Как найти центральный угол правильного многоугольника формула

Определение.

Центральный угол правильного многоугольника — это угол, под которым сторона многоугольника видна из его центра.

centralnyj-ugol-mnogougolnikaНапример,

∠AOB — центральный угол правильного восьмиугольника.

Около любого правильного многоугольника можно описать окружность, центр которой совпадает с центром этого многоугольника. Если у многоугольника n сторон, то центральных углов у него также n и все они равны между собой.

Градусная мера всей окружности — 360º, следовательно, градусная мера каждой дуги окружности, на которую окружность разбивают вершины n-угольника, равна

    [frac{{{{360}^o}}}{n}]

Так как центральный угол равен дуге, на которую от опирается, то и каждый из центральных углов равен 360º:n.

Примеры

centralnyj-ugol-treugolnikaЦентральный угол правильного треугольника

равен 360º:3=120º.

centralnyj-ugol-kvadrataЦентральный угол квадрата

равен 360º:4=90º.

centralnyj-ugol-shestiugolnikaЦентральный угол правильного шестиугольника

равен 360º:6=60º.

centralnyj-ugol-vosmiugolnikaЦентральный угол правильного восьмиугольника

равен 360º:8=45º.

 Углы правильного  многоугольника делятся на :

  • центральный угол;
  • внутренний угол;
  • внешний угол.

Углы многоугольника

Сумма внутреннего и внешнего угла равна (180°).

Сумма внутренних углов правильного многоугольника с (n) сторонами равна:

((n – 2)180°)


Для нахождения внутреннего угла используют формулу:

(alpha = frac{{{{180}^o}(n – 2)}}{n})

(n)– число сторон


Для нахождения внешнего угла используют формулу:

(varphi = frac{{{{360}^o}}}{n})

(n)– число сторон


Для нахождения центрального угла используют формулу:

(beta = frac{{{{360}^o}}}{n})

(n)– число сторон

Больше уроков и заданий по всем школьным предметам в онлайн-школе “Альфа”. Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Правильный многоугольник
Правильный восьмиугольник
Правильный восьмиугольник
Тип Многоугольник
Символ Шлефли {displaystyle {n}}
Вид симметрии Диэдрическая группа {displaystyle (mathrm {D} _{5})}
Площадь {displaystyle S={frac {n}{4}} a^{2}operatorname {ctg} {frac {pi }{n}}}
Внутренний угол {displaystyle (n-2)*180^{circ }}
Свойства
выпуклый, вписанный, равносторонний, равноугольный[en], изотоксальный
Логотип Викисклада Медиафайлы на Викискладе

Пра́вильный многоуго́льник — выпуклый многоугольник, у которого равны все стороны и все углы между смежными сторонами.

Определение правильного многоугольника может зависеть от определения многоугольника: если он определён как плоская замкнутая ломаная, то появляется определение правильного звёздчатого многоугольника как невыпуклого многоугольника, у которого все стороны между собой равны и все углы между собой равны.

Связанные определения[править | править код]

  • Центром правильного многоугольника называется его центр масс, совпадающий с центрами его вписанной и описанной окружностей.

Свойства[править | править код]

Координаты[править | править код]

Пусть x_{C} и y_{C} — координаты центра, а R — радиус описанной вокруг правильного многоугольника окружности, {phi }_{0} — угловая координата первой вершины относительно центра, тогда декартовы координаты вершин правильного n-угольника определяются формулами:

x_{i}=x_{C}+Rcos left({phi }_{0}+{frac  {2pi i}{n}}right)
y_{i}=y_{C}+Rsin left({phi }_{0}+{frac  {2pi i}{n}}right)

где i принимает значения от {displaystyle 0} до n-1.

Размеры[править | править код]

Правильный многоугольник, вписанный и описанный около окружности

Пусть R — радиус описанной вокруг правильного многоугольника окружности, тогда радиус вписанной окружности равен

r=Rcos {frac  {pi }{n}},

а длина стороны многоугольника равна

a=2Rsin {frac  {pi }{n}}=2r{mathop  {{mathrm  {tg}}}},{frac  {pi }{n}}

Площадь[править | править код]

Площадь правильного многоугольника с числом сторон n и длиной стороны a составляет:

S={frac  {n}{4}} a^{2}{mathop  {{mathrm  {}}}},operatorname {ctg}{frac  {pi }{n}}.

Площадь правильного многоугольника с числом сторон n, вписанного в окружность радиуса R, составляет:

S={frac  {n}{2}}R^{2}sin {frac  {2pi }{n}}.

Площадь правильного многоугольника с числом сторон n, описанного вокруг окружности радиуса r, составляет:

S=nr^{2}{mathop  {{mathrm  {tg}}}},{frac  {pi }{n}}

Площадь правильного многоугольника с числом сторон n равна

{displaystyle S={frac {nra}{2}}={frac {1}{2}}Pr},

где r — радиус вписанной окружности многоугольника, a — длина его стороны, а P – его периметр.

Периметр[править | править код]

Если нужно вычислить длину стороны a_n правильного n-угольника, вписанного в окружность, зная длину окружности L можно вычислить длину одной стороны многоугольника:

a_n — длина стороны правильного n-угольника.
{displaystyle a_{n}=sin {Big (}{frac {pi }{n}}{Big )}cdot {frac {L}{pi }}}

Периметр P_{n} равен

P_{n}=a_{n}cdot n

где n — число сторон многоугольника.

Свойства диагоналей правильных многоугольников[править | править код]

  • Максимальное количество диагоналей правильного n-угольника, пересекающихся в одной точке, не являющейся его вершиной или центром, равно:
Существуют лишь три исключения: данное число равно {displaystyle 0} в треугольнике, 2 в шестиугольнике и 4 в двенадцатиугольнике.[3].
При чётном n в центре многоугольника пересекается n/2 диагонали.

Введём функцию {displaystyle delta _{m}(n)}, равную 1 в случае, если n делится на m, и равную {displaystyle 0} в противном случае. Тогда:

  • Количество точек пересечения диагоналей правильного n-угольника равно
{displaystyle {begin{array}{l}C_{n}^{4}+left(-5n^{3}+45n^{2}-70n+24right)/24cdot delta _{2}(n)-(3n/2)cdot delta _{4}(n)+\+left(-45n^{2}+262nright)/6cdot delta _{6}(n)+42ncdot delta _{12}(n)+60ncdot delta _{18}(n)+\+35ncdot delta _{24}(n)-38ncdot delta _{30}(n)-82ncdot delta _{42}(n)-330ncdot delta _{60}(n)-\-144ncdot delta _{84}(n)-96ncdot delta _{90}(n)-144ncdot delta _{120}(n)-96ncdot delta _{210}(n)end{array}}}
Где {displaystyle C_{n}^{4}} – число сочетаний из n по 4[3].
  • Количество частей, на которые правильный n-угольник делят его диагонали, равно
{displaystyle {begin{array}{l}left(n^{4}-6n^{3}+23n^{2}-42n+24right)/24+\+left(-5n^{3}+42n^{2}-40n-48right)/48cdot delta _{2}(n)-(3n/4)cdot delta _{4}(n)+\+left(-53n^{2}+310nright)/12cdot delta _{6}(n)+(49n/2)cdot delta _{12}(n)+32ncdot delta _{18}(n)+\+19ncdot delta _{24}(n)-36ncdot delta _{30}(n)-50ncdot delta _{42}(n)-190ncdot delta _{60}(n)-\-78ncdot delta _{84}(n)-48ncdot delta _{90}(n)-78ncdot delta _{120}(n)-48ncdot delta _{210}(n)end{array}}}
[3].

Применение[править | править код]

Правильными многоугольниками по определению являются грани правильных многогранников.

Древнегреческие математики (Антифонт, Брисон Гераклейский, Архимед и др.) использовали правильные многоугольники для вычисления числа π. Они вычисляли площади вписанных в окружность и описанных вокруг неё многоугольников, постепенно увеличивая число их сторон и получая таким образом оценку площади круга.[4]

История[править | править код]

Построение циркулем и линейкой правильного многоугольника с n сторонами оставалось проблемой для математиков вплоть до XIX века. Такое построение идентично разделению окружности на n равных частей, так как, соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник.

Евклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для {displaystyle n=3,4,5,6,15}. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2^{m} сторонами (при целом m>1), имея уже построенный многоугольник с числом сторон {displaystyle 2^{m-1}}: пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее. Кроме этого, в той же книге Евклид указывает и второй критерий построимости: если известно, как строить многоугольники с r и s сторонами, и r и s взаимно простые, то можно построить и многоугольник с {displaystyle rcdot s} сторонами. Это достигается построением многоугольника с s сторонами и многоугольника с r сторонами так, чтобы они были вписаны в одну окружность и чтобы одна вершина у них была общей – в таком случае некоторые две вершины этих многоугольников будут являться соседними вершинами rs-угольника. Синтезируя эти два способа, можно прийти к выводу, что древние математики умели строить правильные многоугольники с {displaystyle 2^{m}cdot 3}, {displaystyle 2^{m}cdot 5} и {displaystyle 2^{m}cdot 3cdot 5} сторонами при любом целом неотрицательном m.

Средневековая математика почти никак не продвинулась в этом вопросе. Лишь в 1796 году Карлу Фридриху Гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу Ферма, то его можно построить при помощи циркуля и линейки. На сегодняшний день известны следующие простые числа Ферма: {displaystyle 3,5,17,257,65537}. Вопрос о наличии или отсутствии других таких чисел остаётся открытым. Гаусс, в частности, первым смог доказать возможность построения правильного 17-угольника, а под конец жизни завещал выбить его на своём надгробии, однако скульптор отказался выполнять столь сложную работу.[5]

Из результата Гаусса мгновенно следовало, что правильный многоугольник возможно построить, если число его сторон равно {displaystyle 2^{k}{p_{1}}{p_{2}}cdots {p_{s}}}, где {k} — целое неотрицательное число, а {p_{j}} — попарно различные простые числа Ферма. Гаусс подозревал, что это условие является не только достаточным, но и необходимым, но впервые это было доказано Пьером-Лораном Ванцелем в 1836 году. Итоговая теорема, совмещающая оба результата, называется Теоремой Гаусса-Ванцеля.

Последними результатами в области построения правильных многоугольников являются явные построения 17-, 257- и 65537-угольника. Первое было найдено Йоханнесом Эрхингером в 1825 году, второе — Фридрихом Юлиусом Ришело в 1832 году, а последнее — Иоганном Густавом Гермесом в 1894 году.

См. также[править | править код]

  • Правильный многогранник

Примечания[править | править код]

  1. МАТВОКС
  2. treugolniki.ru. Дата обращения: 12 мая 2020. Архивировано 2 июля 2020 года.
  3. 1 2 3 Bjorn Poonen and Michael Rubinstein “The number of intersection points made by thediagonals of a regular polygon”. Дата обращения: 16 июля 2020. Архивировано 17 июля 2020 года.
  4. А. В. Жуков. О числе π. — М.: МЦНМО, 2002. ISBN 5-94057-030-5.
  5. Лабуда



Профи

(587),
закрыт



7 лет назад

Захар Полторак

Мыслитель

(9959)


8 лет назад

Рассмотрим треугольник АВО, образованный радиусами описанной окружности, проведенными к одной из сторон многоугольника,
где О центр многоугольника, АВ – сторона многоугольника, ОА = ОВ = R – радиусы описанной окружности.
Опустим перпендикуляр ОД на сторону АВ. ОД = r – радиус вписанной окружности.
Угол АОВ – центральный угол многоугольника, ОД – делит этот угол пополам, то есть угол АОВ = 2*(угол АОД).
Треугольник ОАД – прямоугольный. По условию задачи ОД/ОА = r/R = 1/2 = cos(угол АОД).
Отсюда угол АОД = 60 гр, угол АОВ = 2*60 = 120 гр.
Количество сторон многоугольника = 360/120 = 3. Многоугольник этот – треугольник.
Ответ: центральный угол = 120 гр.

���������� �������������

�������� �����: �������������, ���������� �������������, �������, ����, ���������, ��������� ����������

�������� ������������� ���������� ����������, ���� � ���� ��� ������� ����� � ��� ���� �����.

������� ����������� �������������� ���������� �����, �������������� �� ���� ��� ������ � ���� ��� ������.

����������� ����� ����������� �������������� ���������� ����, ��� ������� ����� ������� �� ��� ������.

prav_mnogeuol

�������� ����������� ��������������.

  • ���������� ������������� �������� ��������� � ���������� � ���������
    ����� ����������, ��� ���� ������ ���� ����������� ���������
  • ����� ����������� �������������� ��������� � �������� ��������� � ��������� �����������.
  • ������� an
    ����������� n-��������� ������� � �������� R ��������� ���������� �������� $$a_{n} = 2Rsinfrac{180^circ}{n}= 2Rsinfrac{pi}{n}$$.
  • ��������� ���������� n-���������� ��������� ��� ������� ��������� �����������.

bid

�������

  • ����� R — ������ ��������� ������ ����������� �������������� ����������, ����� ������ ��������� ���������� ����� $$r = R cdot cosfrac{pi}{n}$$, � ����� ������� �������������� ����� $$a = 2R cdot sinfrac{pi}{n}$$.
  • ������� ����������� �������������� � ������ ������ n � ������ ������� a ���������� $$S = frac{n}{4}a^{2} cdot ctgfrac{pi}{n}$$.
  • ������� ����������� �������������� � ������ ������ n, ���������� � ���������� ������� R ���������� $$S = frac{n}{2}R^{2} cdot sinfrac{2pi}{n}$$.
  • ������� ����������� �������������� � ������ ������ n, ���������� ������ ���������� ������� r ���������� $$S = nr^{2} cdot tgfrac{pi}{n}$$.


��. �����:
��������� ����������,
��������� ����������,
�������� ����ң���������,
������������ �������� �������������

Добавить комментарий