагонали на плоскость основания ABC. Значит, — угол наклона диагонали призмы к плоскости основания; по условию задачи .
Найдем площадь боковой поверхности призмы.
2. — боковое ребро призмы. Так как данная четырехугольная призма является правильной, то ее основание — квадрат ABCD; следовательно, . Таким образом, .
3.Из треугольника :
4.Так как основание призмы — квадрат ABCD, то АВ = , .
5.
Ответ:
Опишем на примере данной задачи общий подход к решению стереометрических задач на вычисление. Выделим четыре основных этапа решения.
1 этап. Построение рисунка и обоснование расстояний и углов из условия задачи.
На этом этапе необходимо на основании условия задачи определить особенности взаимного расположения элементов рассматриваемой фигуры и отобразить их на рисунке, выбрав наиболее удачный способ расположения фигуры и ее элементов. В тексте решения необходимо установить соответствие между данными, приведенными в условии задачи, и элементами рисунка.
При этом отдельно обосновываются:
- расстояния от точки до прямой и плоскости;
- расстояния между параллельными прямыми и плоскостями, расстояния и углы между скрещивающимися прямыми;
- углы между прямой и плоскостью, между скрещивающимися прямыми;
- двугранные углы, углы между плоскостями.
Так, в решении данной задачи (шаг 1) мы отдельно обосновали угол наклона диагонали к плоскости основания призмы.
2 этап. Выбор формулы и определение последовательности решения.
На этом этапе необходимо выбрать формулу, по которой будет вычисляться искомая величина, и установить, какие вспомогательные величины и в каком порядке необходимо найти, чтобы применить выбранную формулу. Как правило, последовательность определения вспомогательных величин не является произвольной: решение задачи обычно начинают с рассмотрения тех плоских фигур, у которых по условию задачи известно больше элементов.
Например, в данной задаче (шаг 2), чтобы применить формулу необходимо найти боковое ребро и сторону основания призмы.
3 этап. Вычисление вспомогательных величин.
В соответствии с намеченным планом решения необходимо найти вспомогательные величины, определенные на предыдущем этапе. Как правило, для этого нужно рассмотреть несколько плоских фигур. Так, в данной задаче (шаги 3, 4) мы нашли вспомогательные величины из прямоугольного треугольника и квадрата ABCD.
Заметим, что в некоторых случаях плоские фигуры, элементы которых вычисляются, удобно изображать на отдельных (вынесенных) рисунках.
4 этап. Получение результата.
Найденные величины необходимо подставить в формулу, выбранную на втором этапе, и вычислить искомую величину (или упростить полученное буквенное выражение).
Заметим, что в окончательном ответе желательно избавиться от иррациональностей в знаменателях дробей (что и было сделано на пятом шаге решения данной задачи).
Ясно, что реализация отдельных шагов, предусмотренных планом, не отображается в записи решения: так, выбрать удачное расположение фигуры на рисунке можно мысленно или на черновике, а порядок нахождения вспомогательных величин определяют устно. Но все необходимые обоснования со ссылками на данные, приведенные в условии задачи, аксиомы, определения, теоремы и опорные факты необходимо записать.
Параллелепипед. Куб
Частными случаями призм являются хорошо известные вам параллелепипед и куб. Поэтому если до сих пор они рассматривались только на основании наглядного представления, то теперь мы можем дать строгие определения этих фигур и исследовать их свойства.
Определение:
Параллелепипедом называется призма, основанием которой является параллелограмм.
На рисунке 90, а изображен наклонный параллелепипед, а на рисунке 90, б — прямой параллелепипед (то есть прямая призма, основанием которой является параллелограмм). Две грани параллелепипеда, не имеющие общих вершин, называются противолежащими гранями, а две грани с общими вершинами (а значит, и общим ребром) — соседними гранями.
Обратим внимание на то, что все грани параллелепипеда — параллелограммы, поэтому любую грань параллелепипеда можно считать его основанием (для произвольной призмы это не так).
Теорема (свойства параллелепипеда)
У параллелепипеда:
- противолежащие грани параллельны и равны;
- диагонали пересекаются в одной точке и точкой пересечения делятся пополам.
Доказательство:
Рассмотрим параллелепипед (рис. 91). Так как четырехугольники ABCD и — параллелограммы, то , , откуда, по признаку параллельности плоскостей, плоскости граней параллельны. Кроме того, так как все грани параллелепипеда — параллелограммы, то отрезки параллельны и равны, то есть существует параллельный перенос (на вектор АВ), который переводит грань в грань . Отсюда следует, что указанные грани равны. Параллельность и равенство двух других пар противолежащих граней доказывается аналогично.
Докажем теперь свойство диагоналей параллелепипеда. Для этого рассмотрим четырехугольник . Так как (объясните почему), то этот четырехугольник — параллелограмм. Отсюда следует, что его диагонали , которые в то же время являются диагоналями данного параллелепипеда, точкой пересечения О делятся пополам. Аналогично, рассматривая четырехугольник , можно доказать, что его диагонали (которые также являются диагоналями данного параллелепипеда) делятся точкой пересечения пополам. Но точка О — середина , а значит, и середина Таким образом, диагонали параллелепипеда пересекаются в точке О и делятся ею пополам. И наконец, рассматривая четырехугольник так же можно доказать, что диагональ проходит через точку О и делится ею пополам. Теорема доказана.
Следствие
Точка пересечения диагоналей параллелепипеда является центром его симметрии.
Определение:
Прямоугольным параллелепипедом называется прямой параллелепипед, основанием которого является прямоугольник.
Очевидно, что все грани прямоугольного параллелепипеда — прямоугольники, а все его диагонали равны. Частным случаем прямоугольного параллелепипеда является правильная четырехугольная призма — прямоугольный параллелепипед с основанием-квадратом. Прямоугольные параллелепипеды — наиболее распространенный вид призм: предметы, имеющие форму прямоугольных параллелепипедов, окружают нас практически везде (рис. 92).
Длины трех попарно непараллельных ребер прямоугольного параллелепипеда называются его измерениями и обычно обозначаются . Докажем теорему, позволяющую вычислить длину диагонали прямоугольного параллелепипеда по трем его измерениям.
Теорема (о диагонали прямоугольного параллелепипеда)
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
Доказательство:
Пусть в прямоугольном параллелепипеде (рис. 93) . Рассмотрим диагональ данного параллелепипеда. Из треугольника по теореме Пифагора Из треугольника ABD по теореме Пифагора . Значит, Так как ребра не параллельны, то их длины являются измерениями данного параллелепипеда, то есть
Заметим, что данная теорема представляет собой пространственный аналог теоремы Пифагора (для прямоугольного треугольника), поэтому ее иногда называют пространственной теоремой Пифагора.
Пример:
Площади трех граней прямоугольного параллелепипеда равны 4 м2, 8 м2 и 32 м2. Найдите диагональ параллелепипеда.
Решение:
Пусть — измерения данного параллелепипеда. Исходя из условия задачи имеем систему уравнений:
Перемножив правые и левые части уравнений системы, получим , откуда abc = 32. Из этого равенства и уравнений системы находим а = 4, b = 1, с = 8 . По теореме о диагонали прямоугольного параллелепипеда , откуда d = 9 м.
Ответ: 9 м.
Определение:
Кубом называется прямоугольный параллелепипед, у которого все ребра равны.
На рисунке 94 изображен куб Из определения куба следует, что все грани куба — равные квадраты.
Связь между изученными видами призм иллюстрирует схема на с. 100.
Правила определения понятий
Формулирование верных с точки зрения логики определений основных понятий всегда является одной из наиболее сложных проблем любой науки. Не является исключением и геометрия: оказывается, что такие общеизвестные и легкие для распознавания фигуры, как призма, пирамида и т. п., таят логические ловушки, в которые попадали даже известные ученые, пытаясь дать строгие определения этих фигур.
Особенно много логических ошибок связано с определением призмы. Например, в одном из учебников геометрии было приведено такое определение: «Призмой называется многогранник, две грани которого — равные многоугольники с соответственно параллельными сторонами, а остальные грани — параллелограммы». Казалось бы, все верно — любая призма действительно удовлетворяет такому определению. Но посмотрим на рисунок 95: фигура, изображенная на нем, представляет собой объединение двух треугольных призм — прямой (она находится внизу) и наклонной, в основаниях которых лежат равные треугольники. Конечно же, такая фигура не является призмой, но она полностью удовлетворяет приведенному выше определению (убедитесь в этом самостоятельно).
В чем же кроется причина ошибки? В любом определении мы имеем дело с двумя понятиями — определяемым (в данном случае это понятие «призма») и тем, с помощью которого мы описываем определяемое понятие (в данном случае это понятие многогранник, две грани которого — равные многоугольники с соответственно параллельными сторонами, а остальные грани — параллелограммы»). Одно из основных требований к логически верным определениям заключается в том, чтобы оба эти понятия были тождественными, то есть описывали одно и то же множество предметов. А в нашем случае множество многогранников, грани которых имеют описанные свойства, шире множества призм, то есть кроме собственно призм включает в себя и другие многогранники (в частности, фигуру на рис. 95).
Чтобы помочь вам избежать подобных ошибок, определим три основных правила формулирования определения понятий.
1)Определение должно быть соразмерным, то есть множество предметов, которые представляют определяемое понятие, должно совпадать с множеством предметов, с помощью которых мы его описываем. Если этого правила не придерживаться, возникают типичные ошибки:
•слишком широкое определение (описание включает кроме предметов, являющихся представителями определяемого понятия, и другие предметы): например, определение «Лампа — это источник света» является неверным, так как кроме ламп существуют и другие источники света;
•слишком узкое определение (определяемое понятие в полной мере не соответствует приведенному описанию): например, определение «Дробь называется неправильной, если ее числитель больше знаменателя» не учитывает неправильную дробь, равную единице;
•определение в одном смысле широкое, а в другом — узкое: например, определение «Бочка — это емкость для хранения жидкостей», с одной стороны, широкое (емкостями для хранения жидкостей являются также ведра, бутылки и др.), а с другой — узкое (в бочке можно хранить не только жидкости).
2)Определение не должно содержать «логического круга», то есть определяемое понятие и понятие, с помощью которого его определяют, нельзя описывать друг через друга. Например, если мы определяем вращение как движение вокруг оси, то не можем определять ось как прямую, вокруг которой осуществляется вращение. «Логический круг» возникает и тогда, когда оба понятия в определении выражены практически одними и теми же словами. Например: «Фильтр — это прибор, с помощью которого осуществляется фильтрация» или «Гомотетией называется преобразование, которое переводит данную фигуру в гомотетичную» (такие логические ошибки называют тавтологиями).
3)Определение должно быть четким и понятным, то есть оно не должно содержать не свойственных науке двузначностей, метафор, сравнений, как, например, «Повторение — мать учения», «Математика — царица наук» и т. д.
Придерживаясь этих правил, вы сможете четко выражать свои мысли и объяснять собеседнику, что именно вы имеете в виду,— а это умение является залогом успеха не только в геометрии, но и в любой области вашей будущей деятельности.
Пирамида
Пирамида — греческое слово. По одной версии, происходит от египетского «пер о» — большой дом (так египтяне называли усыпальницы фараонов), по другой — от греческого «пор» — огонь (пирамиды традиционно связывали со стихией огня).
Пирамида и ее элементы
Рассмотрим изображенный на рисунке 98 многоугольник и точку Р, не лежащую в плоскости этого многоугольника. Отрезки, соединяющие точку Р с точками плоского многоугольника , образуют многогранник, который называется пирамидой.
Определение:
Пирамидой называется многогранник, который состоит из плоского многоугольника (основания пирамиды), точки, не лежащей в плоскости основания (вершины пирамиды), и всех отрезков, соединяющих вершину с точками основания.
На рисунке 98 изображена пирамида с вершиной Р, основание которой — плоский n-угольник . Такую пирамиду называют n-угольной пирамидой и обозначают .
Отрезки , соединяющие вершину пирамиды с вершинами ее основания, называют боковыми ребрами пирамиды, а треугольники , вершинами которых является вершина пирамиды и две соседние вершины основания, — боковыми гранями пирамиды. Углы называют плоскими углами при вершине пирамиды. Двугранный угол, образованный полуплоскостями, одна из которых содержит боковую грань пирамиды, а другая — основание пирамиды, называют двугранным углом при основании пирамиды. Например, на рисунке 98 двугранный угол при ребре основания пирамиды определяется так: за ребро двугранного угла принимается прямая , а за грани — полуплоскости, содержащие грани .
Треугольную пирамиду иначе называют тетраэдром (рис. 99). Так как все грани тетраэдра — треугольники, любую его грань можно считать основанием (для произвольной пирамиды это не так).
В школьном курсе мы будем рассматривать только те пирамиды, основания которых — выпуклые многоугольники. Такие пирамиды являются выпуклыми многогранниками.
Определение:
Высотой пирамиды называется перпендикуляр, проведенный из вершины пирамиды к плоскости ее основания.
На рисунке 99 отрезок РО — высота треугольной пирамиды РАВС.
Изображение пирамиды строят по правилам параллельного проектирования. Построение обычно начинают с основания. Затем обозначают вершину пирамиды и соединяют ее с вершинами основания. Для некоторых видов пирамид, которые будут рассматриваться дальше, целесообразно после построения основания пирамиды сразу же построить ее высоту.
Площадью боковой поверхности пирамиды называется сумма площадей ее боковых граней, а площадью полной поверхности — сумма площадей основания и боковой поверхности:
Правильная пирамида
Определение:
Правильной пирамидой называется пирамида, основанием которой является правильный многоугольник, а основание высоты пирамиды совпадает с центром этого многоугольника.
На рисунке 100 изображена правильная четырехугольная пирамида PABCD. Ее основанием служит квадрат ABCD, а основание высоты РО — точка О — является точкой пересечения диагоналей (центром) этого квадрата. Обоснуем на примере данной пирамиды некоторые свойства правильных пирамид (для произвольной пирамиды доказательство аналогично). Сначала докажем, что прямоугольные треугольники РАО, РВО, РСО и PDO равны. Действительно, так как точка О — центр окружности, описанной около основания пирамиды, то OA = OB = OC = OD . Тогда как прямоугольные по двум катетам. Из равенства рассматриваемых треугольников следует, что все боковые ребра правильной пирамиды равны, равнонаклонены к плоскости основания и образуют равные углы с высотой пирамиды, а все боковые грани являются равными равнобедренными треугольниками.
Определение:
Апофемой называется высота боковой грани правильной пирамиды, проведенная из ее вершины.
На рисунке 100 отрезок РМ — апофема правильной пирамиды PABCD. Так как все боковые грани правильной пирамиды равны, то и все апофемы правильной пирамиды равны. А из этого, в частности, следует, что все двугранные углы при основании правильной пирамиды равны (обоснуйте это самостоятельно).
Теорема (формула площади боковой поверхности правильной пирамиды)
Площадь боковой поверхности правильной пирамиды равна половине произведения периметра ее основания на апофему:
Доказательство:
Пусть сторона основания правильной n-угольной пирамиды равна а, а апофема — I. Тогда площадь одной боковой грани пирамиды равна —. Боковая поверхность пирамиды состоит из n таких граней. Следовательно,
Теорема доказана.
Пример:
В правильной треугольной пирамиде двугранный угол при основании равен а. Найдите площадь боковой поверхности пирамиды, если ее высота равна Н.
Решение:
1. Пусть дана правильная треугольная пирамида РАВС (рис. 101), , РО — высота пирамиды; по условию задачи РО = Н. Проведем , РМ — апофема правильной пирамиды РАВС. Отрезок ОМ — проекция наклонной РМ на плоскость ABC. Тогда по теореме о трех перпендикулярах . Значит, — линейный угол двугранного угла при ребре основания АВ; по условию задачи . Так как треугольник ABC равносторонний, точка О — центр треугольника, принадлежащий медиане, биссектрисе и высоте СМ.
Найдем площадь боковой поверхности пирамиды.
2.
3. Из треугольника РМО
4. Отрезок ОМ — радиус окружности, вписанной в треугольник ABC. Тогда ОМ = , откуда АВ = , АВ = .
5.
Ответ:
Заметим, что при решении многих задач, связанных с правильными пирамидами, отдельно рассматривают прямоугольные треугольники РАО и РМО (рис. 101) В частности, в треугольнике РАО РО — высота пирамиды, РА — боковое ребро, АО — радиус окружности, описанной около основания пирамиды; в треугольнике РМО РО — высота пирамиды, РМ — апофема, МО — радиус окружности, вписанной в основание пирамиды.
Нахождение расстояния от точки до плоскости боковой грани пирамиды
В некоторых задачах, связанных с пирамидами, необходимо найти расстояние от данной точки пирамиды до боковой грани, не содержащей данную точку. Пусть, например, в правильной треугольной пирамиде РАВС (рис. 102) нужно построить расстояние от основания высоты РО — точки О — до боковой грани РВС. Ясно, что можно было бы опустить из точки О перпендикуляр ON к плоскости РВС. Но такое построение не позволяет сразу определить особенности расположения точки N в треугольнике РВС, которые могут быть использованы в процессе дальнейшего решения задачи. Между тем, оказывается, что точка N принадлежит апофеме РМ данной пирамиды.
Для того чтобы получить этот факт в процессе нахождения расстояния от точки О до плоскости РВС, можно рассуждать следующим образом.
- Пусть , РМ — апофема данной правильной пирамиды. Так как , а отрезок ОМ — проекция наклонной РМ на плоскость ABC, то по теореме о трех перпендикулярах .
- Так как прямая ВС перпендикулярна двум прямым плоскости POM , то по признаку перпендикулярности прямой и плоскости .
- Так как плоскость РВС содержит прямую ВС, перпендикулярную плоскости РОМ, то по признаку перпендикулярности плоскостей .
- Проведем в плоскости РОМ перпендикуляр ON к прямой РМ. Тогда по свойству двух перпендикулярных плоскостей. Значит, отрезок ON — расстояние от точки О до плоскости РВС.
Таким образом, мы построили отрезок ON не как перпендикуляр к плоскости боковой грани пирамиды, а как перпендикуляр к апофеме, и доказали, что он в то же время является перпендикуляром к плоскости РВС.
Пример:
Высота правильной четырехугольной пирамиды образует с плоскостью боковой грани угол . Расстояние от середины высоты пирамиды до боковой грани равно . Найдите площадь полной поверхности пирамиды.
Решение:
1. Пусть дана правильная четырехугольная пирамида PABCD (рис. 103, a), , РО — высота пирамиды. Проведем , РМ — апофема правильной пирамиды PABCD. Отрезок ОМ — проекция наклонной РМ на плоскость ABC. Тогда по теореме о трех перпендикулярах .
2. Так как , то по признаку перпендикулярности прямой и плоскости .
3. Так как плоскость РАВ содержит прямую АВ, перпендикулярную плоскости РОМ, то по признаку перпендикулярности плоскостей .
4. Проведем в плоскости РОМ из точки О и из точки L — середины высоты РО — перпендикуляры: . Тогда по свойству перпендикулярных плоскостей. Следовательно, отрезок LK — расстояние от середины высоты пирамиды до боковой грани; по условию задачи LK = .. Кроме того, отрезок PN — проекция наклонной ОР на плоскость РАВ, то есть — угол между высотой пирамиды и плоскостью боковой грани; по условию задачи .
Найдем площадь полной поверхности пирамиды.
5. где а — сторона основания пирамиды.
6. Из треугольника PKL (рис. 103, б). Так как точка L – середина высоты , то
7. Из треугольника POM
8. Так как точка О — центр квадрата ABCD, , то ОМ — радиус окружности, вписанной в квадрат. Тогда ОМ=, откуда а = 2ОМ , а = .
9.
Ответ:
Некоторые виды пирамид
Решение стереометрических задач, связанных с пирамидами, обычно начинается с построения рисунка. Но во многих случаях для правильного отображения на рисунке взаимного расположения элементов пирамиды (в частности, положения ее высоты) необходимо провести предварительный анализ условия задачи и на основании существующих данных определить свойства пирамиды. Попробуем установить такие свойства для отдельных видов пирамид.
Пирамиды, в которых высота принадлежит плоскостям одной или двух боковых граней
Рассмотрим сначала пирамиду, в которой две боковые грани перпендикулярны плоскости основания. По теореме о двух плоскостях, перпендикулярных третьей, прямая пересечения плоскостей, содержащих данные боковые грани, перпендикулярна плоскости основания. Следовательно, если две боковые грани пирамиды перпендикулярны плоскости основания, то прямая их пересечения содержит высоту пирамиды. Например, на рисунке 106, а соседние грани РАВ и РАС пирамиды РАВС перпендикулярны плоскости основания ABC, а высотой пирамиды является их общее ребро РА. На рисунке 106, б изображен более сложный случай: грани РАВ и PCD, которые не являются соседними, перпендикулярны плоскости основания пирамиды, а высота пирамиды РО лежит на прямой пересечения плоскостей РАВ и PCD вне данной пирамиды (объясните, почему эти плоскости пересекаются).
Рассмотрим теперь пирамиду РАВС, в которой одна боковая грань РАС перпендикулярна плоскости основания ABC (рис. 107). Нетрудно догадаться, что высота данной пирамиды РО будет принадлежать плоскости грани РАС. Но если провести из вершины пирамиды перпендикуляр РО к плоскости ABC, то обоснование принадлежности точки О прямой АС будет достаточно громоздким. В этом случае стоит прибегнуть к «хитрости» — воспользоваться тем, что перпендикуляр, проведенный в одной из двух перпендикулярных плоскостей к прямой пересечения этих плоскостей, является перпендикуляром к другой плоскости. Итак, проведем в плоскости РАС перпендикуляр РО к прямой АС; тогда по упомянутому свойству перпендикулярных плоскостей , РО — высота пирамиды.
Таким образом, если в пирамиде одна боковая грань перпендикулярна плоскости основания, то высота пирамиды принадлежит плоскости этой грани и является перпендикуляром, проведенным из вершины пирамиды к прямой пересечения плоскости данной грани с плоскостью основания. Заметим, что основание высоты РО может лежать как на отрезке АС (рис. 107, а), так и вне его (рис. 107, б).
Пример:
Основанием пирамиды является правильный треугольник. Одна боковая грань пирамиды перпендикулярна основанию, а две другие наклонены к нему под углом . Найдите площадь боковой поверхности пирамиды, если ее высота равна Н.
Решение:
1.Пусть дана треугольная пирамида РАВС, в основании ‘которой лежит правильный треугольник ABC, (рис. 108, а). Проведем в плоскости РАС . Тогда по свойству перпендикулярных плоскостей , РО — высота пирамиды; по условию задачи РО = Н.
2.Проведем из точки О перпендикуляры к сторонам основания: . Отрезки ОМ и ON — проекции наклонных РМ и PN на плоскость ABC. По теореме о трех перпендикулярах . Значит, углы РМО и PNO — линейные углы двугранных углов при ребрах основания АВ и ВС; по условию задачи .
Найдем площадь боковой поверхности пирамиды.
3.
4.Прямоугольные треугольники равны по общему катету РО и противолежащему углу по условию). Отсюда . Тогда (рис. 108, б) как прямоугольные по катету и противолежащему углу , так как треугольник abc равносторонний). Значит, . Тогда как наклонные с равными проекциями, проведенные из точки р к плоскости ABC. Таким образом, по трем сторонам (РВ — общая, РА = PC по доказанному, АВ = СВ как стороны равностороннего треугольника ABC). Следовательно,
5.Из треугольника
6.Из треугольника
Так как О — середина АС, то
7.
Ответ:
Заметим, что геометрическая конфигурация данной задачи позволяет получить еще один полезный факт: если две соседние боковые грани пирамиды наклонены к ее основанию под равными углами, то основание высоты пирамиды лежит на биссектрисе угла между ребрами основания, принадлежащими данным боковым граням. Обоснуйте этот факт самостоятельно.
Другой способ вычислений, который можно использовать для решения этой задачи, будет описан в п. 9.3.
Пирамиды, в которых основанием высоты является центр окружности, описанной около основания пирамиды
В пункте 9.1 мы рассмотрели случаи, когда предварительный анализ условия задачи существенно влияет на построение рисунка и ход решения. Рассмотрим еще один подобный пример.
Пример:
Основанием пирамиды является прямоугольный треугольник с катетами 6 см и 8 см. Все боковые ребра пирамиды равны 13 см. Найдите высоту пирамиды.
Решение:
Решение этой задачи можно начать с построения изображения данной пирамиды РАВС с основанием ABC ( = 90°, АВ = 6 см, ВС = = 8 см), боковыми ребрами РА = РВ = PC = 13 см и высотой . Такое изображение представлено на рисунке 109, а. Но соответствует ли оно условию задачи?
Так как точка Р равноудалена от вершин треугольника ABC, то основание перпендикуляра, проведенного из данной точки к плоскости ABC, является центром окружности, описанной около основания пирамиды. Значит, точка О — центр окружности, описанной около треугольника ABC. Так как в прямоугольном треугольнике центр описанной окружности является серединой гипотенузы, то точка О — середина отрезка АС. Таким образом, условию данной задачи соответствует рисунок 109, б. Завершим теперь решение задачи.
Из треугольника ABC по теореме Пифагора АС = 10 см, значит, АО = ОС = 5 см.
Из треугольника РОА по теореме Пифагора РО=12 см.
Ответ: 12 см.
Только что приведенные рассуждения можно обобщить для произвольной пирамиды.
Пример: (о пирамиде с равными боковыми ребрами)
Если все боковые ребра пирамиды равны, то основанием ее высоты является центр окружности, описанной около основания пирамиды. Докажите.
Решение:
Для данной пирамиды с высотой РО (рис. 110) прямоугольные треугольники равны по гипотенузе и катету. Отсюда , то есть точка О является центром окружности, описанной около многоугольника .
Опираясь на другие признаки равенства прямоугольных треугольников, нетрудно получить еще одно полезное обобщение.
Если в пирамиде выполняется хотя бы одно из условий:
- все боковые ребра равны;
- все боковые ребра образуют равные углы с плоскостью основания пирамиды;
- все боковые ребра образуют равные углы с высотой пирамиды, то основанием высоты пирамиды является центр окружности, описанной около основания пирамиды.
Наличие хотя бы одного из этих условий указывает на то, что около основания данной пирамиды можно описать окружность, центр которой является основанием ее высоты. Более того, имеет место обратное утверждение. Сформулируйте и докажите его самостоятельно.
Заметим также, что при решении многих задач, связанных с пирамидами, имеющими описанные выше свойства, отдельно рассматривают прямоугольный треугольник (рис. 111). В нем РО — высота пирамиды, РА1 — боковое ребро, — радиус окружности, описанной около основания пирамиды.
Пирамиды, в которых основанием высоты является центр окружности, вписанной в основание пирамиды
Рассмотрим еще одну задачу, важным этапом решения которой является определение положения основания высоты пирамиды.
Пример:
Основанием пирамиды является ромб с диагоналями 10 см и 24 см. Все двугранные углы при основании пирамиды равны 60°. Найдите площадь боковой поверхности пирамиды.
Решение:
Пусть дана пирамида PABCD, основание которой — ромб ABCD (BD = 24 см, АС = 10 см), , РО — высота пирамиды (рис. 112, а). Определим положение точки О в ромбе ABCD.
Проведем из точки Р перпендикуляры: . Отрезки OK, OL, ОМ и ON — проекции наклонных РК, PL, РМ и PN на плоскость основания пирамиды. Тогда по теореме о трех перпендикулярах . Таким образом, углы РКО, PLO, РМО и PNO — линейные углы двугранных углов при основании, пирамиды; по условию задачи
Прямоугольные треугольники РКО, PLO, РМО и PNO равны по катету и противолежащему углу. Отсюда следует, что OK = OL = ОМ = ON. Так как по доказанному эти равные отрезки перпендикулярны сторонам ромба ABCD, то точка О равноудалена от прямых, содержащих стороны ромба, значит, является центром окружности, вписанной в ромб, — точкой пересечения его диагоналей (рис. 112, б).
Треугольники АОВ, ВОС, COD и AOD — ортогональные проекции боковых граней пирамиды АРВ, ВРС, CPD и APD на плоскость основания. По теореме о площади ортогональной проекции многоугольника
Складывая эти равенства, получим: или
Отсюда Так как площадь ромба равна половине произведения его диагоналей, то
Итак,
Ответ: 240 см2.
Обобщим только что приведенные рассуждения.
Пример: (о пирамиде с равными двугранными углами при основании)
Если все двугранные углы при основании пирамиды равны, то основанием ее высоты является центр окружности, вписанной в основание пирамиды. Докажите.
Решение:
Для данной пирамиды с высотой РО и высотами боковых граней , проведенными из вершины, прямоугольные треугольники равны по катету и противолежащему углу (рис. 113, а). Отсюда получим: ОН1 = ОН2Но по теореме о трех перпендикулярах Таким образом, точка О является центром окружности, вписанной в многоугольник .
Напомним, что мы рассматриваем только те пирамиды, основаниями которых являются выпуклые многоугольники.
Следует заметить, что если вместо равенства двугранных углов при основании рассматривать равенство углов наклона плоскостей боковых граней пирамиды к плоскости основания, возможна геометрическая ситуация, когда высота пирамиды лежит вне пирамиды. Но рассмотрение таких случаев выходит за пределы нашего курса.
Еще одно важное обобщение решенной задачи касается способа вычисления площади боковой поверхности пирамиды.
Пример: (об ортогональной проекции боковых граней пирамиды на плоскость основания)
Если все двугранные углы при основании пирамиды равны , то Докажите.
Решение:
Для данной пирамиды с высотой РО треугольники являются ортогональными проекциями боковых граней (рис. 113, б). Тогда, по формуле площади ортогональной проекции многоугольника, имеем:
Отсюда
Окончательно получим: или
Эту формулу удобно применять, в частности, для вычисления площади боковой поверхности правильной пирамиды.
Аналогично можно доказать следующее утверждение.
Если основание пирамиды состоит из ортогональных проекций нескольких боковых граней, каждая из которых образует с плоскостью основания двугранный угол , то сумма S площадей этих граней вычисляется по формуле
Докажите это утверждение самостоятельно.
Данным фактом можно воспользоваться в задаче п. 9.1, где
Обратим внимание на то, что при решении многих задач, связанных с пирамидами, имеющими описанное выше свойство, отдельно рассматривают прямоугольный треугольник (рис. 114). В нем РО — высота пирамиды, — высота боковой грани, — радиус окружности, вписанной в основание пирамиды.
Сечения многогранников
С простейшими случаями сечений тетраэдра и куба вы уже встречались в 10 классе. Придадим представлениям о сечениях геометрических тел определенную математическую строгость.
Секущая плоскость и сечение. Сечения призмы
Пусть в пространстве даны тело и некоторая плоскость. Если хотя бы две точки тела лежат по разные стороны от данной плоскости, то говорят, что плоскость пересекает тело. В таком случае она является секущей плоскостью данного тела. Например, на рисунке 119 плоскость а является секущей плоскостью тела F.
Определение:
Сечением геометрического тела плоскостью называется фигура, состоящая из всех общих точек тела и секущей плоскости.
На рисунке 119 закрашенная фигура является сечением тела F плоскостью а.
Если данное тело — многогранник, то секущая плоскость пересекает его грани по отрезкам. Эти отрезки ограничивают плоский многоугольник, являющийся общей частью данного многогранника и секущей плоскости. Коротко говорят, что сечением многогранника является многоугольник (имея в виду соответствующий плоский многоугольник).
Очевидно, что если многогранник имеет л граней, то количество сторон многоугольника, являющегося сечением данного многогранника, не превышает п. Например, сечением параллелепипеда (он имеет 6 граней) может быть только треугольник, четырехугольник, пятиугольник или шестиугольник. На рисунке 120 сечение куба — шестиугольник ABCDEF.
Для построения сечения многогранника достаточно построить все точки пересечения секущей плоскости с ребрами данного многогранника, после чего соединить отрезками каждые две построенные точки, принадлежащие одной грани. Напомним, что если секущая плоскость пересекает плоскости двух параллельных граней, то прямые пересечения параллельны. Так, на рисунке 120 .
Пример:
Постройте сечение куба плоскостью, проходящей через точки М, N и К (рис. 121, а).
Решение:
Так как точки М и N принадлежат грани , а точки N и К — грани , то MN и NK — прямые пересечения секущей плоскости с плоскостями этих граней. Следовательно, отрезки MN и NK — стороны искомого сечения (рис. 121, б).
Так как грани куба параллельны, то секущая плоскость пересекает их по параллельным прямым. Проведем через точку М прямую, параллельную NK.
Пусть G — точка пересечения этой прямой с ребром AD (рис. 121, в). Рассуждая аналогично, проводим через точку К прямую, параллельную MN.
Пусть Т — точка пересечения проведенной прямой с ребром CD. Так как точки G и Т принадлежат одной грани ABCD, то отрезок GT — сторона искомого сечения. Следовательно, искомым сечением является пятиугольник MNKTG (рис. 121, г).
Подробнее о построении сечений речь пойдет в п. 10.3. Заметим, что часто задачи на вычисление площадей сечений объединяют в себе задачи на вычисление и на построение: действительно, при решении таких задач необходимо не только вычислить площадь некоторого сечения, но и описать его построение и обосновать, что полученное сечение является искомым.
Пример:
В правильной четырехугольной призме через диагональ одного основания и противолежащую ему вершину другого основания проведено сечение плоскостью Q. Найдите площадь боковой поверхности призмы, если данное сечение образует с плоскостью основания угол а.
Решение:
Пусть дана правильная четырехугольная призма (рис. 122). Рассмотрим сечение, проходящее через диагональ основания АС и вершину . Так как точки С и принадлежат грани , то — прямая пересечения секущей плоскости с плоскостью этой грани.
Рассуждая аналогично, определяем, что прямые АС и являются прямыми пересечения секущей плоскости с плоскостями ABCD и . Значит, треугольник — искомое сечение.
По условию = Q . Пусть О — точка пересечения АС и BD. Так как и , то по теореме о трех перпендикулярах. Следовательно, угол является углом между плоскостями . По условию . Пусть ребро основания равно а. Так как ABCD — квадрат, . Из прямоугольного треугольника имеем: . Отсюда . По формуле площади ортогональной проекции многоугольника , откуда . Итак,
Окончательно получаем:
Ответ:
Рассмотрим подробнее простейшие сечения призм.
Любое сечение призмы плоскостью, параллельной боковому ребру, является параллелограммом. Так, параллелограммом является диагональное сечение призмы — сечение плоскостью, проходящей через боковое ребро и диагональ основания. На рисунке 123 параллелограмм — диагональное сечение параллелепипеда . Очевидно, что диагональное сечение прямой призмы представляет собой прямоугольник.
При изучении наклонных призм особую роль играет сечение призмы плоскостью, пересекающей все боковые ребра и перпендикулярной этим ребрам (рис. 124, а). Но существуют наклонные призмы, у которых такого сечения может и не быть. Поэтому будем считать перпендикулярным сечением призмы многоугольник, вершинами которого являются точки пересечения плоскости, перпендикулярной боковым ребрам призмы, с прямыми, содержащими эти ребра (рис. 124, а, б).
Теорема (формула площади боковой поверхности наклонной призмы)
Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на боковое ребро:
Доказательство:
Пусть перпендикулярное сечение наклонной n-угольной призмы — га-угольник, стороны которого равны . Примем за основания параллелограммов, являющихся боковыми гранями призмы, боковые ребра длиной I. Очевидно, что соответствующие стороны перпендикулярного сечения будут высотами этих параллелограммов. Следовательно,
Теорема доказана.
Сечения пирамиды. Усеченная пирамида
Рассмотрим простейшие сечения пирамид.
Любое сечение пирамиды плоскостью, проходящей через ее вершину, является треугольником. Так, треугольником является диагональное сечение пирамиды — сечение плоскостью, проходящей через вершину пирамиды и диагональ ее основания. На рисунке 125 треугольник PBD — диагональное сечение пирамиды PABCD. Важным случаем сечения пирамиды является сечение, параллельное плоскости основания.
Теорема (о сечении пирамиды, параллельном плоскости основания)
Плоскость, параллельная плоскости основания пирамиды и пересекающая ее боковые ребра, отсекает пирамиду, подобную данной.
Доказательство:
Пусть дана пирамида с вершиной Р (рис. 126). Через точку А1 на боковом ребре РА проведена секущая плоскость а, параллельная основанию пирамиды. Рассмотрим гомотетию данной пирамиды с центром Р и коэффициентом При этой гомотетии плоскость основания пирамиды переходит в параллельную плоскость, содержащую точку A1 то есть в плоскость а, а вся пирамида — в пирамиду, отсекаемую от данной плоскостью а. Так как гомотетия является преобразованием подобия, то отсекаемая плоскостью а пирамида подобна данной.
Рассмотрим теперь другую часть пирамиды, которую отсекает плоскость сечения, параллельная основанию. Эта часть представляет собой многогранник, который называют усеченной пирамидой. Две ее грани (основания усеченной пирамиды) — подобные многоугольники, лежащие в параллельных плоскостях, а остальные грани (боковые грани усеченной пирамиды) — трапеции.
На рисунке 127 изображена усеченная треугольная пирамида с основаниями ABC и и боковыми гранями . Отрезки , соединяющие соответствующие вершины оснований, являются боковыми ребрами усеченной пирамиды.
Высотой усеченной пирамиды называется перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания. Например, на рисунке 127 высотой усеченной пирамиды является отрезок А1О.
Изображение усеченной пирамиды обычно строят таким образом. Сначала изображают соответствующую полную пирамиду, а затем строят ее сечение плоскостью, параллельной плоскости основания.
Если секущая плоскость правильной пирамиды параллельна основанию, то в результате пересечения получается правильная усеченная пирамида. Основаниями такой пирамиды являются правильные подобные многоугольники, а отрезок, соединяющий центры этих многоугольников, является высотой пирамиды. Очевидно, что боковые ребра правильной усеченной пирамиды равны, значит, ее боковые грани — равнобедренные трапеции. Высоты этих трапеций называются апофемами правильной усеченной пирамиды. Например, на рисунке 128 изображена правильная четырехугольная усеченная пирамида с высотой и апофемой .
Теорема (формула площади боковой поверхности правильной усеченной пирамиды)
Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров ее оснований на апофему:
Доказательство:
Пусть стороны оснований правильной га-угольной усеченной пирамиды с апофемой I равны . Тогда каждая ее боковая грань — равнобедренная трапеция с основаниями и высотой I. Площадь одной грани равна
Отсюда площадь боковой поверхности данной усеченной пирамиды где — количество вершин основания пирамиды. Так как произведения равны периметрам оснований пирамиды, то Теорема доказана.
Пример:
Найдите площадь боковой поверхности правильной четырехугольной усеченной пирамиды, если ее диагональное сечение — трапеция с основаниями и высотой см.
Решение:
Пусть трапеция (рис. 129, а) — диагональное сечение правильной четырехугольной • усеченной пирамиды (см. рис. 128), — высота трапеции, см.
Так как данная пирамида правильная, то трапеция равнобедренная; значит, (обоснуйте это самостоятельно), см. Тогда из треугольника по теореме Пифагора
Рассмотрим теперь боковую грань пирамиды — равнобедренную трапецию (рис. 129, б). Так как основания данной пирамиды — квадраты с диагоналями см, то АВ = 8 см, =2 см — стороны оснований пирамиды. Тогда если — апофема данной пирамиды, то , AM = 3 см. Из треугольника по теореме Пифагора – 4 см.
Следовательно,
Ответ:
Следует знать, что для проведения вычислений при решении задач об усеченных пирамидах иногда удобно рассматривать такие фрагменты их сечений:
- фрагмент сечения, проходящего через боковое ребро и центры окружностей, описанных около оснований,— в случае, если боковые ребра пирамиды равны (рис. 130, а, б):
- — высота пирамиды,
- — радиусы окружностей, описанных около оснований,
- — боковое ребро,
- — угол наклона бокового ребра к плоскости большего основания;
- фрагмент сечения, проходящего через центры окружностей, вписанных в основания, перпендикулярно ребру основания,— в случае, если боковые грани наклонены к основанию под равными углами (рис. 130, в, г):
- — высота пирамиды,
- — радиусы окружностей, вписанных в основания,
- — высота боковой грани,
- — линейный угол двугранного угла при большем основании.
Заметим также, что при решении некоторых задач целесообразно достроить данную усеченную пирамиду до полной.
Построение сечений многогранников
При решении задач на построение сечений многогранников часто возникает необходимость построить прямую пересечения секущей плоскости с плоскостью грани многогранника. Такую прямую называют следом секущей плоскости на плоскости данной грани. След легко построить, если известны две точки плоскости данной грани, принадлежащие секущей плоскости. Но такие точки не всегда даны — для их нахождения применяют специальный метод следов.
Рассмотрим данный метод на примере уже известной вам задачи из п. 10.1.
Пусть требуется построить сечение куба плоскостью, проходящей через точки М, N и К (рис. 131, а). Так как точки М и N принадлежат грани , а точки N и. К — грани , то отрезки MN и NK — стороны искомого сечения.
Построим теперь точку пересечения прямой MN с плоскостью основания ABC. Для этого определим прямую пересечения грани , в которой лежит прямая MN, с плоскостью ABC — это прямая АВ. Построим точку Е — точку пересечения прямых MN и АВ (рис. 131, б), которая и будет точкой пересечения прямой MN с плоскостью основания ABC. Аналогично построим точку F — точку пересечения прямой NK с плоскостью ABC, которая является точкой пересечения прямых NK и ВС. Прямая EF (рис. 131, в) — след секущей плоскости MNK на плоскости основания ABC. Как видим, эта прямая пересекает ребра AD и CD в точках G и Т соответственно. Следовательно, отрезок GT — сторона искомого сечения.
Так как точки М и G принадлежат грани , а точки Т и К — грани , то остается провести отрезки MG и ТК й получить искомое сечение — пятиугольник MNKTG (рис. 131, г).
Как видим, самый «тонкий» момент применения метода следов — построение точки пересечения прямой, принадлежащей секущей плоскости, с плоскостью грани многогранника. Для этого используют известное свойство параллельного проектирования: проекцией прямой является прямая, причем если данная прямая не параллельна плоскости проекции, то она пересекается со своей проекцией. Обобщим различные случаи таких построений для призмы и пирамиды, представив их в виде таблицы.
Построение точки X пересечения прямой АВ с плоскостью основания многогранника
Заметим, что метод следов не всегда удобно применять, если построенная прямая сечения «почти параллельна» плоскости основания многогранника (то есть пересекает ее под углом, близким к 0°),— в таком случае искомая точка пересечения X может выйти за пределы рисунка.
Рассмотрим еще один метод, с помощью которого можно строить сечения многогранников, не выходя за их пределы.
Пусть требуется построить сечение четырехугольной пирамиды PABCD плоскостью, проходящей через точки М, N и К на. ребрах пирамиды (рис. 132, а). Сначала, как и в предыдущих случаях, построим отрезки MN и NK, которые являются сторонами искомого сечения. Но для построения точки пересечения секущей плоскости MNK с ребром PC применим метод, отличный от метода следов.
Проведем диагонали основания АС и BD и обозначим точку их пересечения Т. Соединим полученную точку Т с вершиной пирамиды Р (рис. 132, б). Плоскость диагонального сечения PJBD и секущая плоскость MNK имеют общие точки М и К, а значит, пересекаются по прямой МК. Прямые МК и РТ пересекаются (объясните почему) в некоторой точке Т1 (рис. 132, в), также принадлежащей секущей плоскости MNK.
Аналогично плоскости РАС и MNK имеют общие точки N и T1 а значит, пересекаются по прямой NT1. Прямая NT1 пересекает ребро PC в некоторой точке L (рис. 132, г), которая также является общей точкой плоскостей MNK и РАС, а следовательно, принадлежит искомому сечению. Соединив точку L с точками М и К, получим искомое сечение MNKL.
Описанный метод построения сечений называют методом внутреннего проектирования или методом проекций. Такое название несложно объяснить: действительно, точка Т основания пирамиды является проекцией точки сечения Т1 на плоскость основания в направлении прямой РТ; таким образом, получив сначала проекцию точки Т1 мы восстановили и саму точку.
Правильные многогранники
Как известно, в планиметрии для любого натурального числа га, не меньшего 3, существует правильный n-угольник — многоугольник, в котором все стороны равны и все углы равны. Пространственными аналогами правильных многоугольников являются правильные многогранники.
Виды правильных многогранников
Определение:
Правильным многогранником называется выпуклый многогранник, у которого все грани являются равными правильными многоугольниками и в каждой вершине сходится одинаковое число ребер.
Примером правильного многогранника является куб: все его грани — равные квадраты, а в каждой вершине сходится по три ребра.
Из данного определения следует, что все ребра правильного многогранника равны. Можно также доказать, что все двугранные углы правильного многогранника, содержащие две грани с общим
С древних времен человечеству были известны пять видов правильных многогранников, причем доказано, что других видов правильных многогранников не существует. Прежде чем рассмотреть каждый вид отдельно, обоснуем, что гранями правильного многогранника могут быть только треугольники, четырехугольники или пятиугольники. Действительно, при угол правильного n-угольника не меньше 120° (убедитесь в этом самостоятельно). Так как любой многогранный угол правильного многогранника имеет не меньше трех граней, то при условии сумма плоских углов многогранного угла будет не меньше чем 120° 3 = 360° , что противоречит доказанному свойству суммы плоских углов выпуклого многогранного угла. Значит, вершина правильного многогранника может быть вершиной либо трех, четырех или пяти равносторонних треугольников, либо трех квадратов, либо трех правильных пятиугольников. ребром, равны.
Перейдем к описанию каждого из пяти видов правильных многогранников.
Правильный тетраэдр — это многогранник, поверхность которого состоит из четырех равносторонних треугольников (рис. 138). В каждой вершине правильного тетраэдра сходится по три ребра. Заметим, что правильный тетраэдр является правильной треугольной пирамидой, у которой боковые ребра равны ребрам основания.
Куб (правильный гексаэдр) — шестигранник, поверхность которого состоит из шести квадратов (рис. 139). В каждой вершине куба сходится по три ребра. Напомним, что куб является правильной четырехугольной призмой, у которой боковые ребра равны ребрам основания.
Правильный октаэдр — восьмигранник, гранями которого являются равносторонние треугольники (рис. 140). В отличие от правильного тетраэдра, в каждой вершине правильного октаэдра сходится по четыре ребра.
Правильный додекаэдр — многогранник, поверхность которого состоит из двенадцати правильных пятиугольников (рис. 141). Каждая вершина правильного додекаэдра является вершиной трех правильных пятиугольников, то есть из нее выходит по три ребра.
Правильный икосаэдр — многогранник, поверхность которого состоит из двадцати равносторонних треугольников (рис. 142). Каждая вершина правильного икосаэдра является вершиной пяти правильных треугольников, то есть в ней сходится по пять ребер.
Рассмотрим элементы симметрии некоторых правильных многогранников.
Правильный тетраэдр не имеет центра симметрии. Осью симметрии этого многогранника является прямая, проходящая через середины двух скрещивающихся ребер. Таким образом, правильный тетраэдр имеет три оси симметрии (рис. 143, а). Плоскость симметрии правильного тетраэдра проходит через его ребро перпендикулярно скрещивающемуся с ним ребру (рис. 143, б). Итак, правильный тетраэдр имеет шесть плоскостей симметрии.
Куб имеет один центр симметрии — точку пересечения его диагоналей. Осями симметрии куба являются прямые, проходящие через центры двух противолежащих граней (таких прямых три), и прямые, проходящие через середины двух параллельных ребер, не принадлежащих одной грани (таких прямых шесть). Итак, куб имеет девять осей симметрии, каждая из которых проходит через его центр симметрии (рис. 144, а).
Плоскостями симметрии куба являются три плоскости, каждая из которых проходит через середины четырех параллельных ребер, и шесть плоскостей, проходящих через пару параллельных ребер, не принадлежащих одной грани. Таким образом, куб имеет девять плоскостей симметрии (рис. 144, б).
Остальные правильные многогранники имеют центр симметрии и несколько осей и плоскостей симметрии (попробуйте определить их число самостоятельно).
Свойства правильных многогранников издавна привлекают ученых, строителей, архитекторов, ювелиров. Великий древнегреческий философ Платон связывал с правильными многогранниками четыре природные стихии: с правильным тетраэдром — Огонь, с кубом — Землю, с правильным октаэдром — Воздух, с правильным додекаэдром — Воду. Он высказал гипотезу о том, что существует еще одна, пятая стихия, связанная с правильным икосаэдром, — Божественный эфир. И хотя эта гипотеза была позднее опровергнута наукой, исследования Платона по-прежнему вызывают интерес как одна из первых попыток математического моделирования в естествознании, а сами правильные многогранники и сегодня называют Платоновыми телами.
Совершенные формы правильных многогранников не могли не отобразиться на полотнах знаменитых художников. На рисунке 145 вы видите гравюру М. Эшера «Звезды», среди элементов которой есть правильные многогранники.
Полуправильные многогранники. Другие виды многогранников
Достаточно жесткие условия определения правильных многогранников существенно ограничивают их число. Поэтому наряду с правильными многогранниками внимание исследователей привлекают также и те, которые удовлетворяют условиям определения правильного многогранника лишь частично. Это, например, полуправильные многогранники — выпуклые многогранники, гранями которых являются правильные многоугольники нескольких видов, а в каждой вершине сходится одинаковое число ребер.
Среди известных вам видов многогранников к полуправильным относятся правильные n-угольные призмы, боковые ребра которых равны ребрам основания (за исключением куба, являющегося правильным многогранником). На рисунке 146 изображена правильная шестиугольная призма, все боковые грани которой — квадраты; такая призма является полуправильным многогранником. К полуправильным многогранникам относятся и так называемые антипризмы, основаниями которых являются равные правильные n-угольники, а боковыми гранями — равносторонние треугольники (рис. 147).
Кроме этих двух бесконечных серий — призм и антипризм, существует еще 14 видов полуправильных многогранников, 13 из которых открыл и описал Архимед (их называют телами Архимеда), а четырнадцатый был открыт только в XX веке.
Охарактеризуем тела Архимеда, изображенные на рисунке 148. Самые простые из них можно получить путем «срезания» углов правильных многогранников плоскостями. Например, срезав углы правильного тетраэдра так, чтобы каждая секущая плоскость отсекала третью часть его ребер, выходящих из одной вершины, получим усеченный тетраэдр (рис. 148, а).
Аналогичным образом, срезав углы правильных октаэдра и икосаэдра, получим усеченный октаэдр (рис. 148, б) и усеченный икосаэдр (рис. 148, в) — последний многоугольник напомнит многим из вас футбольный мяч. Так же из куба получают усеченный куб (рис. 148, г), а из правильного додекаэдра — усеченный додекаэдр (рис. 148, д).
Если в кубе провести секущие плоскости через середины ребер, выходящих из одной вершины, то в результате отсекания этими плоскостями частей куба получим кубооктаэдр (рис. 148, е). Его название объясняется тем, что он имеет шесть граней-квадратов (как куб) и восемь граней — правильных треугольников (как правильный октаэдр). Если указанным способом отсечь углы правильного додекаэдра, получим икосододекаэдр (рис. 148, ж).
К последним двум многогранникам можно снова применить операцию срезания углов. В результате получим еще два полуправильных многогранника — усеченный кубооктаэдр (рис. 148, з) и усеченный икосододекаэдр (рис. 148, и).
Другие четыре архимедовых тела — это ромбокубооктаэдр (рис. 148, к), ромбоикосододекаэдр (рис. 148, л), плосконосый куб (рис. 148, м) и плосконосый додекаэдр (рис. 148, н)*.
И, наконец, единственный полуправильный многогранник, открытый не Архимедом,— это псевдоромбокубооктаэдр (рис. 149). Его открыл в 1950 году немецкий математик Й. Миллер, а немного позднее, независимо от него и друг от друга,-г советские ученые В. Ашкинузе и Л. Есаулова.
Форму полуправильных многогранников ювелиры часто придают драгоценным камням при огранке (рис. 150).
Среди других видов многогранников большую эстетическую и декоративную ценность представляют звездчатые многогранники — невыпуклые многогранники, гранями которых являются
правильные многоугольники. Особенно выделяются правильные звездчатые многогранники — так называемые тела Кеплера — Пуансо. Их всего четыре (рис. 151). Такие многогранники можно получить из правильных додекаэдра и икосаэдра продолжением их ребер или граней.
Многочисленные формы звездчатых многогранников созданы самой природой: например, такие формы имеют снежинки (рис. 152). С давних пор ученые занимались исследованием их форм. Сейчас известно несколько тысяч видов снежинок.
Большое значение в химии и кристаллографии имеют другие природные многогранники — параллелоэдры. Это выпуклые многогранники, которыми можно заполнить пространство так, чтобы они не входили друг в друга и не оставляли между собой пустот. Пять типов параллелоэдров открыл в 1881 году один из основателей кристаллографии русский ученый Е. С. Федоров, в честь которого эти многогранники были названы телами Федорова (рис. 153). А знаменитая теорема теории параллелоэдров носит имя выдающегося украинского математика Георгия Феодосьевича Вороного (1868-1908). Вообще кристаллография как наука многим обязана геометрии, ведь физические свойства кристаллов зависят от структуры их кристаллических решеток, а те, в свою очередь, состоят из многогранников (рис. 154).
Справочный материал
Двугранные и многогранные углы
Двугранным углом называется фигура, состоящая из двух полуплоскостей (граней двугранного угла) с общей граничной прямой (ребром двугранного угла).
Угол АОВ – линейный угол двугранного угла.
Все линейные углы двугранного угла равны.
Градусной мерой двугранного угла называется градусная мера его линейного угла.
Трехгранным углом называется фигура, состоящая из трех плоских углов с общей вершиной и попарно общими сторонами, не лежащими в одной плоскости.
Многогранники
Многогранником называется тело, поверхность которого состоит из конечного числа плоских многоугольников.
Плоские многоугольники, из которых состоит поверхность многогранника, называются гранями многогранника. Стороны и вершины этих многоугольников называются соответственно ребрами и вершинами многогранника.
Выпуклым многогранником называется многогранник, все точки которого лежат по одну сторону от плоскости каждой его грани или в самой этой плоскости.
Призмы
Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников
Многоугольники называют основаниями призмы. Все грани призмы, не являющиеся основаниями, называют боковыми гранями призмы
- Основания призмы параллельны и равны
- Боковые грани призмы — параллелограммы
Боковыми ребрами призмы называются отрезки, соединяющие соответствующие вершины оснований.
- Боковые ребра призмы параллельны и равны.
Высотой призмы называется перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания
Диагональю призмы называется отрезок, соединяющий две вершины, не принадлежащие одной грани
Площадью полной поверхности призмы называется сумма площадей всех ее граней, а площадью боковой поверхности — сумма площадей ее боковых граней.
Виды призм
Прямой призмой называется призма, боковые ребра которой перпендикулярны плоскостям оснований
Площадь боковой поверхности прямой призмы равна произведению периметра ее основания на высоту:
Наклонной призмой называется призма, которая не является прямой
Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного свечения на боковое ребро:
Правильной призмой называется прямая призма, основания которой — правильные многоугольники
Параллелепипедом называется призма, основание которой — параллелограмм
- Противолежащие грани параллелепипеда параллельны и равны
- Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам
- Точка пересечения диагоналей параллелепипеда — центр его симметрии
Прямым параллелепипедом называется прямая призма, основанием которой является параллелограмм
Прямоугольным параллелепипедом называется прямой параллелепипед, основанием которого является прямоугольник
Пространственная теорема Пифагора. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
Кубом называется прямоугольный параллелепи-у которого все ребра равны вершина
Пирамиды
Пирамидой называется многогранник, который состоит из плоского многоугольника (основания пирамиды), точки, не лежащей в плоскости основания (вершины пирамиды), и всех отрезков, соединяющих вершину с точками основания
Тетраэдром называют треугольную пирамиду
Высотой пирамиды называется перпендикуляр, проведенный из вершины пирамиды к плоскости ее основания
Площадью боковой поверхности пирамиды называется сумма площадей ее боковых граней, а площадью полной поверхности — сумма площадей основания и боковой поверхности:
Виды пирамид
Правильной пирамидой называется пирамида, основанием которой является правильный многоугольник, а основание высоты пирамиды совпадает с центром этого многоугольника
Апофемой правильной пирамиды называется высота боковой грани, проведенная из вершины пирамиды
- Все боковые ребра правильной пирамиды равны
- Все боковые ребра правильной пирамиды равно-наклонены к плоскости основания
- Все боковые ребра правильной пирамиды обра-! зуют равные углы с высотой пирамиды
- Все боковые грани правильной пирамиды — равные равнобедренные треугольники
- Все двугранные углы при основании правильной пирамиды равны
Площадь боковой поверхности правильной пирамиды равна половине произведения периметра ее основания на апофему:
Усеченная пирамида
Плоскость, параллельная плоскости основания пирамиды и пересекающая ее боковые ребра, отсекает пирамиду, подобную данной, и многогранник, который называют усеченной пирамидой.
Основаниями усеченной пирамиды являются основание данной пирамиды и подобный ему многоугольник, полученный в сечении.
Высотой усеченной пирамиды называется перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания.
Если секущая плоскость правильной пирамиды параллельна основанию, то в результате пересечения получается правильная усеченная пирамида.
Апофемой правильной усеченной пирамиды называется высота боковой грани
- Основания — правильные многоугольники.
- Отрезок, соединяющий центры оснований,— высота.
- Боковые грани — равные равнобедренные трапеции Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров ее оснований на апофему:
Историческая справка
Многогранники как наиболее распространенные геометрические тела интересовали ученых издавна. В разные эпохи математики предлагали собственные определения призмы и пирамиды. В результате возникло несколько подходов к определению многогранника — в частности, многогранник рассматривают либо как поверхность, либо как тело, ограниченное поверхностью. Каждый из этих подходов корректен с научной точки зрения и имеет своих сторонников.
Учение о правильных многогранниках изложено в последней книге знаменитых «Начал» Евклида, но некоторые историки приписывали первенство в исследовании правильных многогранников Пифагору. Между тем, почти все известные древнегреческие геометры так или иначе затрагивали в своих работах свойства правильных многогранников. В Средние века большой интерес к этой теме проявили художники и архитекторы.
Выдающийся немецкий астроном и математик Иоганн Кеплер (1571-1630) на основании теории правильных многогранников построил модель Солнечной системы (так называемый «кубок Кеплера»). Правда, в дальнейших исследованиях астрономов гипотезы Кеплера не нашли подтверждения. Но идея использования многогранников для моделирования природных явлений дала толчок многим исследованиям в разных областях науки.
Тела вращения
Глубокое изучение природы является дающим жизнь источником математических открытий.
Жан Батист Фурье, французский математик
Многочисленные геометрические объекты и даже направления геометрических исследований ученым подсказывает сама природа. Так, множество созданных ею предметов имеют форму тел вращения.
В этой главе мы рассмотрим три классических тела вращения — цилиндр, конус и шар. Все они являются лишь абстрактными моделями реальных предметов, окружающих нас в повседневной жизни, но общие исследовательские подходы к их изучению и полученные результаты могут быть использованы в архитектуре, искусстве, технике.
Изучение тел вращения опирается на известные из курса планиметрии свойства окружностей и многоугольников. В процессе усвоения нового материала вам помогут также модели рассматриваемых тел, которые вы можете изготовить своими руками.
Цилиндр
При вращении вокруг оси I на угол 360° произвольная точка М, не принадлежащая прямой I, описывает окружность (рис. 157, а). Центр этой окружности О лежит на прямой I, а сама окружность — в плоскости, проходящей через точку М и перпендикулярной прямой I.
Поверхности и тела вращения
Рассмотрим теперь линию т, которая лежит в одной плоскости с прямой ! и не пересекает ее. При вращении вокруг прямой I каждая точка линии т описывает окружность с центром на этой прямой. Линия т при таком вращении описывает некоторую поверхность (рис. 157, б). Эту поверхность называют поверхностью вращения.
Вернемся к рисунку 157, а и рассмотрим вращение вокруг прямой I отрезка ОМ, -один из концов которого принадлежит этой прямой. При таком вращении получается круг с центром О и радиусом ОМ. Тогда при вращении вокруг прямой I плоской фигуры (на рисунке 157, б она закрашена) получается геометрическое тело, которое называют телом вращения. Прямую I в этом случае называют осью тела вращения, а совокупность точек окружностей, описывающих точки линии — поверхностью тела вращения.
Очевидно, что любое сечение тела вращения плоскостью, перпендикулярной его оси, является кругом. Рассмотрим сечение тела вращения плоскостью, проходящей через его ось. Такое сечение называется осевым. На рисунке 158 шестиугольник ABCDEF — осевое сечение тела вращения. Данное тело получено вращением плоского пятиугольника АВСКМ вокруг прямой, содержащей сторону КМ.
Далее вместо слов «плоский многоугольник вращается вокруг прямой, содержащей его сторону», мы будем говорить ♦многоугольник вращается вокруг стороны».
Форму тел вращения имеют элементы архитектурных сооружений, многие технические детали, различные виды посуды и т. д. (рис. 159). Заметим, что дать определение любого тела вращения можно двумя способами — через описание самого тела или через описание способа его получения вращением плоской фигуры вокруг оси (о видах определений речь пойдет в п.12.3). В дальнейшем мы будем придерживаться более традиционного, первого, способа определения, но также указывать, как получить данную фигуру вращением.
Определение:
Цилиндром (точнее, круговым цилиндром) называется тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.
Круги называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей, ограничивающих основания,— образующими цилиндра.
Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований. Так как в школьном курсе мы будем рассматривать только прямые круговые цилиндры, в дальнейшем договоримся называть их просто цилиндрами.
Радиусом, цилиндра называется радиус его основания.
Высотой цилиндра называется перпендикуляр, проведенный из точки одного основания цилиндра к плоскости другого основания. Очевидно, что высота цилиндра равна его образующей.
На рисунке 160 изображен цилиндр с центрами оснований Отрезок — образующая этого цилиндра, а отрезки — его радиусы.
Рассмотрим некоторые свойства цилиндра.
Так как параллельный перенос является движением, то основания цилиндра — равные круги, лежащие в параллельных плоскостях.
Из свойств параллельного переноса следует и то, что образующие цилиндра параллельны и равны.
Цилиндр является телом вращения, которое получается вращением прямоугольника вокруг его стороны. Например, на рисунке 160 изображен цилиндр, полученный вращением прямоугольника вокруг стороны Таким образом, прямая, проходящая через центры оснований, является осью цилиндра. Заметим также, что отрезок, соединяющий центры оснований цилиндра, равен образующей, а значит, и высоте цилиндра.
Цилиндрические формы часто встречаются в архитектуре, технике, спорте и в быту (рис. 161).
Рассмотрим некоторые виды сечений цилиндра. Сечение цилиндра плоскостью, параллельной плоскости основания, представляет собой круг, равный основанию. Действительно, параллельный перенос на вектор переводит плоскость сечения а в плоскость основания, а само сечение — в основание цилиндра. В частности, плоскость, параллельная плоскости основания и проходящая через середину высоты цилиндра, является плоскостью его симметрии (рис. 162, а).
Так как образующие цилиндра параллельны друг другу и его оси, равны и перпендикулярны основаниям, то сечение цилиндра плоскостью, параллельной его оси, является прямоугольником (рис. 162, б). Две стороны этого прямоугольника — образующие цилиндра, а две другие — параллельные хорды его оснований. Осевое сечение цилиндра также является прямоугольником (рис. 162, в), две стороны которого — образующие цилиндра, а две другие — параллельные диаметры его оснований.
В случае, когда высота цилиндра равна диаметру его основания, осевое сечение цилиндра является квадратом, а сам цилиндр называется равносторонним.
Плоскость осевого сечения является плоскостью симметрии цилиндра (обоснуйте этот факт самостоятельно).
Плоскость, проходящая через образующую цилиндра и перпендикулярная осевому сечению, содержащему эту образующую, называется касательной плоскостью к цилиндру. Плоскость на рисунке 162, в является касательной к цилиндру.
Пример №223
Радиус цилиндра равен 5 см. Площадь сечения, параллельного оси цилиндра и удаленного от нее на 4 см, равна 42 см2. Найдите высоту цилиндра.
Решение:
Пусть дан цилиндр с осью (рис. 163), — сечение цилиндра плоскостью, параллельной оси, = 42 см2. Так как как образующая цилиндра, то по признаку перпендикулярности плоскостей плоскость данного сечения перпендикулярна плоскости основания. Кроме того, так как сечение цилиндра, параллельное оси, представляет собой прямоугольник, то
Проведем в плоскости АОВ перпендикуляр ОС к прямой АВ. Тогда как перпендикуляр к прямой пересечения двух перпендикулярных плоскостей. Следовательно, отрезок ОС — расстояние от оси цилиндра до плоскости сечения; по условию задачи ОС = 4 см. Найдем высоту цилиндра.
Проведем радиусы цилиндра OA и ОВ. Отрезок ОС — медиана и высота равнобедренного треугольника АОВ. Таким образом, из треугольника АОС по теореме Пифагора АС = 3 см. Тогда АВ = 2АС, АВ = 6 см.
Следовательно, (см).
Ответ: 7 см.
Виды определений
Как мы уже отмечали, в геометрии существуют разные подходы к определению основных фигур. Разные способы определения понятий используются и в других науках. Опишем наиболее распространенные виды определений.
Определение как логическая операция должно решать две задачи — выделять определяемый предмет и отличать его от всех других. Поэтому большинство научных определений — это определения, данные через ближайший род и видовое отличие (в логике такие определения называют классическими). Поясним особенности классического определения на примере известного вам определения куба: «Кубом называется прямоугольный параллелепипед, у которого все ребра равны». В этом определении сначала выделяется ближайший род многогранников, к которому относится куб, — прямоугольные параллелепипеды, а затем описывается отличие куба от остальных прямоугольных параллелепипедов, — равенство всех ребер.
К классическим относится и большинство определений в естественных и гуманитарных науках. Например, в филологии архаизмом называется устарелое слово, вышедшее из общего употребления. Для этого определения архаизма используется ближайший род («слово») и видовое отличие, заключающееся в устарелости данного слова.
Разновидностью классических являются так называемые генетические определения, в которых видовое отличие описывает способ образования определяемого предмета. Например, вместо определения цилиндра, приведенного в п. 12.2, можно было бы дать равносильное генетическое определение: «Цилиндром называется тело, которое получается при вращении прямоугольника вокруг его стороны».
Кроме определений, явно указывающих на тождество двух понятий — определяемого и того, которое определяет, существуют и другие, неявные определения. Вспомним, например, определение пирамиды: «Пирамидой называется многогранник, который состоит из плоского многоугольника (основания пирамиды), точки, не лежащей в плоскости основания (вершины пирамиды), и всех отрезков, соединяющих вершину с точками основания». В контексте этого определения мы описали, кроме пирамиды, еще два понятия — основание пирамиды и вершина пирамиды, иначе говоря, дали контекстуальное определение этих двух понятий.
Другим видом неявных определений являются определения путем показа. Представим, например, что нам нужно объяснить собеседнику, какой цвет называется «индиго». Конечно, наиболее действенный способ объяснения — показать предмет или изображение определяемого цвета. Определения путем показа в логике называют остенсивными. Так, в курсе геометрии мы использовали остенсивные определения для отдельных видов полуправильных и звездчатых многогранников (п. 11.2).
В науке, учебе, повседневной жизни в зависимости от конкретной ситуации целесообразными могут оказаться разные виды определений. Но главная цель, с которой они используются, всегда остается неизменной — определения должны способствовать процессу общения между людьми, помогать им лучше понимать друг друга. Недаром знаменитый древнегреческий философ Сократ говорил, что благодаря правильным определениям он продолжает дело своей матери-акушерки, помогая рождению истины в споре.
Конус
Определение:
Конусом (точнее, круговым конусом) называется тело, которое состоит из круга (основания конуса), точки, не принадлежащей плоскости этого круга (вершины конуса), и всех отрезков, соединяющих вершину конуса с точками основания.
Конус и его элементы
Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса.
Конус называется прямым, если прямая, проходящая через вершину конуса и центр окружности основания, перпендикулярна плоскости основания (рис. 166). Так как в школьном курсе будут рассматриваться только прямые круговые конусы, в дальнейшем договоримся называть их просто конусами.
На рисунке 166 изображен конус с вершиной Р и центром основания О. Отрезок РА — образующая этого конуса, а отрезок OA — радиус его основания (или радиус конуса).
Высотой конуса называется перпендикуляр, проведенный из вершины конуса к плоскости основания. Очевидно, что в конусе высота соединяет вершину с центром основания. Например, на рисунке 166 высотой конуса является отрезок РО.
Все образующие конуса являются наклонными к плоскости основания, которые проведены из вершины конуса и имеют равные проекции. Отсюда следует, что все образующие конуса равны и составляют равные углы с плоскостью основания.
Конус является телом вращения, которое получается вращением прямоугольного треугольника вокруг его катета. Например, на рисунке 166 изображен конус, полученный вращением прямоугольного треугольника РОА вокруг катета РО. Таким образом, прямая, содержащая высоту конуса, является его осью.
Формы конусов (иначе их называют коническими формами) имеют многие тела, встречающиеся в природе и технике, в архитектуре и быту (рис. 167).
В физике, строительстве, сельском хозяйстве и горном деле используется понятие угла естественного уклона сыпучего материала, то есть угла наклона образующей к плоскости основания конуса, который образуется свободной поверхностью насыпи (рис. 168). Этот угол связан с коэффициентом трения и зависит от состава, формы, влажности и удельного веса материала (для песка он составляет от 20° до 40°, для грунта — от 17° до 55°, для зерна — от 20° до 30°). По углу естественного уклона определяют, в частности, максимально допустимые углы скоса карьеров, насыпей, штабелей и т. п.
Сечения конуса. Усеченный конус
Рассмотрим некоторые виды сечений конуса. Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, боковые стороны которого — образующие данного конуса (рис. 169, а). В частности, равнобедренным треугольником является осевое сечение конуса (рис. 169, б), причем высотой этого треугольника служит высота конуса, а основанием — диаметр основания конуса.
Если диаметр основания конуса равен образующей, то осевое сечение конуса — равносторонний треугольник; такой конус называется равносторонним. Плоскость осевого сечения является плоскостью симметрии конуса (обоснуйте этот факт самостоятельно).
Плоскость, проходящая через образующую конуса и перпендикулярная плоскости осевого сечения, содержащего эту образующую, называется касательной плоскостью к конусу. Плоскость р на рис. 169, б является касательной к конусу.
Отдельного рассмотрения заслуживает сечение конуса, параллельное плоскости основания.
Теорема (о сечении конуса, параллельном плоскости основания)
Сечение конуса плоскостью, параллельной плоскости основания, является кругом, центр которого лежит на оси конуса. Образующая и высота конуса делятся плоскостью этого сечения на пропорциональные части.
Доказательство:
Пусть плоскость а, параллельная плоскости основания конуса, пересекает его высоту РО в точке а образующую РА — в точке (рис. 170).
Рассмотрим преобразование гомотетии с центром Р, которое переводит плоскость основания конуса в плоскость а. Оно совмещает основание конуса с его сечением плоскостью а, а точку О — с точкой Значит, сечение конуса плоскостью а является кругом, центр которого лежит на оси конуса.
Рассмотрим теперь треугольники . Они гомотетичны, поэтому подобны. Из подобия треугольников следует пропорциональность их сторон: то есть . Так как РА — произвольная образующая конуса, то плоскость а делит образующую и высоту конуса на пропорциональные части.
Следствие
Площадь сечения конуса, параллельного плоскости основания, и площадь основания относятся как квадраты расстояний от вершины конуса до плоскостей сечения и основания.
Таким образом, плоскость, параллельная плоскости основания конуса и пересекающая его образующие, отсекает конус, подобный данному, и тело, которое называется усеченным конусом. Основание данного конуса и круг, полученный в сечении, называются основаниями усеченного конуса, а перпендикуляр, проведенный из точки одного основания к плоскости другого основания,— высотой усеченного конуса. Очевидно, что высотой усеченного конуса является, в частности, отрезок, соединяющий центры его оснований. Отрезки образующих данного конуса, ограниченные плоскостями оснований усеченного конуса, называются образующими усеченного конуса. Все образующие усеченного конуса равны и наклонены к плоскости каждого из оснований под равными углами (объясните почему).
На рисунке 171 изображен усеченный конус с высотой и образующей
Усеченный конус является телом, которое получается вращением прямоугольной трапеции вокруг ее меньшей боковой стороны. Так, на рисунке 171 изображен усеченный конус, полученный вращением прямоугольной трапеции вокруг стороны Таким образом, прямая, проходящая через центры оснований усеченного конуса, является его осью.
Осевое сечение усеченного конуса представляет собой равнобедренную трапецию, основаниями которой являются диаметры оснований усеченного конуса, а боковыми сторонами — его образующие. Так, на рисунке 172 осевое сечение усеченного конуса — равнобедренная трапеция
Пример №224
Радиусы оснований усеченного конуса равны R и г (R>r), а образующая наклонена к плоскости основания под углом 45°. Найдите площадь осевого сечения.
Решение:
Пусть равнобедренная трапеция (рис. 173) — осевое сечение усеченного конуса с центрами оснований (см. рис. 172). По условию задачи AO = R, =r, следовательно, AB = 2R, =2r. Так как плоскость сечения содержит прямую то по признаку перпендикулярности плоскостей плоскость сечения перпендикулярна плоскости основания. Проведем . Тогда прямая перпендикулярна плоскости основания конуса по свойству перпендикуляра к прямой пересечения двух перпендикулярных плоскостей. Отрезок АН — проекция образующей на плоскость большего основания конуса. Тогда угол — угол между образующей и плоскостью основания; по условию задачи = 45°. Так как — высоты трапеции, то АН = R-r. Из треугольника , АН = R-r) имеем . Итак, для площади осевого сечения получаем:
Ответ:
Заметим, что в некоторых задачах об усеченных конусах целесообразно рассматривать полный конус, из которого получен данный усеченный конус.
Шар и сфера
Как известно, множество всех точек плоскости, удаленных от данной точки на расстояние, не превышающее заданное, называется кругом. В пространстве все точки, обладающие аналогичным свойством, образуют шар (рис. 176, а).
Определение:
Шаром называется множество всех точек пространства, удаленных от данной точки на расстояние, не превышающее заданное.
Данную точку называют центром шара, а заданное расстояние — радиусом шара.
Сферой называется поверхность шара.
Таким образом, сфера состоит из всех точек пространства, удаленных от центра шара (он является также и центром сферы) на заданное расстояние R (радиус сферы). Радиусом шара (сферы) называется также любой отрезок, соединяющий центр с точкой сферы. На рисунке 175, а таким является отрезок OA.
Отрезок, соединяющий две точки сферы, называется хордой сферы. Хорда, проходящая через центр сферы, называется диаметром шара (сферы). Концы диаметра называются диаметрально противоположными точками. На рисунке 175, а точки А и В — диаметрально противоположные точки сферы, АВ — диаметр шара (сферы).
Шар является телом вращения, которое получается вращением полукруга вокруг его диаметра (рис. 175, б).
Рассматривая взаимное расположение шара и плоскости в пространстве, целесообразно провести аналогию с расположением круга и прямой на плоскости (рис. 176, а-в). Три случая расположения шара относительно плоскости определяются соотношением между радиусом шара и расстоянием от его центра до плоскости:
- если расстояние от центра шара до плоскости больше радиуса шара, то шар и плоскость не имеют общих точек (рис. 177, а): действительно, если , то для любой точки М плоскости а то есть плоскость а не содержит точек шара;
- если расстояние от центра шара до плоскости равно радиусу шара, то плоскость имеет с шаром (и сферой, которая его ограничивает) единственную общую точку (рис. 177, б): в этом случае для произвольной точки М плоскости а, которая не совпадает с А, ОМ > OA = R, то есть плоскость а имеет с шаром единственную общую точку А (более подробно этот случай будет рассмотрен в п. 14.2);
- если расстояние от центра шара до плоскости меньше радиуса шара, то шар и плоскость пересекаются по кругу (рис. 177, в).
Рассмотрим последний случай подробно.
Теорема (о сечении шара)
Если расстояние от центра шара до плоскости меньше радиуса шара, то сечение шара данной плоскостью является кругом. Центр этого круга находится в основании перпендикуляра, проведенного из центра шара к плоскости сечения.
Доказательство:
Пусть а — секущая плоскость шара с центром О и радиусом R, (рис. 178). Рассмотрим произвольную точку М шара, принадлежащую плоскости а. Из прямоугольного треугольника ОАМ по теореме Пифагора Так как , то , то есть расстояние от точки А до точки М не превышает Это значит, что любая точка М сечения принадлежит кругу с центром А и радиусом г, и наоборот: любая точка М этого круга принадлежит шару (обоснуйте данный факт самостоятельно). Следовательно, сечение шара плоскостью а является кругом с центром в точке А.
Теорема доказана.
Следствие
Если расстояние от центра сферы до плоскости меньше радиуса сферы, то сечение сферы плоскостью является окружностью. Центр этой окружности находится в основании перпендикуляра, проведенного из центра сферы к плоскости сечения.
Заметим, что в случае, когда секущая плоскость проходит через центр шара (такая плоскость называется диаметральной), центры шара и сечения совпадают, а радиус сечения равен радиусу шара (рис. 179).
Любая диаметральная плоскость шара является его плоскостью симметрии (докажите это самостоятельно).
Сечение шара диаметральной плоскостью называется большим кругом, а окружность этого сечения — большой окружностью.
На географическом глобусе линия экватора представляет собой большую окружность (рис. 180, а). Географические параллели — это линии сечений поверхности Земли плоскостями, параллельными плоскости экватора, а градусы северной и южной широты указывают угол между соответствующими радиусами земного шара — например, город Харьков находится на 50° северной широты (рис. 180, б).
Пример №225
Через конец радиуса шара проведена плоскость под углом 45° к данному радиусу. Найдите площадь получившегося сечения, если радиус шара равен 6 см.
Решение:
Пусть круг с центром — сечение шара с центром О и радиусом ОА = 6 см (рис. 181). Тогда по теореме о сечении шара — перпендикуляр к плоскости сечения. Значит, — проекция радиуса OA на плоскость сечения, — угол между OA и плоскостью сечения; по условию задачи =45°. Найдем площадь сечения.
Из треугольника
Искомая площадь S равна , где г = . Следовательно,
Ответ:
Касательная плоскость к сфере
Рассмотрим более подробно случай, когда шар и плоскость имеют единственную общую точку.
Определение:
Касательной плоскостью к сфере (шару) называется плоскость, имеющая со сферой единственную общую точку.
Общая точка касательной плоскости и сферы называется точкой касания. На рисунке 182 плоскость а касается сферы (шара) с центром О в точке А.
Определим взаимное расположение касательной плоскости и радиуса сферы, проведенного в точку касания.
Теорема (свойство касательной плоскости)
Касательная плоскость к сфере перпендикулярна радиусу сферы, проведенному в точку касания.
Доказательство:
Пусть плоскость а касается сферы с центром О в точке А (рис. 183). Докажем методом от противного, что .
Если это не так, то отрезок OA является наклонной к плоскости а. Проведем перпендикуляр ОВ к плоскости а. Очевидно, что ОВ<ОА, то есть расстояние от центра сферы до точки В меньше радиуса сферы. Отсюда следует, что сфера и плоскость а пересекаются по окружности. Но это противоречит тому, что плоскость а касательная, то есть сфера и плоскость а имеют единственную общую точку. Значит, наше предположение неверно, и .
Имеет место также обратное утверждение (признак касательной плоскости): если радиус сферы является перпендикуляром, проведенным из центра сферы к плоскости, проходящей через другой конец радиуса, то данная плоскость является касательной к сфере.
Докажите это утверждение самостоятельно.
Определение:
Касательной прямой к сфере (шару) называется прямая, принадлежащая касательной плоскости к данной сфере (шару) и проходящая через точку касания.
Из только что доказанного свойства касательной плоскости следует, что касательная прямая перпендикулярна радиусу сферы (шара), проведенному в точку касания. На рисунке 184 плоскость а — касательная плоскость к сфере с центром О, прямая а — касательная прямая, которая касается данной сферы в точке A, .
Очевидно, что все прямые плоскости а, проходящие через точку А, являются касательными прямыми к сфере. Более того, прямая, проходящая через точку сферы перпендикулярно радиусу, проведенному в эту точку, является касательной прямой к сфере (обоснуйте этот факт самостоятельно).
Пример №226
Шар касается всех сторон правильного треугольника. Найдите радиус шара, если сторона треугольника равна см, а расстояние от центра шара до плоскости треугольника 3 см.
Решение:
Пусть стороны треугольника ABC касаются шара с центром О в точках К, М и N (рис. 185). Проведем перпендикуляр к плоскости ABC. Так как АВ, ВС и АС — касательные к шару, то Отрезки — проекции наклонных ОК, ОМ и ON на плоскость ABC. По теореме о трех перпендикулярах , . Так как OK = OM = ON как радиусы шара, точка О равноудалена от сторон треугольника ABC.
Следовательно, точка — центр окружности, вписанной в треугольник ABC, а отрезки — радиусы этой окружности. По формуле радиуса вписанной окружности для правильного треугольника (см). Из прямоугольного треугольника по теореме Пифагора ОК = 5 см.
Ответ: 5 см.
Геометрические тела и их поверхности
Понятие «геометрическое тело» — одно из центральных понятий стереометрии. Но для того чтобы дать строгое определение геометрического тела, нужно ввести несколько вспомогательных понятий.
Итак, точка называется граничной точкой фигуры, если среди сколь угодно близких к ней точек есть точки, как принадлежащие данной фигуре, так и не принадлежащие ей. Пусть, например, на рисунке 186 точка А — граничная точка фигуры F. Это значит, что любой шар с центром А содержит как точки фигуры F, так и точки, не принадлежащие данной фигуре. Множество всех граничных точек образует границу фигуры.
Точка фигуры, не принадлежащая ее границе, называется внутренней точкой фигуры. Каждая внутренняя точка фигуры характеризуется тем, что все точки пространства, расположенные достаточно близко к ней, также принадлежат фигуре. Пусть на рисунке 186 точка В — внутренняя точка фигуры F. Тогда существует шар с центром В, все точки которого принадлежат фигуре F.
Фигура называется ограниченной, если ее можно поместить внутрь какой-нибудь сферы. Очевидно, что отрезок, куб, тетраэдр — ограниченные фигуры, а прямая, плоскость, двугранный угол — неограниченные.
И, наконец, фигура называется областью, если все ее точки внутренние и любые две из них можно соединить непрерывной линией, полностью принадлежащей этой фигуре. Область вместе с ее границей называется замкнутой областью. Так, тетраэдр на рис. 187, о — замкнутая область. Однако фигура на рисунке 187, б, состоящая из двух тетрэдров с общей вершиной, не является замкнутой областью, так как любая линия, соединяющая внутренние точки разных тетраэдров, проходит через их общую вершину, которая не является внутренней точкой фигуры. Не является замкнутой областью и фигура на рисунке 187, в, представляющая собой конус со «шпилем» в виде отрезка, так как все точки «шпиля», кроме одной, не являются граничными точками области, ограниченной данным конусом (объясните почему).
Итак, перейдем к определению геометрического тела и его поверхности.
Определение:
Геометрическим телом (или просто телом) называется ограниченная замкнутная область в пространстве.
Поверхностью геометрического тела называется его граница.
Заметим, что понятия внутренней и граничной точек и области можно ввести и на плоскости, если в определениях, приведенных в этом пункте выше, вместо шара и сферы рассматривать круг и окружность соответственно. Например, плоский многоугольник — это ограниченная замкнутая область, границей которой является многоугольник.
Справочный материал
Цилиндр
Цилиндром (точнее, круговым цилиндром) называется тело, которое состоит из двух кругов (оснований цилиндра), не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.
Прямым цилиндром (далее — цилиндром) называется цилиндр, образующие которого перпендикулярны плоскостям оснований.
Образующими цилиндра называются отрезки, соединяющие соответствующие точки окружностей, ограничивающих основания.
Радиусом цилиндра называется радиус его основания.
Высотой цилиндра называется перпендикуляр, проведенный из точки одного основания цилиндра к плоскости другого основания.
Осью цилиндра называется прямая, проходящая через центры оснований.
- Основания цилиндра — равные круги, лежащие в параллельных плоскостях
- Все образующие цилиндра параллельны и равны
- Высота цилиндра равна его образующей
- Отрезок, соединяющий центры оснований цилиндра, равен образующей, а значит, и высоте цилиндра
- Сечение цилиндра плоскостью, параллельной его оси, является прямоугольником
Конус
Конусом (точнее, круговым конусом) называется тело, которое состоит из круга (основания конуса), точки, не принадлежащей плоскости этого круга (вершины конуса), и всех отрезков, соединяющих вершину конуса с точками основания.
Прямым конусом (далее — конусом) называется конус, у которого прямая, проходящая через вершину конуса и центр окружности основания, перпендикулярна плоскости основания
Образующими конуса называются отрезки, соединяющие вершину конуса с точками окружности основания
Высотой конуса называется перпендикуляр, проведенный из вершины конуса к плоскости j j основания
Осью конуса называется прямая, содержащая высоту конуса
- Все образующие конуса равны и составляют ; равные углы с плоскостью основания
- Сечение конуса плоскостью, проходящей ! через его вершину, является равнобедренным треугольником, боковые стороны которого — образующие данного конуса
- Сечение конуса плоскостью, параллельной j плоскости основания, является кругом, центр которого лежит на оси конуса. Образующая и высота j конуса делятся плоскостью этого сечения на пропорциональные части
Площадь сечения конуса, параллельного плоскости основания, и площадь основания относятся как квадраты расстояний от вершины конуса до’ I плоскостей сечения и основания
Усеченный конус
Плоскость, параллельная плоскости основания конуса и пересекающая его образующие, отсекает конус, подобный данному, и тело, которое называется усеченным конусом.
Основаниями усеченного конуса являются основание данного конуса и круг, полученный в сечении.
Высотой усеченного конуса называется перпендикуляр, проведенный из точки одного основания к плоскости другого основания.
Образующими усеченного конуса называются отрезки образующих данного конуса, ограниченные плоскостями оснований усеченного конуса.
Осью усеченного конуса называется прямая, которая проходит через центры его оснований.
•Все образующие усеченного конуса равны и наклонены к плоскости каждого из оснований под равными углами
•Осевое сечение усеченного конуса представляет собой равнобедренную трапецию, основаниями которой являются диаметры оснований усеченного конуса, а боковыми сторонами — его образующие
Шар и сфера
Шаром называется множество всех точек пространства, удаленных от данной точки (центра шара) на расстояние, не превышающее заданное (радиус шара).
Сферой называется поверхность шара.
Хордой сферы называется отрезок, соединяющий две точки сферы.
Диаметром шара (сферы) называется хорда, проходящая через центр сферы.
Если расстояние от центра шара до плоскости меньше радиуса шара, то сечение шара данной плоскостью является кругом. Центр этого круга находится в основании перпендикуляра, проведенного из центра шара к плоскости сечения.
Если расстояние от центра сферы до плоскости меньше радиуса сферы, то сечение сферы плоскостью является окружностью. Центр этой окружности находится в основании перпендикуляра, проведенного из центра сферы к плоскости сечения.
Диаметральной плоскостью называется секущая плоскость, проходящая через центр шара.
Сечение шара диаметральной плоскостью: называется большим кругом, а окружность этого сечения — большой окружностью.
Касательной плоскостью к сфере (шару) называется плоскость, имеющая со сферой единственную общую точку (точку касания).
Свойство касательной плоскости. Касательная плоскость к сфере перпендикулярна paдиусу сферы, проведенному в точку касания.
Признак касательной плоскости. Если радиус сферы является перпендикуляром, проведенным из центра сферы к плоскости, проходящей через другой конец радиуса, то данная плоскость является касательной к сфере.
Касательной прямой к сфере (шару) называется прямая, принадлежащая касательной плоскости к данной сфере (шару) и проходящая через точку касания.
Историческая справка
Понятие тела вращения было известно еще с догреческих времен. Определения цилиндра, конуса и шара приведены в «Началах» Евклида, но немалая заслуга в исследовании этих тел принадлежит его современникам и последователям — Евдоксу, Аполлонию, Архимеду, Паппу. Так, Аполлоний Пергский (ок. 262-190 гг. до н. э) в своей работе «Конические сечения» установил, что сечениями конической поверхности могут быть окружность, эллипс, парабола или гипербола.
Новым толчком к изучению поверхностей и тел вращения стало возникновение и развитие дифференциальной геометрии, которая позволила исследовать плоские и пространственные кривые и поверхности методами математического анализа. Ее возникновение было, в свою очередь, обусловлено практическими потребностями математической картографии, в частности необходимостью полностью или частично изображать земную поверхность на плоскости.
В историю развития дифференциальной геометрии вписаны и имена ученых, чья научная деятельность связана с Украиной. Выдающийся математик и педагог, автор «Очерков по теории поверхностей» Вениамин Федорович Каган (1869-1953), который экстерном окончил Киевский университет, в начале XX века занимался плодотворной научной и просветительской деятельностью в Одессе. Профессор Киевского университета, автор работы «Элементы теории поверхностей» Борис Яковлевич Букреев (1859-1962) — один из основателей Киевского математического общества, которое было и остается центром передовых научных идей.
- Решение задач на вычисление площадей
- Тела вращения: цилиндр, конус, шар
- Четырехугольник
- Площади фигур в геометрии
- Окружность
- Эллипс
- Гипербола
- Парабола