Как найти центр тяжести сечения прямоугольника

Определение координат центра тяжести фигур

Определение координат центра тяжести xC и yC плоских фигур нестандартной формы выполняется при решении задач для последующих расчетов остальных геометрических характеристик, например, таких как радиусы и осевые моменты инерции поперечных сечений.

Рассмотрим способы и пример определения координат положения центра тяжести фигуры нестандартной формы.

Способы определения координат центра тяжести

Способы определения координат центров тяжести твердых объёмных тел и плоских фигур можно получить исходя из полученных ранее общих формул для расчета положения центра тяжести.

Существует 5 способов расчета координат положения центра тяжести:

  1. Аналитический (путем интегрирования).
  2. Метод симметрии. Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.
  3. Экспериментальный. (метод подвешивания тела).
    Этот способ подходит в основном для плоских и линейных тел.
  4. Разбиение. Тело или фигура разбивается на конечное число частей (простых тел или фигур), для каждой из которых положение центра тяжести C и площадь A известны.

    Например, проекцию тела на плоскость xOy (рисунок 1.8) можно представить в виде двух плоских фигур с площадями A1 и A2 (A = A1+ A2).
    Определение координат центра тяжести разбиением

    Рисунок 1.8

    Центры тяжести этих фигур находятся в точках C1(x1, y1) и C2(x2, y2). Тогда координаты центра тяжести тела равны:
    Формулы для расчета координат центра тяжести

  5. Дополнение (Метод отрицательных площадей или объемов).
    Это частный случай предыдущего способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны.

    Например, необходимо найти координаты центра тяжести плоской фигуры (рисунок 1.9):
    Метод отрицательных площадей или объемов

    Рисунок 1.9

    Тогда координаты центра тяжести фигуры с отверстием можно определить по формулам:
    Формула определения центра тяжести

При решении задач по определению координат центра тяжести плоских фигур и объемных тел применяются последние два способа (разбиение и дополнение).

Пример определения координат центра тяжести сложной фигуры в нашем коротком видео:

Другие видео

Пример определения координат центра тяжести плоской фигуры

Задача
Определить координаты центра тяжести плоской фигуры с круглым отверстием
Сложное сечение
Решение
Разделим заданное сечение на простые фигуры – прямоугольник, круг и прямоугольный треугольник.
Через нижнюю левую точку фигуры проведем координатные оси x и y.
Разбивка сечения
Рассчитаем необходимые для решения задачи площади A и координаты x,y центров тяжести Ci отдельных фигур:

Прямоугольник (фигура 1)
Площадь
A1=400×500=200000 мм2
Положение центра тяжести
x1=200мм
y1=250мм
Центры тяжести частей фигуры
Круг (2) (вычитаемая фигура)
Площадь
A2=π×2002/4=31416 мм2
Центр тяжести
x2=200мм
y2=300мм

Прямоугольный треугольник (3)
Площадь
A3=400*100/2=20000 мм2
Положение центра тяжести треугольника находится на пересечении его медиан (на расстоянии 1/3 высоты от основания или 2/3 высоты от его вершин)
x3=400×2/3=266,7мм
y3=500+100×1/3=533,3мм

Координаты x и y центра тяжести C всей плоской фигуры определим по формулам:
Расчет координат центра тяжести
Ответ: Таким образом, центр тяжести заданной фигуры находится в точке C с координатами xC=207,1мм, yC=271,7мм.
Координаты центра тяжести

Другие примеры решения задач >
Центры тяжести простейших фигур >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Определить главные центральные моменты инерции, осевые моменты сопротивления  сечения, составленного из стандартных профилей проката.

Сечение состоит из двух неравнополочных уголков 75×50х5 (маркировка в мм) и швеллера № 16 (№ швеллера говорит о его высоте в см).

2016-09-08-20-28-30-skrinshot-ekrana

  1. Определим положение центра тяжести сечения.

Сечение симметрично относительно оси у, проводим её как ось – главную и центральную. Координата хС=0. Для нахождения уС проводим случайную ось х (выбранную случайным образом). Обозначим центры тяжести всех профилей и выпишем необходимые характеристики профилей из сортамента прокатной стали.

Фигуры 1,2 – уголки 75×50х5

2016-09-08-20-30-55-skrinshot-ekrana

А1=А2=6,11 см2

Iх1= Iх2=34,8 см4

Iу1= Iу2=12,5 см4

Фигура 3 – швеллер №16

2016-09-08-20-32-08-skrinshot-ekrana

А3=18,1 см2,    

Iх3=747 см4

Iу3=63,3 см4.

Покажем на схеме и определим координаты у для профилей

ууу=2,39 см,

у1= –z=-1,8 см.

Определим координату уС по формуле

 2016-09-06 20-26-28 Скриншот экрана,

где Аiплощадь каждого профиля,

      уi – координата.

2016-09-08-20-35-07-skrinshot-ekrana

Проводим главную центральную ось х вниз от оси х′ на 0,11 см, наносим т.С – центр тяжести всего сечения.

2. Определяем главные центральные моменты инерции по формулам перехода:

2016-09-06 20-36-54 Скриншот экрана,

где Ixi , Iyi моменты инерции каждой фигуры;

Аi площадь сечения каждой фигуры;

аi – расстояние от центра тяжести каждой фигуры до главной центральной оси х;

bi – расстояние от центра тяжести каждой фигуры до главной центральной оси у.

Определяем аi (смотрим схему)

аау1+|уС|= 2,39 + 0,11 = 2,5см,

а3= — (|у3|-|уС|) = -1,69см.

Определяем Iх. Следует обратить внимание на то, что фигура 3 – швеллер – повернут, поэтому, для определения Iх следует из сортамента взять Iу швеллера.

Iх3=63,3см4

2016-09-08-20-40-40-skrinshot-ekrana

Определяем Iу.  Для швеллера (повернут)  Iу3  Iх = 747см4.

Определим размеры bi, показываем на схеме.

b1= –х0 = -1,17см,

b2= х0 = 1,17см,

b3=0, т.к. центр тяжести швеллера лежит на оси у.

2016-09-08-20-42-24-skrinshot-ekrana3. Определим осевые моменты сопротивления сечения по формулам:

2016-09-08-20-44-11-skrinshot-ekrana

Из схемы видно ,что

2016-09-08-20-44-50-skrinshot-ekrana

Тогда

2016-09-08-20-46-18-skrinshot-ekrana

Определить главные центральные моменты инерции сечения геометрической формы.

2016-09-06 20-24-39 Скриншот экрана

  1. Определим положение центра тяжести сечения.

Сечение симметрично относительно оси у, поэтому нанесем ось у – ось, на которой находится центр тяжести всего сечения. Координата хС=0, значит, следует определить координату уС.

Выберем случайную ось х — внизу сечения.

Разобьем сечение на простые фигуры:

фигура 1 – прямоугольник с основанием см и высотой см, отмечаем центр тяжести прямоугольника – т. С1

фигура 2 – равнобедренный треугольник с основанием см и высотой см, отмечаем его центр тяжести – т. С2.

Теперь  вычислим площади каждой фигуры и определим  координаты у каждой фигуры, затем координаты нанесем на схему

Прямоугольник

2016-09-06 20-30-29 Скриншот экрана

Треугольник

2016-09-06 20-33-02 Скриншот экрана

Теперь определим координату центра тяжести всего сечения по формуле:

2016-09-06 20-26-28 Скриншот экрана

Тогда

2016-09-06 20-34-57 Скриншот экрана

Отмечаем уС на схеме, центр тяжести всего сечения – т.С — и проводим через эту точку главную центральную ось х.

По формулам перехода определяем главные центральные моменты инерции сечения:

2016-09-06 20-36-54 Скриншот экрана,

где Ixi  Iyi  — моменты инерции каждой фигуры;

Аi площадь сечения каждой фигуры;

аi расстояние от центра тяжести каждой фигуры до главной центральной оси х;

bi расстояние от центра тяжести каждой фигуры до главной центральной оси у.

Фигура 1 – прямоугольник

2016-09-06 20-40-04 Скриншот экрана

Расстояние а1 от С1 до оси х покажем на схеме. Из схемы видно, что а1=- ( уС – у1 )= -0,8 см. Так как С1 находится на оси у, то b1=0.

Фигура 2 – треугольник

2016-09-06 20-43-51 Скриншот экрана

Находим а=  у2 – уС = 7 — 3,8= 3,2 см, отмечаем на схеме.

b2=0, т.к. С2 находится на оси у.

Подставляем значения в формулы перехода и определяем:

главный центральный момент инерции сечения относительно оси х

2016-09-06 20-46-36 Скриншот экрана

— главный центральный момент инерции сечения относительно оси у

2016-09-06 20-47-22 Скриншот экрана

Таким образом,

2016-09-06 20-48-04 Скриншот экрана

Для заданного поперечного сечения, состоящего из швеллера и равнобокого (равнополочного) уголка   требуется определить главные центральные моменты инерции

2014-12-06 12-19-17 Скриншот экрана

1)  Вычерчиваем сечение в масштабе.

2)  Разбиваем на простейшие фигуры:

       1. Швеллер №30 (пользуемся сортаментом прокатных профилей):

2014-12-06 12-21-10 Скриншот экрана

   2. Уголок 2014-12-06 12-22-59 Скриншот экрана:

2014-12-06 12-24-57 Скриншот экрана

3)  В каждой фигуре найти собственный центр тяжести С1 и С2   ,провести собственные оси.

4)  Выбрать вспомогательные оси  2014-12-06 12-26-45 Скриншот экрана.

5) Относительно вспомогательных осей определить центр тяжести всей фигуры:

2014-12-06 12-28-09 Скриншот экрана

Через найденный центр тяжести проводим центральные оси.

6) Находим моменты инерции всей фигуры относительно центральных осей, используя формулы перехода между параллельными осями

При определении центробежного момента инерции следует помнить ,что если фигура имеет хотя бы одну ось симметрии, то эта ось является главной, вторая ось, перпендикулярная ей, тоже главная. Центробежный момент относительно главных осей равен 0. Таким образом, для швеллера  2014-12-06 12-34-23 Скриншот экрана

Для уголка 2014-12-06 12-35-27 Скриншот экрана см4,  знак зависит от расположения уголка (см. Таблицы «Знак центробежного момента для уголков»). В нашем случае он положительный.

2014-12-06 12-44-49 Скриншот экрана

Здесь: аi расстояния между центральной осью Х и собственным центром тяжести каждой фигуры,

bi расстояние между центральной осью Y и собственным центром тяжести каждой фигуры 

Как видим из вычислений, центробежный момент инерции сечения 2014-12-06 12-47-02 Скриншот экраназначит, центральные оси Х;Y не являются главными!

7) Определим положение главных осeй через угол α0:

2014-12-06 12-49-19 Скриншот экрана

Знак «-» означает, что надо повернуть оси Х, У по часовой стрелке.

8) Определим главные моменты инерции сечения

2014-12-06 12-50-59 Скриншот экрана 9) Проверка: Сумма моментов инерции относительно любых двух взаимно перпендикулярных осей есть величина постоянная:

2014-12-06 12-52-19 Скриншот экрана

Проверка выполняется.

Найти главные центральные моменты инерции.

2014-12-11 21-57-49 Скриншот экрана

  1. Подготовка исходных данных.

Из сортамента выписываем:

— для двутавра №10:

2014-09-20 22-06-32 Скриншот экрана

— для швеллера №20:

2014-09-20 22-07-27 Скриншот экрана

Нумеруем составные части, показываем их центры тяжести (С1, С2, С3) и собственные центральные оси каждой из них (х1,у1; х2,у2; х3,у3).

2.  Поскольку сечение имеет одну ось симметрии, то она – одна из главных центральных (у0). Найдем положение центра тяжести на этой оси. Для этого выберем вспомогательную ось х‘, перпендикулярную оси симметрии, и реализуем формулу:2014-09-20 22-09-05 Скриншот экрана

которая и определит расстояние от оси х‘ до искомого центра тяжести.

Тогда А=А1+А2+А3=2×20+14,3+28,83=83,15 см2,

2014-09-20 22-10-43 Скриншот экрана

тогда

2014-09-20 22-11-37 Скриншот экрана

Показываем на схеме центр тяжести «С» и проводим вторую главную центральную ось х0.

Ординаты собственных центров тяжести простых фигур в системе главных центральных осей:

2014-09-20 22-13-07 Скриншот экрана

3. Вычисляем главные центральные моменты инерции2014-09-20 22-14-19 Скриншот экрана

2014-09-20 22-15-21 Скриншот экрана

Итак, 

2014-09-20 22-16-24 Скриншот экрана

Определить главные центральные моменты инерции сечения.

Составные простые части сечения: прямоугольник 100×60см (I),  полукруг r=30см  (IIи III), треугольник 100×30см (IV). 

2014-12-11 21-59-04 Скриншот экрана

Вертикальная ось симметрии у0 является одной из главных центральных осей.

  1. Найдем положение центра тяжести сечения на оси симметрии. Для этого выберем вспомогательную ось х, перпендикулярную оси симметрии. Пусть она совпадает с осями: х1, х2, х3

.2014-09-20 21-42-01 Скриншот экрана

Общая площадь А = А1 А2 А3 + А4 = 6000 – 1415 – 1415 + 1500 = 4670см2.

Статический момент относительно вспомогательной оси х‘:

2014-09-20 21-43-50 Скриншот экрана

Тогда2014-09-20 21-44-43 Скриншот экрана

значит, центр тяжести сечения располагается на 12,8см выше вспомогательной оси х‘.

2. Вычисляем осевые моменты инерции     2014-09-20 21-46-11 Скриншот экрана

Они и будут главными центральными моментами инерции сечения.

2014-09-20 21-47-46 Скриншот экрана

Здесь применялись формулы:

2014-09-20 22-03-17 Скриншот экрана

Найти главные центральные моменты инерции сечения, состоящего из листа 40×2см и двух уголков №14/9.

2014-12-11 22-00-38 Скриншот экрана

Исходные данные из сортамента для неравнобокого уголка №14/9.

2014-09-20 21-31-46 Скриншот экрана

Сечение имеет одну ось симметрии. Она – одна из главных центральных. Обозначаем её х0. Чтобы показать вторую главную центральную ось, надо найти положение центра тяжести на оси симметрии:

2014-09-20 21-32-48 Скриншот экрана

Выбираем вспомогательную ось у‘, перпендикулярную к оси симметрии и вычисляем статический момент сложного сечения относительно этой оси:

2014-09-20 21-34-33 Скриншот экрана

Проводим главную центральную ось у0 через найденный центр тяжести. 

Вычисляем непосредственно главные центральные моменты инерции:

2014-09-20 21-35-34 Скриншот экрана

Таким образом, 

2014-09-20 21-36-42 Скриншот экрана

Требуется найти главные центральные моменты инерции.

2014-12-11 22-01-56 Скриншот экрана

Сечение имеет две оси симметрии. Следовательно, центр тяжести совпадает с точкой пересечения этих осей, а сами они оказываются главными центральными осями.

Остается лишь вычислить осевые моменты инерции относительно осей х0 и у0.

«Разбиваем» сечение на простые фигуры: прямоугольник 6×8см и два круга r=1см. Тогда:

2014-09-20 21-27-15 Скриншот экрана

Итак

,2014-09-20 21-28-23 Скриншот экрана

Требуется определить величины главных центральных моментов инерции.

Сечение имеет одну ось  симметрии.

2014-12-11 22-04-07 Скриншот экрана

На основании первого признака главных осей для симметричных сечений можно утверждать, что ось симметрии является одной из главных центральных осей. Обозначаем ее «у0». Значит, вторая главная центральная ось, перпендикулярная оси симметрии, должна проходить через центр тяжести сечения.

Следовательно, нам достаточно только найти положение центра тяжести на оси симметрии, а для этого необходимо вычислить одну лишь координату его по формуле:2014-09-20 21-15-38 Скриншот экрана

С этой целью выбираем вспомогательную ось х, «разбиваем» сложное сечение на прямоугольник со сторонами 10 и 4см и треугольник с основанием 4см и высотой 3см.

Тогда:2014-09-20 21-17-08 Скриншот экрана

Проводим через найденный центр тяжести вторую главную центральную ось х0.

Расстояние между осями х1 и х0: а1=5 — 4,3 =0,7см, а расстояние между осями х2 и х0: а2=10 – 1 — 4,3 = 4,7см.

Таким образом, положение главных центральных осей найдено, осталось вычислить величины главных центральных моментов инерции:

2014-09-20 21-18-46 Скриншот экрана

х‘, у – вспомогательные оси при определении положения центра тяжести сечения,

Sх’, Sу’ – статические моменты относительно вспомогательных осей,

хс, ус – координаты центра тяжести сечения, а также и обозначение случайных (т.е. не главных) центральных осей,

х0, у0 – главные центральные оси,

α0 – угол поворота главных центральных осей от случайных центральных осей хс и ус,

2014-09-09 22-32-02 Скриншот экрана, — главные центральные моменты инерции,

сi – центры тяжести отдельных фигур, из которых состоит сечение сложной формы,

хi, уi – собственные центральные оси отдельных фигур, а также и координаты центров тяжести отдельных фигур в системе вспомогательных осей х‘, у‘,

аi, вi – расстояния между собственными центральными осями отдельных фигур хi, уi и случайными центральными осями всего сечения хс, ус.

Требуется определить положение главных центральных осей и величины главных центральных моментов инерции.

Сечение имеет сложную форму, состоит их 4х простых фигур:

I – швеллера №30а,

II – прямоугольника 2×40см,

III – двутавра №20а,

IV – равнобокого уголка №12 (d=10мм).

Всё начинается с подготовки исходных данных. С этой целью необходимо сделать выписки из таблиц Сортамента прокатных сечений (см. рубрику «Таблицы»).

2014-12-11 22-06-46 Скриншот экрана

Этап 0. Подготовительный

Фигура I. Швеллер №30а

2014-09-11 22-28-17 Скриншот экрана

Фигура II – прямоугольник 2×40см, В сортаменте прокатной стали этой фигуры нет, поскольку все геометрические характеристики ее свободно вычисляются

Фигура III. Двутавр №20а.

2014-09-11 22-30-52 Скриншот экрана

Фигура IV. Равнобокий уголок №12 (d=10мм).

2014-09-11 22-31-57 Скриншот экрана

Пользуясь данными сортамента, на схеме сечения, вычерченной в достаточно крупном масштабе, показываем положение центров тяжести каждой из фигур и собственные центральные оси хi, уi.

Этап 1. Определение положения центра тяжести сечения. Сечение не имеет осей симметрии. Поэтому придётся определять две координаты центра тяжести, используя формулы:

2014-09-11 22-33-07 Скриншот экрана

Для реализации этих формул выбираем вспомогательные оси х‘ и у (см.схему сечения).

Площади отдельных фигур: А1=43,89см2, А2=2×40=80см2,

А3=35,5см2, А4=23,3см2.

Координаты центров тяжести отдельных фигур:2014-09-11 22-34-23 Скриншот экрана

Площадь всего сечения А=182,7см2.

2014-09-11 22-35-49 Скриншот экрана

Тогда координаты собственных центров тяжести отдельных фигур в системе случайных центральных осей хс, усбудут:

а1=2,66см,                            b1=-7,5см

а2=-2,34см,                           b2=-1,93см

а3=-7,34см,                           b3=9,07см

а4=14,33см,                           b4=2,4см.

Этап 2.  Определение моментов инерции относительно случайных центральных осей  хс, ус.

2014-09-11 22-37-33 Скриншот экрана

Справочные сведения о знаке собственного центробежного момента инерции уголка (равнобокого и неравнобокого):

2014-09-11 22-39-01 Скриншот экрана

Справочные сведения для определения собственного центробежного момента инерции неравнобокого уголка:  

2014-09-11 22-40-34 Скриншот экрана

Этап 3. Определение положения главных центральных осей

2014-09-11 22-41-31 Скриншот экрана

Положительный угол  α0 соответствует повороту против часовой стрелки главных осей относительно случайных (см.схему).

Этап 4. Определение величин главных центральных моментов инерции

2014-09-11 22-42-40 Скриншот экрана

Правило: Ось с максимальным главным моментом инерции «тяготеет» к более тяжелой случайной оси. Поэтому в нашем случае:

2014-09-11 22-44-28 Скриншот экрана

тогда 2014-09-11 22-45-35 Скриншот экрана

Проверки.

  1. Выполнение закона суммы осевых моментов инерции.

Для этого сравним

.2014-09-11 22-47-00 Скриншот экрана

получаем:

2014-09-11 22-48-25 Скриншот экрана

Разница в последней цифре дает незначительную погрешность <<5%, что вполне допустимо в инженерных расчетах.

2. Проверка правильности вычислений.

Суть ее в том, что если все сделано правильно, то центробежный момент инерции сечения относительно найденных нами главных осей должен равняться нулю.

2014-09-11 22-50-10 Скриншот экрана

Подставляя сюда  2014-09-11 22-51-18 Скриншот экрана  и sin13˚20’=0,2306,                                                    cos13˚20’=0,9730,имеем

2014-09-11 22-52-55 Скриншот экрана

погрешность составляет:

2014-09-11 22-53-57 Скриншот экрана

И эта проверка выполняется.

Содержание:

Центр тяжести:

При рассмотрении движения тел, особенно таких, как самолеты, ракеты, космические корабли, важное значение имеет понятие центра тяжести.

Определения и формулы для вычисления центров тяжести

Для введения понятия центра тяжести разобьем мысленно рассматриваемое тело на достаточно большое число малых по сравнению с телом или элементарных его частей произвольной формы. Силу тяжести элементарной частицы тела с индексом Центр тяжести в теоретической механике

Радиус-вектор центра тяжести тела Центр тяжести в теоретической механике вычисляем как радиус-вектор центра параллельных сил (рис. 88) по формуле

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — радиус-вектор точки приложения силы тяжести элементарной части тела, принятой за точку; Центр тяжести в теоретической механике— сила тяжести элементарной частицы; Центр тяжести в теоретической механике — сила тяжести всего тела; Центр тяжести в теоретической механике — число частей, на которое мысленно разбито все тело. Центр тяжести является точкой приложения равнодействующей силы тяжести, если силы тяжести отдельных его частей считать системой параллельных сил.

Центр тяжести в теоретической механике

Рис. 88

Если в (1) перейти к пределу, увеличивая число элементарных частей Центр тяжести в теоретической механике до бесконечности, то после замены Центр тяжести в теоретической механике дифференциалом Центр тяжести в теоретической механике, а суммы — интегралом получим

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — радиус-вектор элементарной части тела, принятой за точку. В проекциях на оси координат из (1) и (1′) получаем:

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике— координаты центра тяжести; Центр тяжести в теоретической механике — координаты точки приложения силы тяжести Центр тяжести в теоретической механике.

Используя понятие центра тяжести тела, введем понятие его центра масс. Силы тяжести элементарных частей тела и всего тела можно выразить через их массы Центр тяжести в теоретической механике и Центр тяжести в теоретической механике и ускорение силы тяжести Центр тяжести в теоретической механике с помощью формул

Центр тяжести в теоретической механике

Подставляя эти значения сил тяжести в (1) и (1′) после сокращения на Центр тяжести в теоретической механике, которое принимаем одинаковым для всех частей тела, имеем

Центр тяжести в теоретической механике

и соответственно

Центр тяжести в теоретической механике

По формулам (2) и (2′) определяют радиус-вектор центра масс тела. Центр масс обычно определяют независимо от центра тяжести как геометрическую точку, радиус-вектор, которой вычисляется по формулам (2) или (2′). В проекциях на оси координат из (2) и (2′) получаем:

Центр тяжести в теоретической механике

и

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — координаты центра масс тела.

Для однородного тела силу тяжести элементарной частицы тела и ее массу можно вычислить по формулам

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — объем элементарной частицы тела; Центр тяжести в теоретической механике и Центр тяжести в теоретической механике — соответственно удельный вес и плотность тела. Сила тяжести и масса всего тела

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — объем тела. Подставляя эти значения в (2) и (2′), после сокращения на Центр тяжести в теоретической механике и Центр тяжести в теоретической механике соответственно получим формулы

Центр тяжести в теоретической механике

по которым определяют центр тяжести объема тела.

Если тело имеет форму поверхности, т. е. один из размеров мал по сравнению с двумя другими, как, например, у тонкого листа железа, то имеем

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — удельный вес; Центр тяжести в теоретической механике — площадь элементарной частицы поверхности; Центр тяжести в теоретической механике — площадь всей поверхности. После сокращения на Центр тяжести в теоретической механике для однородной поверхности получим следующие формулы для определения центра тяжести ее площади:

Центр тяжести в теоретической механике

Для однородных тел типа проволоки, у которых два размера малы по сравнению с третьим, можно определить радиус-вектор центра тяжести длины линии по формулам

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — длина элемента линии; Центр тяжести в теоретической механике—общая длина линии, центр тяжести которой определяется.

Методы определения центров тяжести (Центров масс)

Метод симметрии

При определении центров тяжести широко используется симметрия тел. Докажем, что для однородного тела, имеющего плоскость симметрии, центр тяжести находится в плоскости симметрии. Для доказательства выберем начало координат в плоскости симметрии тела и одну из осей координат, ось Центр тяжести в теоретической механике направим перпендикулярно плоскости симметрии, а две других оси расположатся в плоскости симметрии (рис. 89). Каждая частица массой Центр тяжести в теоретической механике, находясь по одну сторону плоскости симметрии, имеет симметричную частицу такой же массы по другую сторону этой плоскости. Координаты Центр тяжести в теоретической механике у симметричных частиц одинаковы при сделанном выборе осей координат, а координаты по оси Центр тяжести в теоретической механике отличаются только знаком. Для координаты центра масс Центр тяжести в теоретической механике имеем следующее выражение:

Центр тяжести в теоретической механике

Разбивая сумму в числителе на две по симметричным частям тела, получаем, что

Центр тяжести в теоретической механике

так как симметричные части тела 1 и 2 одинаковы.

Таким образом, центр масс расположен в плоскости симметрии и для его определения достаточно вычислить только две его координаты Центр тяжести в теоретической механике и Центр тяжести в теоретической механике в этой плоскости.

Аналогично доказывается, что для однородного тела, имеющего ось или центр симметрии, центр масс находится соответственно на оси симметрии или в центре симметрии.

Центр тяжести в теоретической механике

Рис. 89

Метод разбиения на части (метод группировки)

Некоторые тела сложной формы можно разбить на части, центры тяжести которых известны или предварительно могут быть определены. В таких случаях центры тяжести сложных тел вычисляются по общим формулам, определяющим центр тяжести, только вместо элементарных частиц тела берутся его конечные части, на которые оно разбито. Покажем это на частном примере плоской фигуры, изображенной на рис. 90. Плоскую фигуру можно разбить на три части, центры тяжести которых Центр тяжести в теоретической механике, Центр тяжести в теоретической механике и Центр тяжести в теоретической механике известны. Они находятся на пересечении диагоналей прямоугольников. Их радиусы-векторы обозначим Центр тяжести в теоретической механике и площади Центр тяжести в теоретической механике. Общая площадь сложной фигуры будет Центр тяжести в теоретической механике.

Используя определение центра тяжести и производя группировку слагаемых под знаком суммы по частям фигуры, на которые она разбита, получим

Центр тяжести в теоретической механике

Радиусы-векторы центров тяжести частей тела выразятся в такой форме:

Центр тяжести в теоретической механике

или

Центр тяжести в теоретической механике

Используя эти формулы для радиуса-вектора всей фигуры, имеем

Центр тяжести в теоретической механике

Полученная формула имеет ту же структуру, что и формула, определяющая радиус-вектор центра тяжести тела при разбиении его на элементарные частицы, только в нее входят величины для конечных частей тела.

Центр тяжести в теоретической механике

Рис. 90

Метод отрицательных масс

Видоизменением метода разбиения на части является метод отрицательных масс. Проиллюстрируем его тоже на примере плоской фигуры (рис. 91). Для определения центра тяжести этой фигуры ее можно разбить на три части. Можно поступить по-другому. Для этого дополним нашу фигуру до прямоугольника и примем, что этот прямоугольник с площадью Центр тяжести в теоретической механике и центром масс Центр тяжести в теоретической механике полностью заполнен массой (имеет положительную площадь). На той части фигуры, которую добавили, следует распределить отрицательную массу (отрицательную площадь) той же плотности. Площадь этой фигуры с отрицательной массой обозначим Центр тяжести в теоретической механике, а ее центр масс — Центр тяжести в теоретической механике. Применяя метод разбиения на части, радиус-вектор заданной фигуры определим по формуле

Центр тяжести в теоретической механике

В отличие от обычного метода разбиения на части в формуле (4) массы и, следовательно, площади входят со знаком минус.

Метод отрицательных масс особенно удобен при вычислении положения центров тяжести тел, имеющих отверстия.
 

Центр тяжести в теоретической механике

 Рис. 91

Центры тяжести простейших тел

Для определения центров тяжести тел сложной формы методом разбиения на части или методом отрицательных масс необходимо уметь вычислять центры тяжести простейших тел, на которые разбивается тело сложной формы. Рассмотрим некоторые из тел, для определения центров тяжести которых известны простые способы их нахождения или вычисления по формулам.

Прямолинейный отрезок

Центр тяжести прямолинейного однородного отрезка располагается на его середине, а неоднородного— на самом отрезке и не может находиться вне отрезка.

Площадь треугольника

Для определения центра тяжести площади треугольника разобьем его прямыми линиями, параллельными одной из его сторон Центр тяжести в теоретической механике, на полоски, которые в пределе можно принять за прямолинейные отрезки (рис. 92). Центры тяжести отрезков и, следовательно, полосок находятся посередине полоски. Все они расположатся на медиане Центр тяжести в теоретической механике. В пределе центры тяжести полосок непрерывно покроют медиану, но не равномерно, так как площади полосок разные. В каждом центре масс полоски следует считать сосредоточенной массу или площадь этой полоски, пропорциональную длине полоски, если ширину полосок выбирать одинаковой.

Затем разобьем треугольник на полоски прямыми линиями, параллельными другой стороне Центр тяжести в теоретической механике треугольника. Центры их тяжести в пределе покроют неравномерно медиану Центр тяжести в теоретической механике. Центры тяжести неоднородных прямолинейных отрезков Центр тяжести в теоретической механике и Центр тяжести в теоретической механике должны располагаться на этих отрезках, а следовательно, в точке их пересечения Центр тяжести в теоретической механике, являющейся точкой пересечения медиан треугольника. Эта точка делит медианы в отношении 1 к 2, т. е. если длина медианы Центр тяжести в теоретической механике равна Центр тяжести в теоретической механике, то Центр тяжести в теоретической механике, Центр тяжести в теоретической механике.

Центр тяжести в теоретической механике

Рис. 92

Дуга окружности

Дуга окружности Центр тяжести в теоретической механике определяется радиусом Центр тяжести в теоретической механике и стягиваемым ею центральным углом Центр тяжести в теоретической механике(рис. 93). Она имеет ось симметрии, делящую угол пополам. Центр тяжести находится на оси симметрии дуги, которую примем за ось координат Центр тяжести в теоретической механике. Координату центра тяжести дуги Центр тяжести в теоретической механике вычисляем по формуле

Центр тяжести в теоретической механике

Центр тяжести в теоретической механике

Рис. 93

В рассматриваемом случае

Центр тяжести в теоретической механике

Подставляя эти значения в формулу для Центр тяжести в теоретической механике, получим

Центр тяжести в теоретической механике

Таким образом,

Центр тяжести в теоретической механике

Для полуокружности Центр тяжести в теоретической механике. Приняв Центр тяжести в теоретической механике,  получим:

Центр тяжести в теоретической механике

Площадь кругового сектора

Центр тяжести площади кругового сектора с радиусом Центр тяжести в теоретической механике и центральным углом Центр тяжести в теоретической механике находится на оси симметрии, принимаемой за ось Центр тяжести в теоретической механике(рис. 94). Разобьем сектор на элементарные треугольники одинаковой величины. Центры тяжести треугольников в пределе при увеличении их числа до бесконечности равномерно покроют дугу окружности радиусом Центр тяжести в теоретической механике.

Центр тяжести в теоретической механике

Рис. 94

Используя формулу для центра тяжести дуги окружности, получим

Центр тяжести в теоретической механике

или

Центр тяжести в теоретической механике

Для площади полукруга Центр тяжести в теоретической механике, Центр тяжести в теоретической механике. При Центр тяжести в теоретической механике получим

Центр тяжести в теоретической механике

Объем пирамиды и конуса

Определим положение центра тяжести объема конуса (рис. 95). Для простоты рассмотрим прямой конус, у которого высота является осью симметрии. Высотой конуса является отрезок, соединяющий его вершину Центр тяжести в теоретической механике с центром тяжести площади основания Центр тяжести в теоретической механике. Выберем начало координат в вершине конуса, а ось Центр тяжести в теоретической механике направим по оси симметрии конуса. Тогда центр тяжести объема конуса расположится на оси Центр тяжести в теоретической механике.

Разобьем конус плоскостями, перпендикулярными оси Центр тяжести в теоретической механике, на элементарные тонкие диски толщиной Центр тяжести в теоретической механике и площадью Центр тяжести в теоретической механике. Все полученные сечения (диски) конуса подобны его основанию. Координату Центр тяжести в теоретической механике центра тяжести объема конуса вычислим по формуле

Центр тяжести в теоретической механике

Отношения линейных размеров сечений к соответствующим размерам основания конуса пропорциональны их расстояниям до вершины конуса. Отношения площадей пропорциональны квадратам расстояний. Приняв Центр тяжести в теоретической механике, получим

Центр тяжести в теоретической механике

Учитывая, что

Центр тяжести в теоретической механике

имеем

Центр тяжести в теоретической механике

или

Центр тяжести в теоретической механике

Таким образом, центр тяжести прямого конуса находится на расстоянии Центр тяжести в теоретической механике от вершины или Центр тяжести в теоретической механике от основания.

Центр тяжести в теоретической механике

Рис. 95

Это справедливо для объема любого конуса и любой пирамиды, как прямых, так и наклонных, т. е. центр тяжести объема пирамиды или конуса находится на расстоянии Центр тяжести в теоретической механике расстояния от центра тяжести площади основания до вершины.

Объем полушара

Полушар имеет ось симметрии, которую примем за координатную ось Центр тяжести в теоретической механике (рис. 96). Разобьем объем полушара на элементарные диски толщиной dx и радиусом у, который является координатой точки окружности, которая получилась от пересечения полушара с координатной плоскостью Центр тяжести в теоретической механике. Уравнение этой окружности

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике— радиус полушара. Для координаты центра тяжести объема полушара имеем

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — координата центра тяжести элементарного диска. Объем полушара

Центр тяжести в теоретической механике

Объем элементарного диска

Центр тяжести в теоретической механике

так как радиус диска Центр тяжести в теоретической механике. Выполняя интегрирование в пределах от Центр тяжести в теоретической механике до Центр тяжести в теоретической механике, получим

Центр тяжести в теоретической механике

Таким образом, центр тяжести объема полушара находится от его центра на расстоянии

Центр тяжести в теоретической механике

Это расстояние меньше половины радиуса полушара.

Центр тяжести в теоретической механике

Рис. 96

Задача №1

Определить координаты центра тяжести площади плоской фигуры, имеющей размеры, указанные на рис. 97.

Центр тяжести в теоретической механике

Рис.97

Центр тяжести в теоретической механике

Рис. 98

Решение. Присоединим к заданной фигуре дополнительно полукруг 3 и разобьем полученную фигуру на прямоугольник 1 и треугольник 2. Получили три фигуры, две из которых имеют положительные площади (прямоугольник 1 и треугольник 2) и одна — отрицательную (полукруг 3). В выбранной системе координат для координат центра тяжести заданной фигуры имеем

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — координаты центров тяжести отдельных фигур; Центр тяжести в теоретической механике — площади этих фигур.

Вычислим площади и координаты центров тяжести отдельных фигур, учитывая рис. 98 Имеем:

Центр тяжести в теоретической механике

так как Центр тяжести в теоретической механике.

Подставляя полученные значения в (а), получим:

Центр тяжести в теоретической механике

Центр тяжести плоской фигуры

постановка задачи. Найти площадь и координаты центра тяжести плоской фигуры.

План решения:

1.    Разбиваем фигуру на простые отдельные части, положение центров тяжести которых известны.

2.    Выбираем систему координат. Вычисляем площади и координаты Центр тяжести в теоретической механикецентров тяжести отдельных частей. Площади вырезанных частей берем со знаком минус.

3.    Находим общую площадь фигуры по формуле Центр тяжести в теоретической механике

4.    Определяем координаты центра тяжести фигуры:

Центр тяжести в теоретической механике

Задача №2

Найти площадь и координаты центра тяжести плоской фигуры. Криволинейный участок контура является половиной окружности с центром на оси Ох (рис. 74). Размеры на рисунке даны Центр тяжести в теоретической механике

Решение

1. Разбиваем фигуру на простые отдельные части, положение центров тяжести которых известны.

Центр тяжести прямоугольника находится в его геометрическом центре, положение центра тяжести других фигур, встречающихся в задачах, изображено на рис. 75Центр тяжести в теоретической механике

Представляем фигуру в виде двух треугольников 1,2, прямоугольника 3 и выреза 4 в виде полукруга (рис. 76).

2. Вычисляем площадь (в Центр тяжести в теоретической механике) и координаты центра тяжести (в м) каждого элемента:Центр тяжести в теоретической механике

Площадь выреза берем со знаком минус.

3.Площадь фигуры Центр тяжести в теоретической механике

4. Находим координаты центра тяжести всей фигуры:

Центр тяжести в теоретической механике

Вычисления удобно свести в таблицу:Центр тяжести в теоретической механике

Сначала заполняем столбцы Центр тяжести в теоретической механике затем вычисляем статические моменты Центр тяжести в теоретической механике Внизу записываем суммы столбцов, необходимые для вычисления координат центра тяжести. Таким образом

Центр тяжести в теоретической механике

Замечание 1. Большинство задач на определение центра тяжести допускает несколько способов разбиения фигуры. Это можно использовать для проверки решения. Второй вариант разбиения фигуры в данном примере состоит из прямоугольника 3 с размерами Центр тяжести в теоретической механике и вырезанных из него полукруга 4 и двух треугольников 1 и 2 (рис. 77).

Замечание 2. Решение задачи в системе Maple V методом контурного интегрирования.

  • Заказать решение задач по теоретической механике

Пространственная стержневая система

Постановка Задачи. Найти координаты центра тяжести пространственной фигуры, состоящей из N однородных стержней.

План решения:

1. Разбиваем фигуру на отдельные стержни.

2. Выбираем систему координат. Вычисляем длины и координаты Центр тяжести в теоретической механике центров тяжести отдельных стержней. Координаты центра прямолинейного однородного стержня вычисляем как полусумму координат его концов.

3. Находим суммарную длину стержней системы Центр тяжести в теоретической механике

4. Определяем координаты центра тяжести тела по формулам

Центр тяжести в теоретической механике

Задача №3

Найти координаты центра тяжести пространственной фигуры, состоящей из шести однородных стержней (рис. 78). Даны размеры:Центр тяжести в теоретической механике

Решение

1. Разбиваем фигуру на шесть стержней.

2. Выбираем систему координат (рис. 78). Вычисляем длины и координаты Центр тяжести в теоретической механикецентров тяжести отдельных стержней.
Центр тяжести в теоретической механике
3. Находим суммарную длину стержней системы:

Центр тяжести в теоретической механике

Промежуточные результаты удобно занести в таблицу:
Центр тяжести в теоретической механике
4. Определяем координаты центра тяжести тела по формулам

Центр тяжести в теоретической механике

Постановка задачи. Найти координаты центра тяжести однородного объемного тела.

План решения:

1. Разбиваем тело на простые части, положение центров тяжести которых известно.

2. Выбираем систему координат. Вычисляем объемы Центр тяжести в теоретической механике и координаты Центр тяжести в теоретической механикецентров тяжести отдельных частей. Объемы вырезанных частей берем со знаком минус.

3. Находим общий объем тела по формуле Центр тяжести в теоретической механике

4. Определяем координаты центра тяжести тела:

Центр тяжести в теоретической механике

Задача №4

Найти координаты центра тяжести однородного объемного тела (рис.79);Центр тяжести в теоретической механике

Центр тяжести в теоретической механике

Решение

1. Разбиваем тело на пирамиду 1, параллелепипед 2 и половину цилиндра 3 (рис. 80).

2. Выбираем систему координат. Вычисляем объемы Центр тяжести в теоретической механике и координаты Центр тяжести в теоретической механике центров тяжестей отдельных частей. Центр тяжести пирамиды 1 лежит в точке Центр тяжести в теоретической механике

Центр тяжести в теоретической механике

Центр тяжести параллелепипеда 2 совпадает с его геометрическим центром:

Центр тяжести в теоретической механике

Объем половины цилиндра 3 берем со знаком минус:

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — расстояние по оси у от оси цилиндра до его центра тяжести Центр тяжести в теоретической механике.
Центр тяжести в теоретической механике
3. Находим общий объем тела: 

Центр тяжести в теоретической механике

Центр тяжести в теоретической механикеВ общем случае объем тела, лежащего в области Центр тяжести в теоретической механике можно найти, вычисляя тройной интеграл по области Центр тяжести в теоретической механике а координаты центра тяжести, например, Центр тяжести в теоретической механике однородного тела можно определить по формуле Центр тяжести в теоретической механикесм.

4. Определяем координаты центра тяжести тела:
Центр тяжести в теоретической механике

Центр тяжести

Центр тяжести — точка, через которую проходит линия действия равнодействующей элементарных сил тяжести. Он обладает свойством центра параллельных сил. Поэтому формулы для определения положения центра тяжести различных тел имеют вид:
Центр тяжести в теоретической механике
Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес Центр тяжести в теоретической механике каждого отрезка Центр тяжести в теоретической механикеможно представить в виде произведения

где d — постоянный для всей фигуры вес единицы длины материала.
После подстановки в формулы (1) вместо Центр тяжести в теоретической механике их значений Центр тяжести в теоретической механике постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий, примут вид:

Центр тяжести в теоретической механике

Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174),
Центр тяжести в теоретической механике

то вес каждой плоскости (поверхности) можно представить так:

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике — площади каждой поверхности, ар — вес единицы площади фигуры.

После подстановки этого значенияЦентр тяжести в теоретической механике в формулы (1) получаем формулы координат центра тяжести фигуры, составленной из площадей:

Центр тяжести в теоретической механике
Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части

Центр тяжести в теоретической механике

где Центр тяжести в теоретической механике— объем каждой части, а у — вес единицы объема тела.

После подстановки значений Центр тяжести в теоретической механикев формулы (I) получаем формулы для определения координат центра тяжести тела, составленного из однородных объемов;
Центр тяжести в теоретической механике
При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.

Если известен радиус дуги г и центральный угол 2а, стягиваемый дугой и выраженный в радианах, то положение центра тяжести С (рис. 176, а) относительно центра дуги О определится формулой

Центр тяжести в теоретической механикеЦентр тяжести в теоретической механике

Центр тяжести в теоретической механике

Центр тяжести в теоретической механике

Если же задана хорда Центр тяжести в теоретической механике дуги, то в формуле (5) можно произвести замену

Центр тяжести в теоретической механике

и тогда

Центр тяжести в теоретической механике

В частном случае для полуокружности обе формулы примут вид (рис. 176, б)Центр тяжести в теоретической механике

Положение центра тяжести кругового сектора, если задан его радиус r (рис. 176, в), определяется при помощи формулы
Центр тяжести в теоретической механике
Если же задана хорда сектора, то
Центр тяжести в теоретической механике
В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
Центр тяжести в теоретической механике
Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.

У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).

Центр тяжести в теоретической механике

При решении задач на определение положения центра тяжести любого однородного тела, й составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:

  1. выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;
  2. разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;
  3. определить или длины, или площади, или объемы составных частей;
  4. выбрать расположение осей координат;
  5. определить координаты центров тяжести составных частей;
  6. найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;
  7. по найденным координатам указать на рисунке положение центра тяжести тела.
  • Кинематика точки
  • Плоское движение твердого тела
  • Мгновенный центр скоростей
  • Мгновенный центр ускорений
  • Условия равновесия системы сил
  • Плоская система сил
  • Трение
  • Пространственная система сил

Положения центра тяжести некоторых фигур

Прямоугольник.
Так
как прямоугольник имеет две оси симметрии
, то его центр тяжести находится на
пересечении осей симметрии, т.е. в точке
пересечения диагоналей прямоугольника.

Треугольник.
Центр
тяжести лежит в точке пересечения его
медиан. Из геометрии известно, что
медианы треугольника пересекаются в
одной точке и делятся в отношении 1:2 от
основания.

Круг.
Так
как круг имеет две оси симметрии, то его
центр тяжести находится на пересечении
осей симметрии.

Полукруг.
Полукруг
имеет одну ось симметрии, то центр
тяжести лежит на этой оси. Другая
координата центра тяжести вычисляется
по формуле:
.

Многие
конструктивные элементы изготавливают
из стандартного проката – уголков,
двутавров, швеллеров и других. Все
размеры, а так же геометрические
характеристики прокатных профилей это
табличные данные, которые можно найти
в справочной литературе в таблицах
нормального сортамента (ГОСТ 8239-89, ГОСТ
8240-89).

Пример
1.
Определить
положение центра тяжести фигуры,
представленной на рисунке.

Решение:

  1. Выбираем
    оси координат, так чтобы ось Ох прошла
    по крайнему нижнему габаритному размеру,
    а ось Оу – по крайнему левому габаритному
    размеру.

  2. Разбиваем
    сложную фигуру на минимальное количество
    простых фигур:

  1. прямоугольник
    20х10;

  2. треугольник
    15х10;

  3. круг
    R=3
    см.

  1. Вычисляем
    площадь каждой простой фигуры, её
    координаты центра тяжести. Результаты
    вычислений заносим в таблицу

№ фигуры

Площадь
фигуры А,

Координаты
центра тяжести

Х,
см

У,
см

1

=20·10=200

20:2=10

10:2=5

2

3

10

5

  1. Вычисляем
    координаты центра тяжести фигуры по
    формулам:

Ответ:
С(14,5; 4,5)

Пример
2
.
Определить координаты центра тяжести
составного сечения, состоящего из листа
и прокатных профилей.

Решение.

  1. Выбираем
    оси координат, так как показано на
    рисунке.

  2. Обозначим
    фигуры номерами и выпишем из таблицы
    необходимые данные:

  1. – швеллер
    №10; высота h=100
    мм; ширина b=46
    мм; площадь сечения
    ;


  2. двутавр №16; высота
    h=160
    мм; ширина b=81
    мм; площадь сечения
    ;

  3. – лист
    5х100; толщина 5 мм; ширина 100 мм.

  1. Вычисляем
    координаты центра тяжести каждой
    фигуры. Составное сечение симметрично,
    поэтому центр тяжести находится на оси
    симметрии и координата
    .
    Результаты
    вычислений заносим в таблицу

№ фигуры

Площадь
фигуры А,

Координаты
центра тяжести

Х,
см

У,
см

1

=10,9

0

2

0

3

0

  1. Вычисляем
    координаты центра тяжести фигуры по
    формулам:

Ответ:
С(0; 10)

Лабораторная работа №1 «Определение центра тяжести составных плоских фигур»

Цель:
Определить центр тяжести заданной
плоской сложной фигуры опытным и
аналитическим способами и сравнить их
результаты.

Порядок выполнения работы

  1. Начертить
    в тетрадях свою плоскую фигуру по
    размерам, с указанием осей координат.

  2. Определить
    центр тяжести аналитическим способом.

    1. Разбить
      фигуру на минимальное количество
      фигур, центры тяжести которых, мы знаем,
      как определить.

    2. Указать
      номера площадей и координаты центра
      тяжести каждой фигуры.

    3. Вычислить
      координаты центра тяжести каждой
      фигуры.

    4. Вычислить
      площадь каждой фигуры.

    5. Вычислить
      координаты центра тяжести всей фигуры
      по формулам (положение центра тяжести
      нанести на чертеж фигуры):

;

    1. Записать
      координаты центра тяжести.

  1. Определить
    центр тяжести опытным путем на установке
    для определения координат центра
    тяжести.

    1. Вырезать
      данную фигуру из тонкого картона.

    2. Определить
      центр тяжести своей фигуры на установке.

Установка
для опытного определения координат
центра тяжести способом подвешивания
состоит из вертикальной стойки 1
(см. рис.), к которой прикреплена игла 2.
Плоская фигура 3
изготовлена из картона, в котором легко
проколоть отверстие. Отверстия А
и В
прокалываются в произвольно расположенных
точках (лучше на наиболее удаленном
расстоянии друг от друга). Плоская фигура
подвешивается на иглу сначала в точке
А,
а потом в точке В.
При помощи отвеса 4,
закрепленного на той же игле, на фигуре
прочерчивают карандашом вертикальную
линию, соответствующую нити отвеса.
Центр тяжести С
фигуры будет находиться в точке
пересечения вертикальных линий,
нанесенных при подвешивании фигуры в
точках А
и В.

    1. Приклеить
      фигуру с определенным центром тяжести
      в тетрадь.

    2. Записать
      значения координат центра тяжести,
      найденных при подвешивании фигур:

  1. Сравнить
    результаты:
    ;

  2. Сделать
    вывод
    :

Задание
для лабораторной работы
.
Номер схемы соответствует Вашему
порядковому номеру в журнале.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В этой статье посмотрим, как определяются координаты центра тяжести сложной фигуры — состоящей из простых. В задачах по сопромату часто приходится находить положение центра тяжести составных сечений, для дальнейшего вычисления моментов инерции и т. д.

Также часто, при изучении теоретической механики, студентам предлагается решить подобную задачу, и найти центр тяжести какой-нибудь фигуры.

Условие задачи

Предлагаю рассмотреть следующую фигуру:

Фигура, состоящая из нескольких простых фигур

В сопромате принято заштриховывать сечения тонкими линиями, вот так:

Штриховка на сечении, состоящем из нескольких фигур

В своих же уроках я буду использовать заливку. Так, штриховка не будет мешать наносить обозначения.

Разбивка сложной фигуры на простые

Как видишь, сечение состоит из прямоугольника, прямоугольного треугольника, четверти круга, а также имеет круглый вырез:

Разбивка сложной фигуры на простые и нумерация фигур

Отметим центры тяжести (С1, С2, С3, С4) каждой отдельной фигуры, с учётом справочной информации.

Открой эту страничку, и пока не закрывай, она нам ещё понадобится!

Указание центров тяжести простых фигур

Покажем вспомогательные оси (x0, y0) для всего сечения, которые будем использовать для нахождения положения центра тяжести (C):

Введение вспомогательной системы координат для всего сечения

Как определить положение центра тяжести?

Чтобы определить координату центра тяжести сечения, например, вертикальное расстояние от оси x0 до центра тяжести сечения (yc):

Указание координаты от вспомогательной оси до центра тяжести

Нужно статический момент сечения относительно этой вспомогательной оси (x0) разделить на площадь всего сечения (A):

Площадь всего сечения (A) найти просто – это алгебраическая сумма площадей всех фигур:

Статический момент сечения, относительно вспомогательной оси будет равен алгебраической сумме статических моментов каждой фигуры (с учётом знака):

где Ai – площадь отдельной фигуры;
yi – расстояние от центра тяжести отдельной фигуры до вспомогательной оси (x0).

Координата центра тяжести (xc), находится аналогично:

Определение площади сечения

Для начала предлагаю сделать самое простое, используя формулы, указанные на этой странице, найти площадь всего сечения (A):

Сечение, для которого рассчитывается площадь

Как видишь, круглый вырез, нужно учесть с «минусом», что очевидно.

Определение расстояний от вспомогательных осей до центров тяжести отдельных фигур

Найдём расстояния от вспомогательных осей (x0, y0) до центров тяжести отдельных фигур, опять же, используя нашу шпаргалку:

Определение статических моментов

Определяем статические моменты сечения относительно вспомогательных осей (x0, y0):

Важно! Статические моменты могут быть и отрицательными.

Определение координат центра тяжести

И, наконец, определяем положение центра тяжести всего сечения (C):

Покажем центр тяжести всего сечения (C):

Указание найденного центра тяжести сечения

Если остались какие-то вопросы по данному уроку, можешь смело задавать их в комментариях. Также, другие уроки, на сайте – ssopromat.ru, по определению геометрических характеристик, можешь найти здесь.

Добавить комментарий