Как найти центр окружности по черчению

Определение центра окружности и центра дуги окружности

Порядок определение центра

Взаимное пересечение перпендикуляров, восставленных в середине каждой хорды, определяет центр окружности (точку О). На фиг. 9,6 показано нахождение центра дуги окружности (построение аналогично предыдущему).

Выпрямление дуги окружности

Определение длины 1 дуги АВ окружности (приближенный способ, фиг. 10).

Через хорду АВ проводят перпендикуляр (фиг. 10,а), пересекающий дугу в точке К. Из точек С и D, как из центров, радиусами г, равными d— диаметру окружности, проводят две дуги до взаимного их пересечения в точке 01.

Расстояние между точками пересечения лучей 01А и O1B с касательной, проведенной к окружности в точке К, определяет приближенное значение спрямленной дуги (отрезок А1В1).

Расстояние между точками С1 и D1 определяет приближенную длину полуокружности. При отсутствии центра окружности

длина дуги АВ (фиг. 10,6) может быть определена следующим путем: хорду А В делят на четыре равные части; одну четвертую часть откладывают от точки В на дуге АВ; полученную точку С соединяют с точкой деления 1. Отрезок 1—С равен половине длины дуги АВ; CD — приближенное значение длины всей дуги АВ.

Определение длины окружности. Длину окружности определяют по формуле l=П*D, где l — длина окружности, П = 3,14159, a D—диаметр окружности. На фиг. 11,а показана длина l окружности диаметра D.

Графически длина окружности приближенно может быть определена путем суммирования длины двух сторон аз равностороннего треугольника и двух сторон а квадрата, вписанных в окружность, как это показано на фиг. 11,6 (2аз + 2а4). Точность определения — 0,01. На фиг. 11,в длина окружности определена следующим способом: из центра О под углом 30° проводят прямую до пересечения ее в точке А с касательной к окружности; от точки А откладывают отрезок АВ, равный трем радиусам R; из точки В, как из центра, радиусом ВМ проводят дугу окружности до пересечения с касательной прямой в точках С и D. Отрезок CD будет равен длине окружности. Точность определения — 0,0001.

Определение приближенной длины очерка эллипса (фиг. 12). Для определения длины очерка эллипса ACBD соединяют точки А и С и из центра О радиусом, равным АС, засекают на осях эллипса точки М и N. Измерив длину отрезка MN, умножают ее на 3,14 и получают приближенную длину очерка эллипса (l = 3,14*MN).

Как найти Как найти центр окружности?

Как найти центр отверстия?

Через точки пересечения дуг проводят две прямые по направлению к центру до их пересечения в точке О. Точка пересечения этих прямых, и будет искомым центром отверстия.

Как найти центр окружности из уравнения?

Уравнение окружности ω (A; R) имеет вид (x – a) 2 + (y – b) 2 = R 2 , где a и b – координаты центра A окружности ω (A; R) .

Чем размечают отверстия?

Размечать центровые отверстия в деталях диаметром до 40 мм лучше при помощи специального приспособления, называемого колоколом. Оно состоит из корпуса, конического раструба и кернера, перемещаемого в корпусе.

Как найти центр окружности на плоской заготовки?

Есть и совсем простой способ нахождения центра плоской заготовки круглой формы. Всего-то нужно обвести её по периметру, положив на лист бумаги, затем вырезать по начерченной линии круг, согнуть его вчетверо и центр будет найден. Он находится точно на линии пересечения сгибов.

Как правильно разметить отверстия?

Разметка отверстий для сверления.

  1. Определить расположение отверстия по рабочему чертежу. Аккуратно отмерить расстояние отверстия от обоих краев доски. .
  2. Наколите центр отверстия шилом. .
  3. Если должны совпасть отверстия, просверленные в двух досках, зажмите обе доски в тисках.

Окружность

Окружность — это геометрическая фигура, образованная замкнутой кривой линией, все точки которой одинаково удалены от одной и той же точки.

Точка, от которой одинаково удалены все точки окружности, называется центром окружности. Центр окружности обычно обозначают большой латинской буквой O:

Окружность делит плоскость на две области — внутреннюю и внешнюю. Геометрическая фигура, ограниченная окружностью, — это круг:

Построение окружности циркулем

Для построения окружности используют специальный прибор — циркуль:

Установим циркулю произвольный раствор (расстояние между ножками циркуля) и, поставив его ножку с остриём в какую-нибудь точку плоскости (например, на листе бумаги), станем вращать циркуль вокруг этой точки. Другая его ножка, снабжённая карандашом или грифелем, прикасающимся к плоскости, начертит на плоскости замкнутую линию — окружность:

Радиус, хорда и диаметр

Радиус — это отрезок, соединяющий любую точку окружности с центром. Радиусом также называется расстояние от точки окружности до её центра:

Все радиусы окружности имеют одну и ту же длину, то есть они равны между собой. Радиус обозначается буквой R или r.

Хорда — это отрезок, соединяющий две точки окружности. Хорда, проходящая через центр, называется диаметром окружности.

Диаметр обозначается буквой D. Диаметр окружности в два раза больше её радиуса:

Дуга — это часть окружности, ограниченная двумя точками. Любые две точки делят окружность на две дуги:

Чтобы различать дуги, на которые две точки разделяют окружность, на каждую из дуг ставят дополнительную точку:

Для обозначения дуг используется символ :

  • AFB — дуга с концами в точках A и B, содержащая точку F;
  • AJB — дуга с концами в точках A и B, содержащая точку J.

О хорде, которая соединяет концы дуги, говорят, что она стягивает дугу.

Хорда AB стягивает дуги AFB и AJB.

[spoiler title=”источники:”]

http://dmcagency.ru/kak-naiti-kak-naiti-tsentr-okruzhnosti

http://izamorfix.ru/matematika/planimetriya/okruzhnost.html

[/spoiler]

как найти центр окружности (черчение)

Элеонора Кнышук



Ученик

(103),
на голосовании



6 лет назад

Голосование за лучший ответ

Полина Терехова

Ученик

(108)


6 лет назад

Как бы объяснить… по касательным (если провести 2 касательных и найти перпендикуляры пересечение перпендикуляров и будет центр окружности)

Галка

Просветленный

(25504)


6 лет назад

Похожие вопросы


Download Article


Download Article

Finding the center of a circle can help you perform basic geometric tasks like finding the circumference or area. There are several ways to find the center point! You can draw crossed lines, you can draw overlapping circles, or you can use a straightedge and ruler.

Things You Should Know

  • Measure out and draw a set of crossed lines inside of a circle to pinpoint the center.
  • Sketch two separate sets of overlapping circles to identify the exact center point.
  • Draw a square snugly around the circle. Sketch an “X” between all 4 corners of the square to find the circle’s center.
  1. Image titled Find the Center of a Circle Step 1

    1

    Draw a circle. Use a compass, or trace any circular object. The size of the circle does not matter. If you’re finding the center of an existing circle, then you don’t need to draw a new circle.

    • A geometry compass is a tool specifically designed to draw and measure circles. Buy one in a school or office supply store![1]
  2. Image titled Find the Center of a Circle Step 2

    2

    Sketch a chord between two points. A chord is a straight line segment that links any two points along the edge of a curve.[2]
    Name the chord AB.

    • Consider using a pencil to sketch your lines. This way, you can erase the marks once you’ve found the center. Draw with a light touch so that it’ll be easier to erase.

    Advertisement

  3. Image titled Find the Center of a Circle Step 3

    3

    Draw a second chord. This line should be parallel and equal in length to the first chord that you drew. Name this new chord CD.[3]

  4. Image titled Find the Center of a Circle Step 4

    4

    Make another line between A and C. This third chord (AC) should stretch through the center of the circle – but you will need to draw one more line to find the exact center point.

  5. Image titled Find the Center of a Circle Step 5

    5

    Join B and D. Draw one final chord (BD) across the circle between Point B and Point D. This new line should cross over the third chord (AC) that you drew.

  6. Image titled Find the Center of a Circle Step 6

    6

    Find the center. If you have drawn straight and accurate lines, then the center of the circle lies at the intersection of the crossed lines AC and BD.[4]
    Mark the center point with a pen or pencil. If you only want the center point marked, then erase the four chords that you drew.

  7. Advertisement

  1. Image titled Find the Center of a Circle Step 7

    1

    Draw a chord between two points. Use a ruler or straightedge to draw a straight line inside the circle, from one edge to another. The points that you use don’t matter. Label the two points A and B.

  2. Image titled Find the Center of a Circle Step 8

    2

    Use a compass to draw two overlapping circles. The circles should be the exact same size. Make A the center of one circle, and B the center of the other. Space the two circles so that they overlap like a Venn diagram.

    • Draw these circles in pencil, not pen. The process will be simpler if you are able to erase these circles later on.
  3. Image titled Find the Center of a Circle Step 9

    3

    Draw a vertical line through the two points at which the circles intersect. There will be a point at the top and a point at the bottom of the “Venn diagram” space created between the overlap of the circles. Use a ruler to make sure that the line protrudes straight through these points. Finally, label the two points (C and D) at which this new line crosses the rim of the original circle. This line marks the diameter of the original circle.

  4. Image titled Find the Center of a Circle Step 10

    4

    Erase the two overlapping circles. This should clear up your work space for the next step of the process. Now, you should have a circle with two perpendicular lines running through it. Do not erase the center points (A and B) of these circles! You will be drawing two new circles.

  5. Image titled Find the Center of a Circle Step 11

    5

    Sketch two new circles. Use your compass to draw two equal circles: one with the point C at its center, and one with the point D. These circles, too, should overlap like a Venn diagram. Remember: C and D are the points at which the vertical line intersects the main circle.

  6. Image titled Find the Center of a Circle Step 12

    6

    Draw a line through the points at which these new circles intersect. This straight, horizontal line should cut through the overlap space of the two new circles. This line is the second diameter of your original circle, and it should be exactly perpendicular to the first diameter line.

  7. Image titled Find the Center of a Circle Step 13

    7

    Find the center. The intersection point of the two straight diameter lines is the exact center of the circle! Mark this center point for reference. If you want to clean up the page, feel free to erase the diameter lines and the non-original circles.

  8. Advertisement

  1. Image titled Find the Center of a Circle Step 14

    1

    Draw two straight, intersecting tangent lines onto the circle. The lines can be completely random. However, the process will be easier if you make them roughly square or rectangular.[5]

  2. Image titled Find the Center of a Circle Step 15

    2

    Translate both of the lines to the other side of the circle. You will end up with four tangent lines forming a parallelogram or a rough rectangle.

  3. Image titled Find the Center of a Circle Step 16

    3

    Draw the diagonals of the parallelogram. The point where these diagonal lines intersect is the circle’s center.

  4. Image titled Find the Center of a Circle Step 17

    4

    Check the accuracy of the center with a compass. The center should be on target as long as you didn’t slip while translating the lines or when drawing the diagonals. Feel free to erase the parallelogram and diagonal lines.

  5. Advertisement

Practice Problems and Answers

Add New Question

  • Question

    How do you find the center of a circle if you’re only given the equation?

    David Jia

    David Jia is an Academic Tutor and the Founder of LA Math Tutoring, a private tutoring company based in Los Angeles, California. With over 10 years of teaching experience, David works with students of all ages and grades in various subjects, as well as college admissions counseling and test preparation for the SAT, ACT, ISEE, and more. After attaining a perfect 800 math score and a 690 English score on the SAT, David was awarded the Dickinson Scholarship from the University of Miami, where he graduated with a Bachelor’s degree in Business Administration. Additionally, David has worked as an instructor for online videos for textbook companies such as Larson Texts, Big Ideas Learning, and Big Ideas Math.

    David Jia

    Academic Tutor

    Expert Answer

  • Question

    How do you find the center of the circle if you’re only given the endpoints of the diameter?

    David Jia

    David Jia is an Academic Tutor and the Founder of LA Math Tutoring, a private tutoring company based in Los Angeles, California. With over 10 years of teaching experience, David works with students of all ages and grades in various subjects, as well as college admissions counseling and test preparation for the SAT, ACT, ISEE, and more. After attaining a perfect 800 math score and a 690 English score on the SAT, David was awarded the Dickinson Scholarship from the University of Miami, where he graduated with a Bachelor’s degree in Business Administration. Additionally, David has worked as an instructor for online videos for textbook companies such as Larson Texts, Big Ideas Learning, and Big Ideas Math.

    David Jia

    Academic Tutor

    Expert Answer

  • Question

    In the first method, what do I do if the chords are of different lengths?

    Community Answer

    It’s not easy to construct parallel chords of equal length. In practice, it would be a process of trial and error until you get the chords you need. But the real goal here is to find the center of a circle, and here’s a way to do it without worrying about equal and parallel chords: (1) draw any two or more chords; (2) perpendicularly bisect each chord (using either a compass or a ruler and right triangle; (3) the perpendicular bisectors will intersect at the circle’s center.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • You can also find the center of a circle by mathematically “completing the square.”[6]
    This is useful if you are given a circle equation, but you aren’t working with a physical circle.

  • Try using graph paper instead of blank or ruled paper. It might help to have the perpendicular lines and boxes for guidance.

  • If you have right angled square, place the corner anywhere along the circumference. Draw the 2 lines that intersect the circumference. Draw a line between those 2 points. Repeat on any other point on the circle. Where the lines intersect is the centrepoint.

Advertisement

  • A straightedge is not the same as a ruler. A straightedge can be any straight and even surface, but a ruler shows measurements. You can turn a straightedge into a functional ruler by marking it with inch or centimeter increments.

  • In order to find the true center of a circle, you must use a geometric compass and a straightedge.

Advertisement

Things You’ll Need

  • Pencil
  • Paper
  • Straightedge
  • Geometric compass
  • Grid paper

References

About This Article

Article SummaryX

To find the center of a circle, start by drawing a straight line between 2 points on the circle. Don’t worry about trying to draw the straight line so it’s in the center — anywhere on the circle will do. Then, draw a second straight line that’s parallel to the first line on the opposite side of the circle. Next, draw a diagonal line from the first end of the first line to the opposite end of the second line. Repeat with the other two ends so that you’ve drawn an “X.” The point where the lines intersect is the center of the circle! If you want to learn how to draw overlapping circles to find the center, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 753,213 times.

Reader Success Stories

  • Robert

    “I had a circular piece of wood that was a circular tabletop that I wanted to use for something else. I needed to…” more

Did this article help you?

Добавить комментарий